
HAL Id: hal-00834935
https://enpc.hal.science/hal-00834935

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse learning approach to the problem of robust
estimation of camera locations

Arnak S. Dalalyan, Renaud Keriven

To cite this version:
Arnak S. Dalalyan, Renaud Keriven. Sparse learning approach to the problem of robust estimation
of camera locations. ICCV, Sep 2009, Kyoto, Japan. pp.436-443. �hal-00834935�

https://enpc.hal.science/hal-00834935
https://hal.archives-ouvertes.fr


Sparse Learning Approach to the Problem of Robust Estimation of Camera

Locations

Arnak Dalalyan and Renaud Keriven
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Abstract

In this paper, we propose a new approach—inspired by

the recent advances in the theory of sparse learning— to the

problem of estimating camera locations when the internal

parameters and the orientations of the cameras are known.

Our estimator is defined as a Bayesian maximum a posteri-

ori with multivariate Laplace prior on the vector describing

the outliers. This leads to an estimator in which the fidelity

to the data is measured by the L∞-norm while the regu-

larization is done by the L1-norm. Building on the papers

[11, 15, 16, 14, 21, 22, 24, 18, 23] for L∞-norm minimiza-

tion in multiview geometry and, on the other hand, on the

papers [8, 4, 7, 2, 1, 3] for sparse recovery in statistical

framework, we propose a two-step procedure which, at the

first step, identifies and removes the outliers and, at the sec-

ond step, estimates the unknown parameters by minimizing

the L∞ cost function. Both steps are fairly fast: the outlier

removal is done by solving one linear program (LP), while

the final estimation is performed by a sequence of LPs. An

important difference compared to many existing algorithms

is that for our estimator it is not necessary to specify neither

the number nor the proportion of the outliers.

1. Introduction

In the present paper, we are concerned with the structure

and motion problem of multiview geometry. This problem,

that have received a great deal of attention by the computer

vision community in last decade, consists in recovering a

set of 3D points (structure) and a set of camera matrices

(motion), when only 2D images of the aforementioned 3D

points by some cameras are available. Throughout this work

we assume that the internal parameters of cameras as well

as their orientations are known. Thus, only the locations

of camera centers and 3D points are to be estimated. In

solving the structure and motion problem by state-of-the-art

methods, it is customary to start by establishing correspon-

dences between pairs of 2D data points. We will assume

in the present study that these point correspondences have

been already established.

From a heuristical standpoint, it is useful to think of the

structure and motion problem as an inverse problem. In fact,

if O denotes the operator that takes as input the set of 3D

points and the set of cameras, and produces as output the

2D images of the 3D points by the cameras, then the task

of the structure and motion problem is to invert the operator

O. It is clear that the operator O is not injective: two dif-

ferent inputs may result in the same output. Fortunately, in

many situations (for example, when for each pair of cameras

there are at least five 3D points in general position that are

seen by these cameras [20]), there is only a small number

of inputs, up to an overall similarity transform, having the

same image by O. In such cases, the solutions to the struc-

ture and motion problem can be found using algebraic ar-

guments. The solutions obtained by the algebraic approach

are in general very sensitive to the noise in the data. Thus,

very often, there is no input that could have generated the

observed output because of the noise in the measurements.

A natural approach to cope with such situations consists in

searching for the input providing the closest possible output

to the observed data.

In the problems where the output space of the opera-

tor O is not one-dimensional, as it is the case in the struc-

ture and motion problem, the choice of the metric used to

measure the “closeness” is of high importance. A standard

approach [12] consists in measuring the distance between

two elements of the output space in the Euclidean L2-norm.

In the structure and motion problem with more than two

cameras, this leads to a hard non-convex optimization prob-

lem. A particularly elegant way of circumventing the non-

convexity issues inherent to the use of L2-norm consists in

replacing it by the L∞-norm. This approach has been de-

veloped in a series of recent papers (cf. [11, 14, 21, 22, 24]

and the references therein). It has been shown that, for some

problems of structure and motion estimation, the use of the

L∞-norm results in a pseudoconvex minimization, which

can be performed very efficiently using, for example, the

iterative bisection method that solves a convex program at



each iteration.

The purpose of the present work is to introduce a new

procedure of estimation in presence of noise and outliers.

Our procedure is derived as a maximum a posteriori (MAP)

estimator under uniformly distributed random noise and a

sparsity favoring prior on the vector of outliers. Interest-

ingly, this study bridges the work on the robust estimation

in multiview geometry and the well developed theory of

sparse recovery in statistical learning theory [4, 7, 5, 17].

Related work on outlier removal using L∞-techniques can

be found in [9, 24, 15, 18]. We refer the interested reader to

the paper [24] for a comprehensive, precise mathematical

background on the outlier identification problem in multi-

view geometry.

The rest of the paper is organized as follows. The next

section gives the precise formulation of the translation esti-

mation problem that constitutes an example of a problem to

which the presented methodology can be applied. A brief

review of the L∞-norm minimization algorithm consisting

in sequential optimization is presented in Section 3. In Sec-

tion 4, we introduce the statistical framework and derive a

new estimation procedure as a MAP estimator. The main

result on the accuracy of this procedure is stated and proved

in Section 5, while Section 6 contains some numerical ex-

periments. The methodology of our study is summarized in

Section 7.

2. Translation estimation and triangulation

Let us start by presenting a problem of multiview geom-

etry to which our approach can be successfully applied: the

problem of translation estimation and triangulation in the

case of known rotations. For rotation estimation algorithms,

we refer the interested reader to [19, 10] and the references

therein. Let P∗i , i = 1, . . . ,m, be a sequence of m cam-

eras that are known up to a translation. Recall that a camera

is characterized by a 3 × 4 matrix P with real entries that

can be written as P = K[R|t], where K is an invertible 3 × 3
camera calibration matrix, R is a 3 × 3 rotation matrix and

t ∈ R
3. We will refer to t as the translation of the camera

P. We can thus write P
∗
i = Ki[Ri|t∗i ], i = 1, . . . ,m. For

a set of unknown 3D points U∗
j ∈ P

3, j = 1, . . . , n, we

are given the images—contaminated by a noise— of each

U∗
j by some cameras P∗i . Thus, we have at our disposal the

measurements

xij =
1

eT

3 P
∗
i U

∗
j

[
eT

1 P
∗
i U

∗
j

eT

2 P
∗
i U

∗
j

]
+ ξij ,

j = 1, . . . , n,
i ∈ Ij ,

(1)

where eℓ, ℓ = 1, 2, 3, stands for the unit vector of R
3 having

one as the ℓth coordinate and Ij is the set of indices of cam-

eras for which the point U∗
j is visible. We will assume that

the set {U∗
j} does not contain points at infinity. Therefore,

we can write U∗
j = [X∗T

j |1]T for some X∗
j ∈ R

3 and for

every j = 1, . . . , n.

We are now in a position to state the problem of trans-

lation estimation and triangulation in the context of mul-

tiview geometry. It consists in recovering the 3-vectors

{t∗i } (translation estimation) and the 3D points {X∗
j}

(triangulation) from the noisy measurements {xij ; j =
1, . . . , n; i ∈ Ij} ⊂ R

2. We use the notation θ∗ =
(t∗T

1 , . . . , t∗T

m ,X∗T

1 , . . . ,X∗T

n )T ∈ R
3(m+n), which is the

vector of interest.

Remark 1 (Cheirality). If the point U∗
j is in front of the

camera P
∗
i , then eT

3 P
∗
i U

∗
j ≥ 0. Furthermore, we will

assume that none of the true 3D points U∗
j lies on the

principal plane of a camera P
∗
i . This assumption implies

that eT

3 P
∗
i U

∗
j > 0 so that the quotients eT

ℓ P
∗
i U

∗
j/e

T

3 P
∗
i U

∗
j ,

ℓ = 1, 2, are well defined.

Remark 2 (Identifiability). The parameter θ is, in general,

not identifiable from the measurements {xij}. In fact, for

every α 6= 0 and for every t ∈ R
3, the parameters {t∗i ,X∗

j}
and {α(t∗i − Rit), α(X∗

j + t)} generate the same measure-

ments. To cope with this issue, we assume that t∗1 = 03 and

that mini,j eT

3 P
∗
i U

∗
j = 1. Thus, in what follows we assume

that t∗1 is removed from θ∗
and θ∗ ∈ R

3(m+n−1). Further

assumptions ensuring the identifiability are given below.

3. Estimation by L∞-minimization

This section presents results on the estimation of θ based

on the reprojection error minimization. This material is es-

sential for understanding the results that are at the core of

the present work. In what follows, for every s ≥ 1, we

denote by ‖x‖s the Ls-norm of a vector x, i.e. ‖x‖s
s =∑

j |xj |s if x = (x1, . . . , xd)
T for some d > 0. As usual,

we extend this to s = +∞ by setting ‖x‖∞ = maxj |xj |.

3.1. Estimation by L∞ cost minimization

A classical method [12] for estimating the parameter θ

is based on minimizing the sum of the reprojection errors

squared. This amounts to defining θ̂ as a minimizer of

the cost function C2,2(θ) =
∑

i,j ‖xij − xij(θ)‖2
2, where

xij(θ) :=
[
eT

1 PiU
∗
j ; e

T

2 PiU
∗
j

]
T/eT

3 PiU
∗
j is the 2-vector

that we would obtain if θ were the true parameter. It can

also be written as

xij(θ) =

[
eT

1 Ki(RiXj + ti)

eT

3 Ki(RiXj + ti)
;
eT

2 Ki(RiXj + ti)

eT

3 Ki(RiXj + ti)

]T

. (2)

The minimization of C2,2 is a hard nonconvex problem. In

general, it does not admit closed-form solution and the ex-

isting iterative algorithms may often get stuck in local min-

ima. An ingenious idea to overcome this difficulty has been

proposed in recent years [11, 13]. It is based on the mini-

mization of the L∞ cost function

C∞,2(θ) = max
j=1,...,n

max
i∈Ij

‖xij − xij(θ)‖2. (3)



Note that the substitution of the L2-cost function by the

L∞-cost function has been proved to lead to improved al-

gorithms in other estimation problems as well, cf., e.g., [6].

This cost function has the advantage of having all its sub-

level sets convex. This property ensures that all minima of

C∞,2 form a convex set and that an element of this set can

be computed by solving a sequence of SOCPs [14], e.g. by

the bisection algorithm presented below. This result readily

generalizes to the family of cost functions

C∞,s(θ) = max
j=1,...,n

max
i∈Ij

‖xij − xij(θ)‖s, s ≥ 1. (4)

For s = 1 and s = +∞, the minimization of C∞,s can be

recast in a sequence of LPs.

3.2. The bisection algorithm

We briefly describe an algorithm computing θ̂s ∈
arg minθ C∞,s(θ) for any prespecified s ≥ 1. The mini-

mization is carried out over the set of all vectors θ satisfy-

ing the cheirality condition. Let us introduce the residuals

rij(θ) = xij − xij(θ) that can be represented as

rij(θ) =

[
aT

ij1θ

cT

ijθ
;
aT

ij2θ

cT

ijθ

]T

, (5)

for some vectors aijℓ, cij ∈ R
2. Furthermore, as presented

in Remark 2, the cheirality conditions imply the set of linear

constraints cT

ijθ ≥ 1. Thus, the problem of computing θ̂s

can be rewritten as

Ps : min γ

{θ, γ} s.t.

{
‖rij(θ)‖s ≤ γ,

cT

ijθ ≥ 1.

(6)

Note that the inequality ‖rij(θ)‖s ≤ γ can be replaced by

‖AT

ijθ‖s ≤ γcT

ijθ with Aij = [aij1;aij2]. Although Ps is

not a convex problem, its solution can be well approximated

by solving a sequence of convex feasibility problems of the

form

Ps,γ : find θ

s.t.

{
‖AT

ijθ‖s ≤ γcT

ijθ,

cT

ijθ ≥ 1,

(7)

with fixed γ ≥ 0.

Remark 3. Any solution of (7) is defined up to a scaling

factor larger than one, i.e., if θ solves (7) then it is also the

case for αθ with any α ≥ 1. In order to fix this scaling fac-

tor, one can redefine θ by setting it equal to θ/(minij cT

ijθ).

Given a small positive number ǫ controlling the accuracy

of approximation, the bisection algorithm reads as follows:

Step 1: Compute a θ̂ satisfying the cheirality conditions,

e.g., by solving a linear feasibility problem.

Step 2: Set γl = 0 and γu = C∞,s(θ̂).

Step 3: Set γ = (γl + γu)/2.

Step 4: If Ps,γ has no solution, set γl = γ. Otherwise,

replace the current value of θ̂ by a solution to Ps,γ and

set γu = C∞,s(θ̂).

Step 5: If γu − γl < ǫ, then assign to θ̂s the current value

of θ̂ and terminate. Otherwise, go to Step 3.

4. Robust estimation by linear programming

This and the next sections contain the main theoretical

contribution of the present work. We start with the precise

formulation of the statistical model and define a maximum

a posteriori (MAP) estimator.

4.1. The statistical model

Let us first observe that, in view of (1) and (5), the model

we are considering can be rewritten as

[
aT

ij1θ
∗

cT

ijθ
∗ ;

aT

ij2θ
∗

cT

ijθ
∗

]T

= ξij , j = 1, . . . , n; i ∈ Ij . (8)

Let N = 2
∑n

j=1 Ij be the total number of measurements

and let M = 3(n + m− 1) be the size of the vector θ∗. Let

us denote by A (resp. C) the M × N matrix formed by the

concatenation of the column-vectors aijℓ (resp. cij
1). Simi-

larly, let us denote by ξ the N -vector formed by concatenat-

ing the vectors ξij . In these notation, Eq. (8) is equivalent

to

aT

p θ∗ = (cT

p θ∗)ξp, p = 1, . . . , N. (9)

This equation defines the statistical model in the case where

there is no outlier or, equivalently, all the measurements are

inliers. In order to extend this model to cover the situation

where some outliers are present in the measurements, we

assume that there is another vector, ω∗ ∈ R
N , such that

ω∗
p = 0 if the pth measurement is an inlier and

aT

p θ∗ = ω∗
p + (cT

p θ∗)ξp, p = 1, . . . , N. (10)

It is convenient to write these equations in a matrix form:

A
Tθ∗ = ω∗ + diag(CTθ∗)ξ, (11)

where, as usual, for every vector v, diag(v) is the diagonal

matrix having the components of v as diagonal entries.

Statement of the problem: Given the matrices A and C,

estimate the parameter-vector β∗ = [θ∗T;ω∗T]T based on

the following prior information:

1To get a matrix of the same size as A, in the matrix C each column is

duplicated two times.



C1 : Eq. (11) holds with some small noise vector ξ,

C2 : minp cT

p θ∗ = 1 (cf. the discussion preceding Eq. (6)),

C3 : ω∗ is sparse, i.e., only a small number of coordinates

of the vector ω∗ are different from zero.

4.2. Sparsity prior and MAP estimator

To derive an estimator of the parameter β∗, we place our-

selves in the Bayesian framework. To this end, we impose a

probabilistic structure on the noise vector ξ and introduce a

prior distribution on the unknown vector β. Since the noise

ξ represents the difference (in pixels) between the measure-

ments and the true image points, it is naturally bounded and,

generally, does not exceeds the level of a few pixels. In view

of this boundedness, it is reasonable to assume that the com-

ponents of ξ are uniformly distributed in some compact set

of R
2, centered at the origin. We assume in what follows

that the subvectors ξij of ξ are uniformly distributed in the

square [−σ, σ]2 and are mutually independent. This implies

that all the coordinates of ξ are independent.

Now, we turn to the choice of the prior. Since the only

information on θ∗ is that the cheirality and the identifiabil-

ity constraints should be satisfied, we define the prior on

θ as the uniform distribution on the polytope P = {θ ∈
R

M : CTθ ≥ 1}, where the inequality is understood com-

ponentwise. (For simplicity, we assume in this discussion

that P is bounded.) The density of this distribution is

p1(θ) ∝ 1P(θ), where ∝ stands for the proportionality re-

lation and 1P(θ) = 1 if θ ∈ P and 0 otherwise.

The task of choosing a prior on ω is more delicate in that

it should reflect the information that ω is sparse. The most

natural prior would be the one having a density which is a

decreasing function of the L0-norm of ω, i.e., of the num-

ber of its nonzero coefficients. It is however well-known

that the computation of estimators based on this type of pri-

ors is NP-hard. A very powerful approach for overcoming

this difficulty—extensively studied in the statistical litera-

ture during the past decade ([4, 7, 1] and the references

therein) —relies on using the L1-norm instead of the L0-

norm. Following this idea, we define the prior on ω by

the density p2(ω) ∝ f(‖ω‖1), where f is some decreasing

function2. Assuming in addition that θ and ω are indepen-

dent, we get the following prior on β:

π(β) = π(θ;ω) ∝ 1P(θ) · f(‖ω‖1). (12)

Theorem 1. Assume that the noise ξ has independent en-

tries which are uniformly distributed in [−σ, σ] for some

σ > 0, then the MAP estimator β̂ = [θ̂T; ω̂T]T based on

the prior π defined by Eq. (12) is the solution of the opti-

2The most common choice is f(x) = e−x corresponding to the multi-

variate Laplace density.

mization problem:

LPσ : min ‖ω‖1 s.t.

{
|aT

p θ − ωp| ≤ σcT

p θ, ∀p

cT

p θ ≥ 1, ∀p.

(13)

Proof. Under the probabilistic assumption made on the vec-

tor ξ, the conditional probability density fβ of the data

X = {xij , j = 1, . . . , n; i ∈ Ij} given the parameter-vector

β is fβ(X) ∝
∏N

p=1 1{|aT
pθ−ωp|≤cT

pθ}. Consequently, the

posterior probability density is given by

fβ|X(β) ∝
N∏

p=1

1{|aT
pθ−ωp|≤cT

pθ}1P(θ) · f(‖ω‖1). (14)

Since f is a decreasing function, it is obvious that the set of

most likely values w.r.t. this posterior distribution coincides

with the set of solutions to the problem LPσ .

Remark 4 (Condition C2). One easily checks that any solu-

tion of LPσ satisfies condition C2. Indeed, if for some solu-

tion β̂ it were not the case, then minp cT

p θ̂ > 1. Therefore,

β̃ = β̂/ minp cT

p θ̂ would satisfy the constraints of LPσ and

ω̃ would have a smaller L1-norm than ω̂, which is in con-

tradiction with the fact that β̂ solves LPσ .

Remark 5 (The role of σ). In the definition of β̂, σ is a free

parameter that can be interpreted as the level of separa-

tion of inliers from outliers. In fact, the proposed algorithm

implicitly assumes that all the measurements xij for which

‖ξij‖∞ > σ are outliers, while all the others are treated as

inliers.

In the case when σ is unknown, a reasonable way of act-

ing is to impose a prior distribution on the possible values of

σ and to define the estimator β̂ as a MAP estimator based on

the prior incorporating the uncertainty on σ. When there are

no outliers and the prior on σ is decreasing, this approach

leads to the estimator minimizing the L∞ cost function (see

Section 3). In the presence of outliers, the role of the shape

of the prior on σ, as well as the shape of the function f (see

Eq. (15)), becomes more important for the definition of the

estimator. This is an interesting point for future investiga-

tion.

4.3. Two­step procedure

Building on the arguments presented in the previous sub-

section, we introduce the following two-step algorithm.

Input: {ap, cp; p = 1, . . . , N} and σ.

Step 1: Compute [θ̂T; ω̂T]T as a solution to LPσ , cf. (13).

Step 2: Define J = {p : ω̂p = 0} and apply the bisection

algorithm to the reduced data set {xp; p ∈ J}.



Two observations are in order. First, when applying the bi-

section algorithm at Step 2, we can use C∞,s(θ̂) as the initial

value of γu. The second observation is that a better way of

acting would be to minimize the weighted L1-norm of ω,

where the weight assigned to ωp is inversely proportional to

the depth cT

p θ∗. Since θ∗ is unknown, a reasonable strat-

egy consists in adding a step in between Step 1 and Step

2, which performs the weighted minimization with weights

{(cT

p θ̂)−1; p = 1, . . . , N}.

5. Accuracy of estimation

Let us introduce some additional notation. Recall the

definition of P and set ∂P = {θ : minp cT
p θ = 1} and

∆P = {θ − θ′ : θ,θ′ ∈ ∂P}. For every subset of indices

J ⊂ {1, . . . , N}, we denote by AJ the M × N matrix ob-

tained from A by replacing the columns that have an index

outside J by zero. Furthermore, let us define

δS = max
|J|≤S

sup
g∈∆P

‖AT

Jg‖2

‖ATg‖2
, ∀S ≤ N, (15)

where |J | is the cardinal of J and the convention 0/0 = 0
is used. One easily checks that δS is well defined and is

less than or equal to 1 for every S. Moreover, the mapping

S 7→ δS is nondecreasing.

Assumption A: The real number λ defined by λ =
ming∈∆P ‖ATg‖2/‖g‖2 is strictly positive.

It is worth mentioning that Assumption A is necessary

for identifying the parameter vector θ∗. In fact, if we con-

sider the case without outliers, ω̂
∗ = 0, and if Assump-

tion A is not fulfilled, then there is a vector g ∈ ∆P such

that ATg is much smaller than g. That is, given the ma-

trices A and C, there are two vectors θ1 and θ2 satisfying

minp cpθ
j = 1, j = 1, 2, and such that AT(θ1 − θ2) is

small while θ1 − θ2 is not. Therefore, if eventually θ1 is

the true parameter vector satisfying C1 and C3, then θ2 sat-

isfies these conditions as well but is substantially different

from θ1. As a consequence, the true vector cannot be ac-

curately estimated from matrices A and C. Note also that a

simple sufficient condition for Assumption A to be fulfilled

is that the smallest eigenvalue of AAT is strictly positive.

5.1. The noise free case

To evaluate the quality of estimation, we first place our-

selves in the case where σ = 0. The estimator β̂ of β∗ is

then given as a solution to the optimization problem

min ‖ω‖1 over β =

[
θ

ω

]
s.t.

{
A

Tθ = ω

C
Tθ ≥ 1

. (16)

Theorem 2. Let Assumption A be fulfilled and let δS +
δ2S < 1 for some S ∈ {1, . . . , N}. Then, for some con-

stant C0, it holds:

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1, (17)

where ω∗
S stands for the vector ω∗ with all but the S-largest

entries set to zero. In particular, if ω∗ has no more than S
nonzero entries, then the estimation is exact: β̂ = β∗

.

Proof. We set h = ω∗ − ω̂ and g = θ∗ − θ̂. It follows

from Remark 4 that g ∈ ∆P . From now on, hT stands for

the vector equal to h on an index set T and zero elsewhere.

Let T0 (resp. T1) denote the index set corresponding to the

locations of S largest entries3 of ω∗ (resp. hT c
0

, where T c
0

is the complementary set of T0). To proceed with the proof,

we need the following auxiliary result.

Lemma 1. Let v ∈ R
d be some vector and let S ≤ d be a

positive integer. If we denote by T the indices of S largest

entries of the vector |v| (the absolute value should be un-

derstood componentwise), then ‖vT c‖2 ≤ S−1/2‖v‖1.

Proof of Lemma 1. Let us denote by T1 the index set of

S largest entries of |vT c |, by T2 the index set of next S
largest entries of |vT c |, and so on. By triangle inequal-

ity, one has ‖vT c‖2 ≤ ∑
j≥1 ‖vTj

‖2. On the other hand,

one easily checks that |vℓ|2 ≤ |vℓ| · ‖vTj−1
‖1/S for ev-

ery ℓ ∈ Tj with the convention T0 = T . This implies that

‖vTj
‖2
2 ≤ ‖vTj

‖1‖vTj−1
‖1/S, for every j ≥ 1. After tak-

ing the square root of these inequalities and summing up

over j, we get the desired result in view of the obvious in-

equality ‖vTj
‖1 ≤ ‖vTj−1

‖1.

Applying Lemma 1 to the vector v = hT c
0

and to the index

set T = T1, we get

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT c
0
‖1. (18)

On the other hand, summing up the inequalities ‖hT c
0
‖1 ≤

‖(ω∗−h)T c
0
‖1 +‖ω∗

T c
0

‖1 and ‖ω∗
T0
‖1 ≤ ‖(ω∗−h)T0

‖1 +

‖hT0
‖1, and using the relation ‖(ω∗ − h)T0

‖1 + ‖(ω∗ −
h)T c

0
‖1 = ‖ω∗ − h‖1 = ‖ω̂‖1, we get

‖hT c
0
‖1 + ‖ω∗

T0
‖1 ≤ ‖ω̂‖1 + ‖ω∗

T c
0

‖1 + ‖hT0
‖1. (19)

Since β∗ satisfies the constraints of the optimization prob-

lem (16) a solution of which is β̂, we have ‖ω̂‖1 ≤ ‖ω∗‖1.

This inequality, in conjunction with (18) and (19), implies

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT0
‖1 + 2S−1/2‖ω∗

T c
0

‖1

≤ ‖hT0
‖2 + 2S−1/2‖ω∗

T c
0

‖1, (20)

3in absolute value



where the last line follows from the Cauchy-Schwartz in-

equality. Once again using the fact that both β̂ and β∗ sat-

isfy the constraints of (16), we get h = A
Tg. Therefore,

‖h‖2 ≤ ‖hT0∪T1
‖2 + ‖h(T0∪T1)c‖2

≤ ‖hT0∪T1
‖2 + ‖hT0

‖2 + 2S−1/2‖ω∗
T c

0

‖1

= ‖AT

T0∪T1
g‖2 + ‖AT

T0
g‖2 + 2S−1/2‖ω∗

T c
0

‖1

≤ (δ2S + δS)‖ATg‖2 + 2S−1/2‖ω∗
T c

0

‖1

= (δ2S + δS)‖h‖2 + 2S−1/2‖ω∗
T c

0

‖1. (21)

Since ω∗
T c

0

= ω∗ − ωS , the last inequality yields

‖h‖2 ≤
(
2S−1/2/(1 − δS − δ2S)

)
‖ω∗ − ω∗

S‖1. (22)

To complete the proof, it suffices to observe that

‖β̂ − β∗‖2 ≤ ‖g‖2 + ‖h‖2 ≤ λ−1‖Ag‖2 + ‖h‖2

=
(
λ−1 + 1

)
‖h‖2 ≤ C0‖ω∗ − ω∗

S‖1, (23)

by virtue of inequality (22).

We emphasize that the constant C0 is rather small. For

example, if δS +δ2S = 0.5, then it can be deduced from the

proof of Theorem 2 that max(‖ω̂−ω∗‖2, ‖AT(θ̂−θ∗)‖2) ≤
(4/

√
S)‖ω∗ − ω∗

S‖1.

5.2. The noisy case

The assumption σ = 0 is an idealization of the real-

ity that has the advantage of simplifying the mathematical

derivations. While such a simplified setting is useful for

conveying the main ideas behind the proposed methodol-

ogy, it is of major practical importance to discuss the exten-

sions to the more realistic noisy model. Because of space

limitation, we will state the result which is the analogue of

Theorem 2 in the case σ 6= 0.

Theorem 3. Let us denote by ξ̂ the vector of estimated

residuals satisfying A
Tθ̂ = ω̂ + diag(CTθ̂)ξ̂. If for some

ǫ > 0 we have max(‖diag(CTθ̂)ξ̂‖2; ‖diag(CTθ∗)ξ‖2) ≤
ǫ, then

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1 + C1ǫ (24)

where C0 and C1 are numerical constants.

The proof of this result is very similar to that of Theorem

2 and therefore is left to the interested reader.

6. Numerical illustration

We implemented the algorithm in MatLab, using the

SeDuMi package for solving linear programs [26]. Since

in the present setting the matrices A and C are sparse—

each column of these matrices contains at most 6 non-zero

Figure 1. Left: the first image of the database. Right: the positions

of cameras and the scene points estimated by L∞-norm minimiza-

tion.

entries—the execution times are reasonably small even for

large data sets.

To demonstrate the proposed methodology, we applied

our algorithm of robust estimation to the well known di-

nosaur sequence4. This sequence consists of 36 images of

a dinosaur on a turntable, see Fig. 1 for the first image.

The 2D image points which are tracked across the image

sequence and the projection matrices of 36 cameras are pro-

vided as well. For solving the problem of translation esti-

mation and triangulation, we make use only of the first three

columns of the projection matrices.

There are at least two factors making the analysis of

the dinosaur data difficult. The first one is the size of the

data set: there are 16.432 image points corresponding to

4.983 real world points. This entails that there are more

than 15.000 unknown parameters. The second factor is the

presence of outliers which causes the failure of the origi-

nal bisection algorithm. As shown in Fig. 1, the estimated

camera centers are not on the same plane and it is difficult to

recognize the dinosaur from the scatter plot of the estimated

3D points. Furthermore, the maximal reprojection error in

this example is equal to 63 pixel.

We ran our procedure of robust estimation on this data

set with σ = 0.5 pixel. We applied the following rule for

detecting outliers: if |ωp/c
T

p θ| is larger than σ/4, then the

pth measurement is considered as an outlier and is removed.

The corresponding 3D scene point is also removed if, after

the step of outlier removal, it was seen by only one camera.

This resulted in removing 1.306 image points and 297 scene

points. The plots of Fig. 2 show the estimated camera cen-

ters and estimated scene points. We see, in particular, that

the camera centers are almost coplanar. Note that in this

example, the second step of the procedure described in Sec-

tion 4.3 does not improve on the estimator computed at the

first step. Thus, an accurate estimate is obtained by solving

only one linear program.

An additional difficulty of this sequence of images is that

there are some “wrong” scene points which have small re-

projection error. It is noteworthy that the number of this

4http://www.robots.ox.ac.uk/ ṽgg/data1.html



Figure 2. Left: the positions of cameras and the scene points esti-

mated by our method. Right: zoom on the scene points.

Figure 3. The scene points estimated by our method after removing

the points seen by only two cameras.

kind of outliers can be drastically reduced by considering

only those 3D scene points for which we have at least three

2D image points. For the dinosaur sequence, this reduces

the number of scene points from 4.983 to 2.307. These

points are plotted in Fig. 3, which shows that there is no

flagrant outlier in this reduced data set.

For comparison, we ran on the same data the procedures

proposed by [24, 15] that we will refer to as SH-procedure

and KK-procedure, respectively. To remove 1,500 outliers,

the SH-procedure required more than 50 cycles, each cy-

cles consisting of a bisection algorithm containing between

5 and 10 LPs. The resulting estimator had a maximal re-

projection error equal to 1.33 pixel. The boxplots of the

errors for estimated camera locations are shown in Fig. 5.

Concerning the KK-procedure [15], it produces an estima-

tor which is nearly as accurate as the one presented in this

paper, but requires a good estimate of the number NO of

outliers, does not contain a step of outlier removal and needs

solving more LPs to find the estimator. In this example,

we ran the KK-procedure with m = N − NO = 15.000,

which is approximately the number of inliers detected by

our method. The results presented in Fig. 4 and 5 show that

our procedure compares favorably to that of [15].

This experiment clearly demonstrated the competitivity

of the proposed methodology with the approaches proposed

in [24] and [15] both in terms of the accuracy and the exe-

cution time. Similar behavior have been observed on other

datasets, see Fig. 6-7.

Figure 4. Upper view of the scene points estimated by the method

from [15] (left panel), by our method (central panel) and after

removing the points seen by only two cameras (right panel).

Figure 5. Boxplots of the errors of the estimated camera locations.

Right: our procedure vs KK-procedure [15]. Left: our procedure

vs SH-procedure.

7. Discussion

In this paper, we have shown that the methodology de-

velopped for learning sparse representations can be success-

fully applied to the estimation problems of multiview ge-

ometry that are affected by outliers. A rigorous Bayesian

framework for the problem of translation estimation and tri-

angulation have been proposed, that have leaded to a new

robust estimation procedure. The proposed estimator ex-

ploits the sparse nature of the vector of outliers through L1-

norm minimization. We have given the mathematical proof

of the result demonstrating the efficiency of the proposed

estimator under some assumptions. The relaxation of these

assumptions is an interesting theoretical problem that is the

object of an ongoing work. Real data analysis conducted on

the dinosaur sequence supports our theoretical results and

show that our procedure is competitive with the most recent

robust estimation procedures.
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