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ABSTRACT

Existing algorithms for surface reconstruction from point

sets are defeated by moderate amounts of noise and outliers,

which makes them unapplicable to point clouds originating

from multi-view image data. In this paper, we present a novel

method which incorporates the input images in the surface

reconstruction process for a better accuracy and robustness.

Our approach is based on the medial axis transform of the

scene, which our algorithm estimates through a global photo-

consistency optimization by simulated annealing. A faithful

polyhedral representation of the scene is then obtained by

inversion of the medial axis transform.

Index Terms— Surface reconstruction, point cloud, me-

dial axis transform, stereovision.

1. INTRODUCTION

The problem of approximating a surface from a set of sample

points has received a considerable interest in computational

geometry, and more generally in mesh processing and in com-

puter graphics. This problem, which is referred to as surface

reconstruction, arises in many applications of science and en-

gineering. Many approaches have been proposed [1, 2, 3],

among which some offer theoretical guarantees on the out-

put geometry and topology when the input sampling is suffi-

ciently dense. Of particular interest in this work is the Power

Crust algorithm [2], which builds a discrete approximation of

the medial axis transform, then recovers a polyhedral surface

as its inverse.

However, all the aforementioned algorithms assume that

the sample is free of noise and outliers. This is an impor-

tant restriction, since no real scanning device provides exact

data. To handle this problem, some recent algorithms have

been developed. In [4] theoretical guarantees have been pro-

vided by considering a noise model in which both the sam-

pling density and the noise level depend on the local level of

surface detail. A limitation of their algorithm is that it does

not handle arbitrarily over-sampled datasets. This limitation

has been overcome in a recent paper [5]. This work augments

the Power Crust algorithm [2] with a greedy filtering process

which discards parts of the medial axis transform originating

from noise. However, the noise assumptions used in these

two recent works do not hold in practice: the density and the

noise level of samples produced by real scanning devices do

not depend on the local feature size of the surface.

In this paper, we tackle the special case of point clouds

extracted from calibrated multi-view image datasets. These

point clouds typically feature higher levels of noise and higher

proportions of outliers than those of active scanning devices.

This discards most, if not all, standard surface reconstruction

algorithms. Our work continues along the line of [5, 2]: it re-

places the greedy estimation of the medial axis transform with

a global photo-consistency optimization by simulated anneal-

ing, thus yielding improved accuracy and robustness.

The remainder of this paper is organized as follows. Sec-

tion 2 presents some useful computational geometry concepts.

Our method is described in Section 3 and is experimentally

validated in Section 4.

2. BACKGROUND

2.1. Medial axis transform

Since its introduction by Blum [6], the medial axis (and the

skeleton, a closely related mathematical notion), has become

a standard tool in shape analysis, recognition and classifica-

tion. Formal definitions vary from author to author. Please

refer to a recent review [7] for a thorough mathematical pre-

sentation.

Here, we define the medial axis of a closed bounded sur-

face S as the closure of the set of points with at least two

closest points on S. The inner medial axis (resp. the outer

medial axis) is the subset of the medial axis inside (resp. out-

side) S. Figure 1(a) shows a two-dimensional example of the

medial axis of a curve in the plane.

If we weight each point x of the medial axis with the ra-

dius ρ(x) of the maximal ball centered at x whose interior

does not intersect S, i.e. the distance from x to its closest

points on S, we obtain the medial axis transform of the shape.

This transformation is reversible, meaning that S can unam-

biguously be reconstructed from its medial axis transform.
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(a) (b) (c) (d)

Fig. 1. (a) A two-dimensional curve in plane, its medial axis, and a maximal circle centered in a point of the medial axis. (b)

The Voronoi diagram of a set of points in the plane. (c) The inner and outer polar balls. (d) The power diagram of the inner and

outer polar balls (see text).

2.2. Voronoi diagram, poles, polar balls

We now consider the transposition of the above continuous

notions to the discrete case. Of particular interest in surface

reconstruction is the result by Amenta and Bern [1] that, given

a sufficiently dense sample P = {p1, . . . , pn} ∈ R
3 of a

surface S, the medial axis of S is approximated by a subset

of the Voronoi diagram of P .

We recall that the Voronoi cell of a point pi, denoted by

V (pi), is the region of space that is closer from pi than from

all other points in P :

V (pi) = {x ∈ R
3 : ∀j, ‖x − pi‖ ≤ ‖x − pj‖} .

V (pi) is a convex polytope, possibly unbounded. The Voronoi

diagram of P is roughly the set of cells, convex polygonal

facets, edges and vertices induced by the Voronoi cells V (pi).
For illustration purposes, Figure 1(b) shows the Voronoi dia-

gram of a set of points in the plane.

Following [1], we call poles the vertices of the Voronoi

diagram that approximate the medial axis. A pole is called an

inner pole or an outer pole depending on whether it lies inside

or outside S. We call polar ball a maximal ball centered at a

pole whose interior does not intersect P . In other words, the

radius of a polar ball is the distance from the pole to its closest

points in P . Figure 1(c) shows the set of inner and outer polar

balls of the Voronoi diagram 1(b).

The set of all inner and outer polar balls is the discrete

counterpart of the medial axis transform. Similarly to the me-

dial axis transform, the set of polar balls can be inverted: the

Power Crust algorithm [2] builds a polyhedral surface that

approximates the input point set P , by computing the power

diagram of the set of polar balls.

2.3. Power diagram and power crust

We denote by bc,ρ a ball of radius ρ centered at c. The power

distance between two balls bc1,ρ1
and bc2,ρ2

is defined by

d2
pow(bc1,ρ1

, bc2,ρ2
) = ‖c1 − c2‖

2 − ρ2
1 − ρ2

2 .

Using this distance, we can generalize the Voronoi diagram of

a set of points to a set of balls B = {bc1,ρ1
, . . . , bcn,ρn

}: the

power cell of a ball bci,ρi
is the region of space where a non-

weighted point x is closer from bci,ρi
, in term of power dis-

tance, than from all other balls in B. The different power cells

induce the power diagram. Like Voronoi diagrams, power di-

agrams have convex polytope cells. Figure 1(d) shows the

power diagram cells of the inner and outer polar balls in Fig-

ure 1(c).

Consider the polar balls of a point sample P of a surface

S. The power crust is the boundary between the power cells

of inner polar balls and the power cells of outer polar balls. It

is a polyhedral surface which approximates the surface under

some sampling assumptions [2].

2.4. Surface reconstruction

We now focus on the problem of surface reconstruction: S

is unknown. P may not fulfill the aforementioned sampling

assumptions, and is corrupted by a certain amount of noise

and outliers. The previous notions are then faced to significant

difficulties: (i) the classification of poles as inner or outer is

no more straightforward, (ii) due to noise and outliers, some

poles may not approximate the medial axis.

In the original Power Crust algorithm [2], poles are la-

beled as inner or outer by a greedy propagation process driven

by a priority queue. Unfortunately, this greedy approach has

been shown to fail with a moderate amount of noise and out-

liers in [8].

3. APPROACH

In this work we propose to replace the greedy estimation of

the medial axis transform with a global photo-consistency op-

timization by simulated annealing. A faithful polyhedral rep-

resentation of the scene is then obtained by inversion of the

medial axis transform.

3.1. Formulation

Given a sample set P = {p1, . . . , pn} ∈ R
3, we denote by

B = {b1, · · · , bm} the set of m polar balls of the corre-

sponding Voronoi diagram. We define ~l = {l1, · · · , lm} ∈
{−1, 0,+1}m a labeling vector describing the state of the



poles: a pole is labeled −1 if it is at the interior, or +1 if

it is at the exterior of the surface. A pole labeled 0 is con-

sidered as noise and will be discarded in the estimation of the

medial axis transform. We denote by SB(~l) the inversion of

the medial axis transform estimated by the set of labeled po-

lar balls (B,~l). This is a polyhedral surface obtained by the

power crust of the poles in B labeled inside (−1) or outside

(+1) as described before. In order to estimate correctly the

medial axis transform we wish to minimize an energy func-

tional dealing with photo-consistency on the surface of power

crust,
E(SB(~l)) =

∑

f∈SB(~l)

γ(f) (1)

where f is a face of the polyhedral surface SB(~l). This mea-

sures how well the given surface matches the different input

images in which it is seen. It is defined as the sum over the

whole surface of some photo-consistency measure γ. The op-

timal surface is obtained by

Sopt = SB

(

arg min
~l

E(SB(~l))

)

(2)

3.2. Optimization

In order to minimize 1, we use the simulated annealing op-

timization algorithm [9]. The algorithm starts with an initial

labeling vector~l0. A global variable T is taken as the tempera-

ture of the optimization process, it is initialized to T0. At each

iteration, it takes a random pole bi in B. Then, it changes its

label li to a random new state and computes the energy vari-

ation δE. If δE is negative, it accepts the new labeling and

goes to next iteration. Otherwise, it decides with a probabil-

ity given by a function Pr(δE, T ) if the new state should be

accepted. In case it should not, it returns to the old configu-

ration. The temperature T decreases during the process by a

function which depends on the number of passed iterations.

The algorithm stops when the energy is sufficiently low, or

when a predefined time limit is over. The algorithm returns

SB(~l) as the final surface.

4. EXPERIMENTAL RESULTS

We have tested our method on a real dataset publicly available

at http://cvlab.epfl.ch/˜strecha/multiview/.

All implementations have been done using CGAL library

(http://www.cgal.org/)[10]. We have compared our

method with a recent multi-view reconstruction method [11]

robust to outliers. Our experiment uses the eight views Herz-

Jesu-P8 dataset from [12]. Some images of this dataset are

shown in Figure 3(c). 6950 points are generated by matching

image keypoints. In order to reduce the computation time

of our method we have initialized it with a labeling vector

obtained by [11] and we have reduced the optimization space

to the set of polar balls with radius smaller than the charac-

teristic noise level of the dataset. The optimization process

terminated after 40 minutes on a standard workstation. Two

other methods have also been tested as sanity checks: the

reconstruction algorithm [5] and the Laplacian smoothing al-

gorithm which have been both initialized by the result of [11].

We have compared the cumulative error distribution of the

four meshes with respect to the mesh obtained by the LIDAR

technique provided by [12]. Table 1 shows the error distri-

bution of the results provided by an automatic multi-view

evaluation program [12]. For each method four cumulative

error distributions have been computed. Column n represents

the percentage of image pixels with an error less than nσ,

where σ is the characteristic noise of LIDAR. More accurate

results yield to higher scores in the table. Figure 2 shows the

meshes obtained by four experimented methods. Our result

compares favorably with the three other methods in terms of

accuracy and robustness. In a second experiment we have

initialized a variational multi-view stereovision method [13]

with our mesh and with the output of [11]. Figures 3(a) and

3(b) show the results obtained by the two initializations. The

results show that [13] provides more accurate and less noisy

surface when it is initialized by our method.

(a) (b)

(c) (d)

Fig. 2. Different meshes obtained by: a) The multi-view re-

construction method [11] b) The reconstruction algorithm [5]

c) Laplacian Smooth d) our method.

5. DISCUSSION AND CONCLUSION

We have proposed a photo-consistent surface reconstruction

method from noisy point clouds based on the estimation of

the medial axis transform. Our work replaces the greedy al-

gorithms of [5, 2] with a global photo-consistency optimiza-

tion by simulated annealing. We have validated our method

on real datasets. Our results compare favorably with state of



(a) (b) (c)

Fig. 3. Mesh obtained by the method of [13] initialized by the output of: a) our method b) The multi-view reconstruction

method [11]. c) Some images of the Herz-Jesu-P8 dataset. We have used only a partial cut of the original images.

Experiment 1 3 5 7

[11] 2.37 10.81 16.80 20.89

Laplacian Smooth 2.21 10.18 15.80 20.14

[5] 2.38 10.84 16.87 20.98

Our method 3.60 15.10 21.79 25.72

Table 1. Quantitative results of our different numerical exper-

iments. Column n represents the percentage of image pixels

with an error less than nσ. More accurate result yields to a

higher score in the table.

the art methods in terms of accuracy and robustness to noise.

A drawback of our method is its computational complexity

due to the optimization process. We hope that by modifying

the form of the energy function we will be able to use more

practical optimization algorithms such as graph-cuts.
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