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Abstract

We fill in a long open gap in the characterization of
the minimax rate for the multi-armed bandit prob-
lem. Concretely, we remove an extraneous loga-
rithmic factor in the previously known upper bound
and propose a new family of randomized algorithms
based on an implicit normalization, as well as a
new analysis. We also consider the stochastic case,
and prove that an appropriate modification of the
upper confidence bound policy UCB1 (Auer et al.,
2002) achieves the distribution-free optimal rate
while still having a distribution-dependent rate log-
arithmic in the number of plays.

1 Introduction

In the multi-armed bandit problem, at each stage, an agent
(or decision maker) chooses one action (or arm), and re-
ceives a reward from it. The agent aims at maximizing his
rewards. Since he does not know the process generating the
rewards, he needs to explore (try) the different actions and
yet, exploit (concentrate its draws on) the seemingly most
rewarding arms. The multi-armed bandit task has been first
considered by Robbins (1952) and was originally motivated
by a simplified view of clinical trials (in which an action con-
sists in choosing a treatment and the reward depends on its
efficiency on a patient).

To set the notation, let K ≥ 2 be the number of actions
(or arms) and n ≥ K be the time horizon. In both stochastic
and adversarial K-armed bandit problems, the game between
the agent and the environment goes as follows: At each time
step t ∈ {1, . . . , n}, (i) the agent chooses a probability dis-
tribution pt on a finite set {1, . . . , K}, (ii) the environment
chooses a reward vector gt = (g1,t, . . . , gK,t) ∈ [0, 1]K , and
simultaneously (independently), the agent draws the action
(or arm) It according to the distribution pt, (iii) the agent
only gets to see his own reward gIt,t. The goal of the deci-
sion maker is to maximize his cumulative reward

∑n
t=1 gIt,t.

The stochastic K-armed bandit problem is parameter-
ized by a K-tuple of probability distributions (ν1, . . . , νK)
on [0, 1]. In this model, the components of the reward vector
are i.i.d. realizations of respectively ν1, . . . , νK . Besides the
reward vectors at different times are independent.

The adversarial K-armed bandit problem is more gen-
eral: The environment is much less constrained as it may

choose a reward vector gt as a function of the past deci-
sions I1, . . . , It−1 (and possibly of an independent random-
ization). A simple, but interesting, adversarial environment
is obtained by considering deterministic reward vectors: in
this case, known as the oblivious deterministic opponent, the
environment is just parameterized by the nK real numbers
(gi,t). Note that in the adversarial environment, past gains
have no reason to be representative of future ones in contrast
to the stochastic setting in which confidence bounds on the
mean reward of the arms can be deduced from the rewards
obtained so far.

A policy is a strategy for choosing the drawing proba-
bility distribution pt based on the history formed by the past
plays and the associated rewards. So it is a function that maps
any history to a probability distribution on {1, . . . , K}. We
define the regret of a policy with respect to the best constant
decision as

Rn = max
i=1,...,K

E

n∑

t=1

(
gi,t − gIt,t

)
.1

To compare to the best constant decision is a reasonable tar-
get since it is well-known that (i) there exist randomized poli-
cies ensuring that Rn/n tends to zero as n goes to infinity,
(ii) this convergence property would not hold if the maxi-
mum and the sum would be inverted in the definition of Rn.

The minimax rate of the expected regret is inf supRn,
where the infimum is taken over all policies and the supre-
mum over all K-tuples of probability distributions on [0, 1]
for the stochastic case and over all adversarial environments
with rewards in [0, 1] for the adversarial case. Auer et al.
(1995) proved an upper bound on this quantity in the adver-
sarial case (and thus also in the stochastic case) and a lower
bound in the stochastic case (and thus also in the adversarial
case). We recall here the results of Auer et al. (1995, 2003).

Theorem 1 The EXP3 policy described in Fig.1 satisfies

supRn ≤ 2.7
√

nK log K,

1In the case of an oblivious deterministic opponent this regret is
equal to the strong regret: E maxi

∑n

t=1

(
gi,t − gIt,t

)
. In the case

of an oblivious stochastic opponent (parametrized by nK proba-
bility distributions over [0, 1]), one can prove that the difference
between the regret and the strong regret is at most

√
n log K. Thus

at the price of this second order additional term, the bounds in The-
orems 4 and 5 hold for the strong regret in the case of an oblivious
opponent.



for η = min
(
0.8

√
log K
nK , 1

K

)
, where the supremum is taken

over all adversarial environments. Besides we have

inf supRn ≥ 1

20

√
nK,

where the supremum is taken over all K-tuple of probability
distributions on [0, 1].

EXP3 (Exploration-Exploitation with Exponential weights):

Parameter: η ∈ (0, 1/K].
Let p1 be the uniform distribution over {1, . . . , K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated gain for each arm: g̃i,t =
gi,t

pi,t
1It=i and update the estimated cumulative gain:

G̃i,t =
∑t

s=1 g̃i,s.

(3) Compute the new probability distribution over the arms:

pi,t+1 = (1 − Kη)
exp

(
ηG̃i,t

)

∑K

k=1 exp
(
ηG̃k,t

) + η.

Figure 1: A known policy for the adversarial case.

For stochastic environments, the goal is also to adapt
to the simplicity of the bandit problem. To be more pre-
cise and set up the notation, let µi denote the expectation
of νi. The suboptimality of an arm i is measured by ∆i =
maxj=1,...,K µj −µi. The quantities ∆i for suboptimal arms
(i.e., arms having ∆i > 0) characterize the simplicity of
the task. The larger they are, the easier it is to spot the
best decision from a few observations. The upper bounds
on the expected regret are usually stated in terms of the pa-
rameters ∆i, and we say that they are distribution-dependent
bounds. The UCB1 strategy (Auer et al., 2002), is known to
be distribution-dependent optimal since the following upper
and lower bounds hold.

Theorem 2 The UCB1 policy satisfies

Rn ≤ 10

( ∑

i:∆i>0

1

∆i

)
log n. (1)

For any ε > 0, for large enough n, there is no policy with

Rn ≤
( ∑

i:∆i>0

1

(2 + ε)∆i

)
log n, (2)

uniformly for all reward distributions ν1, . . . , νK .

The upper bound is a simple variant of (Auer et al., 2002,
Theorem 1) while the lower bound comes from (Lai and
Robbins, 1985, Theorem 1) applied to the parametric fam-
ily of Bernoulli distributions. An easy modification of the
proof of (1) gives

Rn ≤ max
ti≥0,

∑
i ti=n

∑

i:∆i>0

min

(
10

∆i
log n , ti∆i

)
,

INF (Implicitly Normalized Forecaster):

Parameter: function ψ : R
∗

−
→ R

∗

+ satisfying (3).
Let p1 be the uniform distribution over {1, . . . , K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated gain for each arm: g̃i,t =
gi,t

pi,t
1It=i and update the estimated cumulative gain:

G̃i,t =
∑t

s=1 g̃i,s.

(3) Compute the normalization constant Ct = C(G̃t) where

G̃t = (G̃1,t, . . . , G̃K,t).

(4) Compute the new probability distribution pt+1 =
(p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(G̃i,t − Ct).

Figure 2: The proposed policy for the adversarial case.

which in the worst case
(
i.e., ∆1 = 0 and ∆2 = · · · =

∆K =
√

10K(log n)/n
)

is equal to
√

10n(K − 1) log n.
This means that even in the stochastic bandit problem, there
is a logarithmic gap between the lower and upper bounds.

Outline and contributions. Section 2 presents a new fam-
ily of randomized policies to address the adversarial multi-
armed bandit problem, and proves that many of them satisfy

a regret of order
√

nK. This bridges the logarithmic gap be-
tween the known upper and lower bounds presented in The-
orem 1.

Section 3 defines a policy achieving the best distribution-

free regret
√

nK for stochastic bandits as well as a distribution-
dependent regret of order K log n

K .

2 The adversarial case:
√

nK regret

We start by defining a new class of randomized policies. Let
us consider a function ψ : R

∗
− → R

∗
+ such that

ψ increasing and continuously differentiable,
ψ′/ψ nondecreasing,
limu→−∞ ψ(u) < 1/K, and limu→0 ψ(u) ≥ 1.

(3)

Lemma 3 There exists a continuously differentiable func-
tion C : R

K
+ → R satisfying for any x = (x1, . . . , xK) ∈

R
K
+ ,

max
i=1,...,K

xi < C(x) ≤ max
i=1,...,K

xi − ψ−1 (1/K) , (4)

and
K∑

i=1

ψ(xi − C(x)) = 1. (5)

Proof: See Appendix A.

The implicitly normalized forecaster (INF) is defined in
Fig.2. Equality (5) makes the fourth step in Fig.2 legitimate.



From (4), C(G̃t) is roughly equal to maxi=1,...,K G̃i,t. This
means that INF chooses the probability assigned to arm i as
a function of the (estimated) regret. Note that, in spirit, it is
similar to the traditional weighted average forecaster, see e.g.
Section 2.1 of Cesa-Bianchi and Lugosi (2006), where the
probabilities are proportional to a function of the difference
between the (estimated) cumulative reward of arm i and the
cumulative reward of the policy, which should be, for a well-

performing policy, of order C(G̃t). Our main result is the
following.

Theorem 4 For any real q > 1, the Implicitly Normalized

Forecaster with ψ(x) = 1
K

(
9
√

qnK
−x

)q

+ qq/(2q−2)

√
nK

satisfies

supRn ≤ 37

1 − 1/q

√
qnK, (6)

where the supremum is taken over all adversarial environ-
ments with rewards in [0, 1].

Proof: We put here the main lines of the proof. We need to

lower bound
∑n

t=1 gIt,t =
∑n

t=1

∑K
i=1 pi,t(G̃i,t − G̃i,t−1).

By an Abel transform, we come down to upper bounding∑n−1
t=1

∑K
i=1 G̃i,t(pi,t+1 − pi,t), which is equal to

K∑

i=1

n−1∑

t=1

ψ−1(pi,t+1)(pi,t+1 − pi,t).

Note that this striking last equality is closely linked to our
specific class of randomized algorithms. Then we use a Taylor-
Lagrange expansion, which makes appear

n−1∑

t=1

∫ pi,t+1

pi,t

ψ−1(u)du =

∫ pi,n

1/K

ψ−1(u)du.

The difficulty is then to control the residual terms. See Ap-
pendix B.

For q = 3, inequality (6) gives supRn ≤ 100
√

nK. In
fact, much better constants can be obtained by proper tuning.
In Theorem 4, we take ψ(x) = α(−x)−q +β for appropriate
α > 0 and β > 0. The role of β is to keep away from zero
the probabilities of seemingly low rewarding arms. EXP3
contains a similar term. For low values of q, that is for 1 <
q ≤ 2, it can be established (proof omitted here) that this

additional term is not necessary to achieve a
√

nK regret.

For instance, for ψ(x) = 1
K

(
2.5

√
nK

−x

)1.5
, we have shown

that sup Rn ≤ 15
√

nK.

Remark 1 For ψ(u) = η + exp(ηu) with η ∈ (0, 1/K], we

have exp(−ηC(x)) = (1 − Kη)/
∑K

j=1 exp(ηxj), so that

INF reduces to EXP3. Except for this particular choice of
ψ, the (normalizing) function C has usually no closed form
expression, hence the name of the policy. However this does
not lead to a major computational issue since, in the interval
given by (4), C(x) is the unique solution of φ(c) = 1, where

φ : c 7→ ∑K
i=1 ψ(xi − c) is a decreasing function.

Remark 2 The policies in the theorem, as the other ones
presented in this paper, are not “anytime” since their imple-
mentation requires the knowledge of the horizon n. By using
the doubling trick, see e.g. Section 2.3 of Cesa-Bianchi and
Lugosi (2006), one can make them anytime.

3 The stochastic case

By considering the deterministic case when the rewards are
gi,t = 1 if i = 1 and gi,t = 0 otherwise, it can be proved that
the INF policies considered in Theorem 4, as well as EXP3,

have an expected regret lower bounded by
√

nK. In this
simple setting, and more generally in most of the stochas-
tic multi-armed bandit problems, one would like to suffer a
much smaller regret.

We recall that the suboptimality of an arm i is measured
by ∆i = maxj=1,...,K µj − µi. Our second contribution is

to provide a strategy achieving a
√

nK regret in the worst
case, and a much smaller regret as soon as the ∆i of the

suboptimal arms are much larger than
√

K/n.

Let X̂i,s be the empirical mean of arm i after s draws
of this arm. Let Ti(t) denote the number of times we have
drawn arm i on the first t rounds. In this section, we propose
a policy inspired by the UCB1 policy (Auer et al., 2002),
where each arm has an index measuring its performance, and
at each round, we choose the arm having the highest index
(see Fig.3). The index of an arm that has been drawn more
than n/K times is simply the empirical mean of the rewards
obtained from the arm. For the other arms, their index is an
upper confidence bound on their mean reward, which, from
Hoeffding’s inequality, holds with high probability.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an arm i, define its index Bi,s by

Bi,s = X̂i,s +

√
max

(
log( n

Ks
) , 0

)

s
.

for s ≥ 1 and Bi,0 = +∞.

At time t, draw an arm maximizing Bi,Ti(t−1).

Figure 3: The proposed policy for the stochastic case.

Theorem 5 MOSS satisfies

sup Rn ≤ 49
√

nK, (7)

where the supremum is taken over all K-tuple of probability
distributions on [0, 1].

Proof: Here are the main steps. Without loss of general-
ity consider that µ1 ≥ . . . ≥ µK , hence ∆i = µ1 − µi.
By Wald’s identity, we have Rn = E

∑
i ∆iTi(n). Tightly

upper bounding Rn is difficult because of the heavy depen-
dence between the random variables Ti(n). To decouple the

arms, we introduce the key thresholds zi = µ1 − ∆i

2 , and the
r.v. Z = min1≤s≤n B1,s and τi = min{t : Bi,t < zi}, and
essentially prove that

Rn ≤
∑

i

{
∆iEτi + nP(Z < zi)(∆i − ∆i−1)

}
.

The expectations Eτi =
∑+∞

ℓ=0 P(τi > ℓ) are then boun-
ded by using Hoeffding’s inequality, and the probabilities



P(Z < zi) are carefully upper bounded by using maximal
inequalities and peeling arguments. See Appendix C.

Remark 3 A careful tuning of the constants in front and in-
side the logarithmic term of Bi,s and of the thresholds used

in the proof leads to sup Rn ≤ 5.7
√

nK. However, it makes
the proof more intricate. So we will only prove (7).

The distribution-dependent upper bound for MOSS is the
following.

Theorem 6 MOSS satisfies

Rn ≤ 23K
∑

i:∆i>0

max
(
log

(
n∆2

i

K

)
, 1

)

∆i
. (8)

Proof: It follows the same route as the previous proof. See
Appendix D.

Theorem 6 contains a K factor, which does not appear in
the logarithmic bound of UCB1 given in Theorem 2. This
means that for fixed ∆1, . . . ,∆K and n going to infinity,
UCB1 will perform better than MOSS (if the bounds are
representative of the behaviour of the algorithms, which, we
believe, is the case). Note that, despite the K factor, the
bound has the right order in the critical case when ∆1 = 0,

∆2 = · · · = ∆K = γ
√

K/n for γ ≥ 3. Indeed, in that case,

MOSS satisfies Rn ≤ 46
√

nK log γ
γ ≤ 17

√
nK, whereas, for

UCB1 and γ =
√

log n, the best known bound contains a√
log n factor.

To conclude, the following table summarizes the regret
upper bounds of the policies discussed in this paper. The
bounds for MOSS and UCB1 hold in the stochastic setting
only. The bounds for INF and EXP3 hold in the adversarial
setting (and thus also in the stochastic case).

UCB1 min
(√

nK log n ,
∑

i:∆i>0
log n
∆i

)

MOSS min

(√
nK ,

∑
i:∆i>0

K log(2+n∆2
i /K)

∆i

)

EXP3
√

nK log K

INF
√

nK

Table 1: regret upper bounds (up to a numerical constant factor)
for different policies in the multi-armed bandit problem.
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A Proof of Lemma 3

Consider a fixed x = (x1, . . . , xK). The decreasing function

φ : c 7→ ∑K
i=1 ψ(xi − c) satisfies

lim
c→ max

i=1,...,K
xi

φ(c) > 1 and lim
c→+∞

φ(c) < 1.

From the mean value theorem, there is a unique C(x) satis-
fying φ(C(x)) = 1. From the implicit function theorem, the
mapping x 7→ C(x) is continuously differentiable.

B Proof of Theorem 4

We start with three lemmas which study INF in general for
functions ψ such that (3) holds. The proof of Theorem 4
follows by applying the last lemma to the particular class of

ψ we use. Let us set G̃0 = 0 ∈ R
K
+ and C0 = C(G̃0).

Lemma 7 Let

AT = sup
t∈{1,...,T−1}

ψ′(G̃It,t − Ct)

ψ′(G̃It,t−1 − Ct−1)

and

BT = sup
t∈{1,...,T−1},i∈{1,...,K}

ψ′(G̃i,t−1 − Ct−1)

ψ′(G̃i,t − Ct)
.

For any T ≥ 2, INF satisfies

CT−1 −
T∑

t=1

gIt,t ≤
K∑

i=1

pi,T (−ψ−1)(pi,T )

+

K∑

i=1

∫ 1/K

pi,T

(−ψ−1)(u)du

+
AT (AT + BT )

2

T−1∑

t=1

ψ′(G̃It,t−1 − Ct−1)

ψ(G̃It,t−1 − Ct−1)2
.

Proof: The proof is divided into five steps.

First step: Rewriting
∑T

t=1 gIt,t.



We start with the following equalities:

T∑

t=1

gIt,t =

T∑

t=1

K∑

i=1

pi,tg̃i,t =

T∑

t=1

K∑

i=1

pi,t(G̃i,t − G̃i,t−1)

=

T−1∑

t=1

K∑

i=1

(pi,t − pi,t+1)G̃i,t +

K∑

i=1

pi,T G̃i,T ,

where the last step comes from an Abel transformation. Now,

K∑

i=1

pi,T G̃i,T ≥
K∑

i=1

pi,T G̃i,T−1 = CT−1 +

K∑

i=1

pi,T ψ−1(pi,T ).

Hence, so far, we have proved

CT−1 −
T∑

t=1

gIt,t ≤
K∑

i=1

pi,T (−ψ−1)(pi,T )

+

T−1∑

t=1

K∑

i=1

(pi,t+1 − pi,t)G̃i,t.

Let us rewrite the last sum by using G̃i,t = ψ−1(pi,t+1)+Ct

and
∑K

i=1(pi,t+1 − pi,t)Ct = 0. We obtain

CT−1 −
T∑

t=1

gIt,t ≤
K∑

i=1

pi,T (−ψ−1)(pi,T )

+

T−1∑

t=1

K∑

i=1

(pi,t+1 − pi,t)ψ
−1(pi,t+1).

Second step: A Taylor-Lagrange expansion.

For x ∈ [0, 1] we define f(x) =
∫ x

0
ψ−1(u)du. Remark

that f ′(x) = ψ−1(x) and f ′′(x) = 1/ψ′(ψ−1(x)). Then by
the Taylor-Lagrange formula, we know that for any i, there
exists p′i,t+1 ∈ [pi,t, pi,t+1] (with the convention [a, b] =
[b, a] when a > b) such that

f(pi,t) = f(pi,t+1) + (pi,t − pi,t+1)f
′(pi,t+1)

+
(pi,t − pi,t+1)

2

2
f ′′(p′i,t+1),

or, in other words:

(pi,t+1 − pi,t)ψ
−1(pi,t+1)

=
∫ pi,t

pi,t+1
(−ψ−1)(u)du +

(pi,t−pi,t+1)
2

2ψ′(ψ−1(p′

i,t+1))
.

Now remark that by summing over t we get the term

∫ 1/K

pi,T

(−ψ−1)(u)du

which appears in the statement of the lemma. Moreover, us-
ing that ψ′ ◦ ψ−1 is increasing (since ψ is increasing and
convex from the assumption on ψ′/ψ) we have

1/ψ′ {ψ−1(p′i,t+1)
}
≤ 1/ψ′ {ψ−1 (min(pi,t, pi,t+1))

}
.

To finish the proof, we have to upper bound

T−1∑

t=1

K∑

i=1

(pi,t − pi,t+1)
2

2ψ′ {ψ−1(min(pi,t, pi,t+1))}
. (9)

Third step: Preliminary remarks to bound (pi,t+1−pi,t)
2.

It is now convenient to consider the functions fi and hi

defined for any x ∈ R
K
+ by

fi(x) = ψ(xi − C(x)) and hi(x) = ψ′(xi − C(x)).

We are going to bound pi,t+1 − pi,t = fi(G̃t) − fi(G̃t−1),
and consequently (9), by using the mean value theorem. This
step gathers preliminary results before applying the mean
value theorem. First, we have

∂fi

∂xj
(x) =

(
1i=j −

∂C

∂xj
(x)

)
hi(x).

Now, by definition of C, we have
∑K

k=1 fk(x) = 1 and thus∑K
k=1

∂fk

∂xj
(x) = 0, which implies

∂C

∂xj
(x) =

hj(x)
∑K

k=1 hk(x)
≥ 0, (10)

and

∂fi

∂xj
(x) =

(
1i=j −

hj(x)
∑K

k=1 hk(x)

)
hi(x). (11)

Let x = (x1, . . . , xK) and xj = (x1, . . . , xj+ζ, . . . , xK)
where ζ ∈ R+. From (10), we have for i 6= j,

xj
i − C(xj) ≤ xi − C(x).

Now since ψ and ψ′ are increasing, we have for i 6= j

fi(x
j) ≤ fi(x) and hi(x

j) ≤ hi(x). (12)

Moreover remark that

1 =

K∑

i=1

fi(x
j) ≤ fj(x

j)+

K∑

i=1,i 6=j

fi(x) = fj(x
j)−fj(x)+1

and thus fj(x) ≤ fj(x
j) which in turn implies xj −C(x) ≤

xj
j − C(xj) (since ψ−1 is increasing). Hence we have

fj(x
j) ≥ fj(x) and hj(x

j) ≥ hj(x). (13)

Fourth step: Upper bounding (pi,t+1 − pi,t)
2.

Recall that pi,t+1−pi,t = fi(G̃t)−fi(G̃t−1) and that G̃t

and G̃t−1 only differs by gIt,t/pIt,t at their It-th coordinate.
Thus there exists ζ ∈ (0, gIt,t/pIt,t) such that the following

is true with G̃′
t = (G̃1,t−1, . . . , G̃It,t−1 + ζ, . . . , G̃K,t−1),

pi,t+1 − pi,t = fi(G̃t) − fi(G̃t−1) =
gIt,t

pIt,t

∂fi

∂xIt

(G̃′
t).

From (11) and since the rewards are in [0, 1], we obtain

(pi,t+1 − pi,t)
2

≤ 1

p2
It,t

(
1i=It −

hIt(G̃
′
t)∑K

k=1 hk(G̃′
t)

)2

hi(G̃
′
t)

2

≤ 1

p2
It,t

hIt(G̃
′
t)

2
1i=It +

1

p2
It,t

hi(G̃
′
t)

2hIt(G̃
′
t)

2

(∑K
k=1 hk(G̃′

t)
)21i 6=It

≤ hIt(G̃
′
t)

p2
It,t

(
hi(G̃

′
t)1i=It +

hi(G̃
′
t)

2

∑K
k=1 hk(G̃′

t)
1i 6=It

)

≤ hIt(G̃t)

p2
It,t

(
hi(G̃t)1i=It +

hi(G̃t−1)hi(G̃
′
t)∑K

k=1 hk(G̃′
t)

1i6=It

)
,



where the last step comes from (12) and (13).

Fifth step: Bounding
∑T−1

t=1

∑K
i=1

(pi,t−pi,t+1)
2

2ψ′{ψ−1(min(pi,t,pi,t+1))} .

Notice that (12) and (13) imply that

pIt,t+1 ≥ pIt,t and for i 6= It, pi,t+1 ≤ pi,t. (14)

Thus we have

ψ′[ψ−1(min(pi,t, pi,t+1))
]

= ψ′ {ψ−1(pi,t)
}
1i=It + ψ′ {ψ−1(pi,t+1)

}
1i6=It

= hi(G̃t−1)1i=It + hi(G̃t)1i 6=It ,

hence

(pi,t − pi,t+1)
2

ψ′ {ψ−1(min(pi,t, pi,t+1))}
≤ hIt(G̃t)

p2
It,t

(
hi(G̃t)

hi(G̃t−1)
1i=It

+
hi(G̃t−1)hi(G̃

′
t)

hi(G̃t)
∑K

k=1 hk(G̃′
t)
1i 6=It

)

≤ hIt
(G̃t)

p2
It,t

(
AT1i=It + BT

hi(G̃
′
t)∑K

k=1 hk(G̃′
t)
1i 6=It

)
,

where we have used the definitions of AT and BT for the last
inequality. It is now clear that by summing over i we get

K∑

i=1

(pi,t − pi,t+1)
2

ψ′ {ψ−1(min(pi,t, pi,t+1))}
≤ (AT + BT )

hIt(G̃t)

p2
It,t

.

This last term is equal to

(AT + BT )
hIt(G̃t)

fIt(G̃t−1)2
≤ AT (AT + BT )

hIt(G̃t−1)

fIt(G̃t−1)2

which concludes the proof.

In essence, Lemma 7 gives the result we want to apply

for ψ(x) = 1
K

(
9
√

qnK
−x

)q

+ qq/(2q−2)

√
nK

. Unfortunately, we

still need to answer positively to questions of the type: is
the probability of drawing arm i at time t of the same order
as the one at time t + 1 (or more technically speaking, do
AT and BT are bounded by constants)? While this seems an
obvious point, it requires to our knowledge the unfortunately
complicated and recursive arguments that follows.

Lemma 8 Let T ≥ 2. Assume that there exist a > 1, b > 1,
c > 0 such that CT−1 ≤ c, and for any x ∈ [−c, 0),

ψ′ (x + 1/ψ(x)) ≤ aψ′(x) (15)

and

ψ′ (x − ab/ψ(x)) ≥ 1

b
ψ′(x). (16)

Then we have AT ≤ a and BT ≤ b.

Proof: Let t ∈ {1, . . . , T − 1}. The quantities G̃i,s are non-
negative and nondecreasing as a function of the time s, hence
from (10), s 7→ Cs is nondecreasing, and CT−1 ≤ c implies

G̃i,t−1 − Ct−1 ≥ −c. Since the function ψ′ is increasing
(because ψ′/ψ is nondecreasing) and from (15), we have

ψ′(G̃It,t − Ct)

= ψ′[G̃It,t−1 − Ct + gIt,t/ψ(G̃It,t−1 − Ct−1)
]

≤ ψ′[G̃It,t−1 − Ct−1 + 1/ψ(G̃It,t−1 − Ct−1)
]

≤ aψ′(G̃It,t−1 − Ct−1).

Thus we have proved AT ≤ a.
For the second inequality, from (14), we have pIt,t+1 ≥

pIt,t, and consequently ψ(G̃It,t−Ct) ≥ ψ(G̃It,t−1−Ct−1).
Let δt = Ct − Ct−1. Since ψ is increasing, this implies
g̃It,t − Ct ≥ −Ct−1, hence

δt ≤ g̃It,t ≤ 1/pIt,t = 1/ψ(G̃It,t−1 − Ct−1). (17)

Unfortunately, we need a more precise upper bound on δt

because 1/pIt,t is large when the selected arm has low prob-
ability. We now prove that in fact, for all i ∈ {1, . . . ,K}:

δt ≤
ab

ψ(G̃i,t−1 − Ct−1)
.

From (17), this holds for any i such that G̃i,t−1 ≤ G̃It,t−1.

Now let i be such that G̃i,t−1 > G̃It,t−1. From (14), we
have

pi,t+1 + pIt,t+1

= 1 −
∑

j 6∈{i,It}
pj,t+1 ≥ 1 −

∑

j 6∈{i,It}
pj,t = pi,t + pIt,t,

which, by using G̃i,t−1 = G̃i,t, implies

ψ(G̃i,t−1 − Ct−1) − ψ(G̃i,t−1 − Ct)

≤ ψ(G̃It,t − Ct) − ψ(G̃It,t−1 − Ct−1), (18)

Now, by using G̃It,t − Ct ≥ G̃It,t−1 − Ct−1 (which is a
consequence of pIt,t+1 ≥ pIt,t), AT ≤ a, and since the
functions ψ and ψ′/ψ (and therefore ψ′) are nondecreasing,
the mean value theorem gives:

ψ(G̃It,t − Ct) − ψ(G̃It,t−1 − Ct−1)

= ψ(G̃It,t−1 − Ct−1 + g̃It,t − δt) − ψ(G̃It,t−1 − Ct−1)

≤ (g̃It,t − δt)ψ
′(G̃It,t − Ct) ≤

ψ′(G̃It,t − Ct)

ψ(G̃It,t−1 − Ct−1)

≤ a
ψ′(G̃It,t−1 − Ct−1)

ψ(G̃It,t−1 − Ct−1)
≤ a

ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)
. (19)

On the other hand, from the mean value theorem and (16),
we also have

ψ(G̃i,t−1 − Ct−1)

− ψ
(
G̃i,t−1 − Ct−1 − ab/ψ(G̃i,t−1 − Ct−1)

)

≥ ab
ψ′

(
G̃i,t−1 − Ct−1 − ab/ψ(G̃i,t−1 − Ct−1)

)

ψ(G̃i,t−1 − Ct−1)

≥ a
ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)
, (20)



where we have used G̃i,t−1 − Ct−1 ≥ −c.
By combining inequalities (18), (19) and (20), we get

ψ
(
G̃i,t−1 − Ct−1 − ab/ψ(G̃i,t−1 − Ct−1)

)

≤ ψ(G̃i,t−1 − Ct−1) − a
ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)

≤ ψ(G̃i,t−1 − Ct) = ψ(G̃i,t−1 − Ct−1 − δt)

and thus δt ≤ ab/ψ(G̃i,t−1 − Ct−1). We can now conclude
the proof with the same method as for AT . For i 6= It:

ψ′(G̃i,t − Ct) = ψ′(G̃i,t−1 − Ct−1 − δt)

≥ ψ′
(
G̃i,t−1 − Ct−1 − ab/ψ(G̃i,t−1 − Ct−1)

)

≥ 1

b
ψ′(G̃i,t−1 − Ct−1)

where we have used (16) for the last inequality.

Lemma 9 Assume that there exist a > 1, b > 1, c > 0,
c1 > 0, c2 > 0 such that for any x ∈ [−cn, 0) and any

q ∈ R
K satisfying

∑K
i=1 qi = 1, qi ≥ ψ(−cn), we have:

c ≥ 1 +
a(a + b)

2
c2 + c1

√
K

n
+ ab

K

n
, (21)

ψ(−cn) ≤ 1/K, (22)

−
K∑

i=1

qiψ
−1(qi) −

∫ 1/K

qi

ψ−1(u)du ≤ c1

√
nK, (23)

ψ′(x)/ψ(x)2 ≤ c2, (24)

ψ′ (x + 1/ψ(x)) ≤ aψ′(x), (25)

ψ′ (x − ab/ψ(x)) ≥ 1

b
ψ′(x). (26)

Then INF satisfies:

Rn ≤ 1 + c1

√
nK

+
a(a + b)

2
E

n−1∑

t=1

K∑

i=1

ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)
.

Proof: Let T = min{t ∈ N : Ct > cn}. Since p1,1 =
ψ(−C0) = 1/K and ψ(−cn) ≤ 1/K from (22), we know
that T ≥ 1. Since we have CT−1 ≤ cn and from the as-
sumptions (25) and (26), we may apply Lemma 8 and obtain
AT ≤ a and BT ≤ b. So, from inequalities (23) and (24),
and since the gains are bounded by 1, Lemma 7 implies:

CT−1 ≤ T + c1

√
nK +

a(a + b)

2
c2T.

Now recall from the proof of Lemma 8 that we have δT =
CT−CT−1 ≤ ab/pi,T for any i and thus CT ≤ CT−1+abK.
Thus we have

CT ≤ abK + T + c1

√
nK +

a(a + b)

2
c2T.

If T ≤ n, we obtain by using (21)

CT ≤ abK + n + c1

√
nK +

a(a + b)

2
c2n

≤
(

1 +
a(a + b)

2
c2 + c1

√
K

n
+

abK

n

)
n ≤ cn,

which is impossible by definition of T . Thus, whatever arms
are chosen, we always have T > n, and we can apply Lem-
mas 7 and 8 at time n and obtain

Cn−1 −
n∑

t=1

gIt,t ≤ c1

√
nK +

a(a + b)

2

n−1∑

t=1

St,

with

St =
ψ′(G̃It,t−1 − Ct−1)

ψ(G̃It,t−1 − Ct−1)2
.

Now from (4), we have Cn−1 ≥ maxi=1,...,K G̃i,n−1, hence

ECn−1 ≥ max
i

EG̃i,n−1 = max
i

E

n−1∑

t=1

gi,t,

where we have used that the estimated gains are unbiased
estimates of the true gains. Thus we have

Rn ≤ 1 + c1

√
nK +

a(a + b)

2

n−1∑

t=1

ESt.

We can now write

ESt = E EIt∼pt

ψ′(G̃It,t−1 − Ct−1)

pIt,tψ(G̃It,t−1 − Ct−1)

= E

K∑

i=1

ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)
,

which concludes the proof of the lemma.

We now use the particular choice of the function ψ given in

Theorem 4. Let α = (9
√

qnK)q/K and β = q
q

2(q−1) /
√

nK.
Thus we have ψ(x) = α

(−x)q + β. We can assume that

37

1 − 1/q

√
qnK ≤ n, (27)

since, otherwise, Theorem 4 is trivially true. We want to
prove that the conditions of lemma 9 are satisfied with a =

3/2, b = 2, c2 = 1/9, c1 =
36

√
q

1−1/q and c = 18√
e

1
1−1/q .

First, we need to verify that condition (3) holds. The
function ψ is indeed increasing and continuously differen-
tiable. It is also easy to prove that ψ′/ψ is increasing. The
only nontrivial part is to prove limu→−∞ ψ(u) = β < 1/K.

We have q
q

2(q−1) =
√

q exp
(

log q
2(q−1)

)
≤ √

eq. Thus we have

β ≤
√

eq
nK . But by (27) we know that

√
qK/n ≤ 1

37 ≤ 1
2
√

e

and thus β ≤ 1
2K . We will now check that (21) - (26) hold.

Inequality (21). The right side of (21) is upper bounded by

1.3 +
√

q 36
1−1/q

√
K
n + 3K

n and c is lower bounded by 10.8.

We trivially have 3K
n ≤ 3

√
K/n ≤ 3

√
q

1−1/q

√
K/n. Thus

(21) holds if 9.5 ≥ 39
√

q

1−1/q

√
K/n and, from (27), this is true.

Inequality (22). Inequality (22) is implied by β ≤ 1/(2K)
and α/(cn)q ≤ 1/(2K). We already proved that the first
inequality is true. The second inequality boils down to

√
qnK ≤ 1√

e

n

1 − 1/q
,

which is true from (27).



Inequality (23). We have −ψ−1(x) =
(

α
x−β

)1/q
. Thus

−
K∑

i=1

qiψ
−1(qi) = −

K∑

i=1

βψ−1(qi) −
K∑

i=1

(qi − β)ψ−1(qi)

≤ βcnK + α1/q
K∑

i=1

(qi − β)1−1/q

since qi ≥ ψ(−cn). From Holder’s inequality, we get

K∑

i=1

(qi − β)
q−1

q ≤ K1/q

(
K∑

i=1

(qi − β)

) q−1
q

≤ K1/q.

We also need the following computations:

−
K∑

i=1

∫ 1/K

qi

ψ−1(u)du =

K∑

i=1

∫ 1/K

qi

(
α

u − β

)1/q

du

=

K∑

i=1

α1/q

[
(u − β)1−1/q

1 − 1/q

]1/K

qi

≤ K
α1/q

1 − 1/q

(
1

K

)1−1/q

=
(αK)1/q

1 − 1/q

since qi ≥ ψ(−cn) ≥ β and β ≤ 1/K.
Hence we need to verify that

c1

√
nK ≥ βcnK + (αK)1/q + (αK)1/q/(1 − 1/q),

which is true with our particular values.

Inequality (24). For any positive real numbers x, y, we

have x + y ≥ max(x, y) ≥ x
q−1
2q y

q+1
2q , hence

ψ2(x) =

(
α

(−x)q
+ β

)2

≥ β
q−1

q

(
α

(−x)q

) q+1
q

= (αβq−1)1/q α

(−x)q+1

=
(αβq−1)1/q

q
ψ′(x).

With our particular values, we have

(αβq−1)1/q = 9q (n/K)
1/q ≥ 9q

and thus (24) is satisfied with c2 = 1/9.

Inequality (25). We have

ψ′(x)

ψ′ (x + 1/ψ(x))
=

(
1 − 1

−xψ(x)

)q+1

,

and

−xψ(x) =
α

(−x)q−1
+ (−xβ)

≥ (αβq−1)1/q
(
(q − 1)1/q + (q − 1)1/q−1

)

≥ (αβq−1)1/q ≥ 9q.

Consequently, we have

ψ′(x)

ψ′ (x + 1/ψ(x))
≥

(
1 − 1

9q

)q+1

.

Now since (1 − 1/u)
u−1 ≥ e−1 for any u ≥ 1, we have

(
1 − 1

9q

)q−1

≥
(

1 − 1

9q

)(9q−1)/9

≥ e−1/9.

In particular, we have

ψ′
(

x +
1

ψ(x)

)
≤ e1/9

(
1 − 1

9q

)−2

ψ′(x) ≤ 3

2
ψ′(x),

and thus inequality (25) is satisfied with a = 3/2.

Inequality (26). We have

ψ′(x)

ψ′(x − ab
ψ(x) )

≤
(

1 +
ab

9q

)q+1

≤ exp

(
q + 1

9q
ab

)
≤ e

2
9 ab

where we have used log(1 + x) ≤ x. Now for a = 3/2 and
b = 2, the last term is upper bounded by b, hence (26) holds.

Application of Lemma 9. One can easily check that

ψ′(x)

ψ(x)
≤ q

α1/q
ψ(x)1/q.

Thus with Holder’s inequality we get

n−1∑

t=1

K∑

i=1

ψ′(G̃i,t−1 − Ct−1)

ψ(G̃i,t−1 − Ct−1)
≤ qn

α1/q
K1−1/q =

√
qnK

9
.

Then we have

Rn ≤ 1 +
36
√

qnK

1 − 1/q
+

21
√

qnK

72
≤ 37

1 − 1/q

√
qnK.

C Proof of Theorem 5

We follow the steps described in the sketch of proof given
right after Theorem 5. We may assume µ1 ≥ . . . ≥ µK .

First step: Decoupling the arms. For an arm k0, we triv-

ially have
∑K

k=1 ∆kTk(n) ≤ n∆k0 +
∑K

k=k0+1 ∆kTk(n).

Let ∆K+1 = +∞, zk = µ1 − ∆k

2 for k0 < k ≤ K + 1 and
zk0 = +∞. Define

Z = min
1≤s≤n

B1,s,

and

Wj,k = 1Z∈[zj+1,zj)∆kTk(n).

We have

K∑

k=k0+1

∆kTk(n) =

K∑

k=k0+1

K∑

j=k0

Wj,k

=

K∑

j=k0

j∑

k=k0+1

Wj,k +

K∑

j=k0

K∑

k=j+1

Wj,k. (28)

An Abel transformation takes care of the first sum of (28):

K∑

j=k0

j∑

k=k0+1

Wj,k ≤
K∑

j=k0

1Z∈[zj+1,zj)n∆j

= n∆k0 + n

K∑

j=k0+1

1Z<zj (∆j − ∆j−1). (29)



To bound the second sum of (28), we introduce the stopping
times τk = min{t : Bk,t < zk} and remark that, by defi-
nition of MOSS, we have {Z ≥ zk} ⊂ {Tk(n) ≤ τk}, since
once we have pulled τk times arm k its index will always be
lower than the index of arm 1. This implies

K∑

j=k0

K∑

k=j+1

Wj,k =

K∑

k=k0+1

k−1∑

j=k0

Wj,k

=

K∑

k=k0+1

1Z≥zk
∆kTk(n) ≤

K∑

k=k0+1

τk∆k. (30)

Combining (28), (29) and (30) and taking the expectation,
we get

Rn ≤ 2n∆k0 +

K∑

k=k0+1

∆kEτk

+ n

K∑

k=k0+1

P(Z < zk)(∆k − ∆k−1). (31)

Let δ0 = e1/16
√

K
n and set k0 such that ∆k0 ≤ δ0 < ∆k0+1.

Second step: Bounding Eτk for k0 + 1 ≤ k ≤ K.

Let log+(x) = max(log(x), 0). For ℓ0 ∈ N, we have

Eτk − ℓ0 =

+∞∑

ℓ=0

P(τk > ℓ) − ℓ0 (32)

≤
+∞∑

ℓ=ℓ0

P(τk > ℓ) =

+∞∑

ℓ=ℓ0

P(∀t ≤ ℓ, Bk,t > zk)

≤
+∞∑

ℓ=ℓ0

P

(
X̂k,ℓ − µk ≥ ∆k

2
−

√
log+ (n/Kℓ)

ℓ

)
.

Now let us take ℓ0 = ⌈8 log
(

n
K ∆2

k

)
/∆2

k⌉ with ⌈x⌉ the
smallest integer larger than x. For ℓ ≥ ℓ0, since k > k0,
we have ℓ ≥ ∆−2

k , and thus 8 log+ (n/(Kℓ)) ≤ ℓ∆2
k, hence

∆k

2
−

√
log+ (n/(Kℓ))

ℓ
≥ ∆k

2
− ∆k√

8
= c∆k,

with c = 1
2− 1√

8
. Therefore, by using Hoeffding’s inequality

and (32), we get

Eτk − ℓ0 ≤
+∞∑

ℓ=ℓ0

P

(
X̂k,ℓ − µk ≥ c∆k

)

≤
+∞∑

ℓ=ℓ0

exp
(
−2ℓ(c∆k)2

)
=

exp
(
−2ℓ0(c∆k)2

)

1 − exp (−2(c∆k)2)

≤ 1

1 − exp (−2c2∆2
k)

. (33)

Plugging the value of ℓ0, we obtain

∆kEτk ≤ ∆k

(
1 +

8 log
(

n
K ∆2

k

)

∆2
k

)
+

∆k

1 − exp (−2c2∆2
k)

≤ 1 + 8
log

(
n
K ∆2

k

)

∆k
+

1

2c2(1 − c2)∆k
, (34)

where the last step uses that, since 1− exp(−x) ≥ x−x2/2
for any x ≥ 0, we have

1

1 − exp (−2c2∆2
k)

≤ 1

2c2∆2
k − 2c4∆4

k

≤ 1

2c2∆2
k(1 − c2)

It is routine to check that 2
e

√
n
K is the maximum of x 7→

x−1 log
(

n
K x2

)
. By using ∆k ≥ e1/16

√
K/n, we finally get

K max
k>k0

∆kEτk ≤ K +

(
16

e
+

e−1/16

2c2(1 − c2)

)√
nK

≤ K + 28.3
√

nK. (35)

Third step: Bounding n
∑K

k=k0+1 P(Z < zk)(∆k−∆k−1).

Let Xt denote the reward obtained by arm 1 when it is
drawn for the t-th time. The random variables X1, X2, . . .
are i.i.d. so that we have the maximal inequality (Hoeffding,
1963, inequality (2.17)): for any x > 0 and m ≥ 1,

P

(
∃s ∈ {1, . . . ,m},

s∑

t=1

(µ1−Xt) > x

)
≤ exp

(
−2x2

m

)
.

Since zk = µ1−∆k/2 and since u 7→ P (Z < µ1 − u/2)
is a nonincreasing function, we have

K∑

k=k0+1

P(Z < zk)(∆k − ∆k−1)

≤ δ0 − ∆k0 +

∫ 1

δ0

P

(
Z < µ1 −

u

2

)
du.

For a fixed u ∈ [δ0, 1] and f(u) = 8 log
(√

n
K u

)
/u2, we have

P

(
Z < µ1 −

1

2
u

)

= P

(
∃1 ≤ s ≤ n :

s∑

t=1

(µ1 − Xt) >

√
s log+

( n

Ks

)
+

su

2

)

≤ P

(
∃1 ≤ s ≤ f(u) :

s∑

t=1

(µ1 − Xt) >

√
s log

( n

Ks

))

+ P

(
∃f(u) < s ≤ n :

s∑

t=1

(µ1 − Xt) >
su

2

)
.

For the first term we use a peeling argument with a geometric
grid of the from 1

2ℓ+1 f(u) ≤ s ≤ 1
2ℓ f(u):

P

(
∃1 ≤ s ≤ f(u) :

s∑

t=1

(µ1 − Xt) >

√
s log

( n

Ks

))

≤
+∞∑

ℓ=0

P

(
∃ 1

2ℓ+1
f(u) ≤ s ≤ 1

2ℓ
f(u) :

s∑

t=1

(µ1 − Xt) >

√
f(u)

2ℓ+1
log

(
n2ℓ

Kf(u)

))

≤
+∞∑

ℓ=0

exp



−2
f(u) 1

2ℓ+1 log
(

n2ℓ

Kf(u)

)

f(u) 1
2ℓ





=

+∞∑

ℓ=0

Kf(u)

n

1

2ℓ
= 2

Kf(u)

n
.



We integrate f(u) now:
∫ 1

δ0

f(u)du =

[
8 log(e

√
n/Ku)

u

]δ0

1

≤ 17 e−1/16

2

√
n/K.

For the second term we also use a peeling argument but with
a geometric grid of the form 2ℓf(u) ≤ s ≤ 2ℓ+1f(u):

P

(
∃s ∈{⌈f(u)⌉, . . . , n} :

s∑

t=1

(µ1 − Xt) >
su

2

)

≤
+∞∑

ℓ=0

P
(
∃2ℓf(u) ≤ s ≤ 2ℓ+1f(u) :

s∑

t=1

(µ1 − Xt) > 2ℓ−1f(u)u

)

≤
+∞∑

ℓ=0

exp

(
−2

(
2ℓ−1f(u)u

)2

f(u)2ℓ+1

)

=

+∞∑

ℓ=0

exp
(
−2ℓf(u)u2/4

)

≤
+∞∑

ℓ=0

exp
(
−(ℓ + 1)f(u)u2/4

)

=
1

exp (f(u)u2/4) − 1
.

From the choice of f(u), this last term is upper bounded by
1

nu2/K−1 . Again we need to integrate this quantity. It is easy

to show that
∫ 1

δ0

1

nu2/K − 1
du ≤ 1

2
log

(
e1/16 + 1

e1/16 − 1

) √
K

n
.

All in all, we have

n

K∑

k=k0+1

P(Z < zk)(∆k − ∆k−1)

≤ n(δ0 − ∆k0) +

(
17e−1/16 +

1

2
log

(
e1/16 + 1

e1/16 − 1

))√
nK

≤ n(δ0 − ∆k0) + 17.8
√

nK. (36)

Combining (31), (35) and (36), we get that

Rn ≤ 48.3
√

nK + K.

Now, if K ≥ n/492, we have 49
√

nK ≥ n ≥ Rn. On the

other hand, if K < n/492 then we also have Rn ≤ 49
√

nK

since K < 1
49

√
nK.

D Proof of Theorem 6

Without loss of generality, we again assume: µ1 ≥ . . . ≥
µK , and use the notation of the proof of Theorem 5. In par-

ticular, we recall that zk = µ1 − ∆k

2 , Z = min1≤s≤n B1,s,
and τk = min{t : Bk,t < zk}. This time, we use k0 such

that ∆k0
≤ δ0 < ∆k0+1 with δ0 = 2

√
K/n. We start with

the following weakened version of (31):

Rn ≤ 2n∆k0
+

K∑

k=k0+1

∆k

(
Eτk + nP(Z < zk)

)
. (37)

Consider k > k0. From (34), we have

∆kEτk ≤ 1 + 8
log

(
n∆2

k/K
)

∆k
+

24

∆k
.

Now we have n
K ∆2

k ≥ 4, hence

∆kEτk ≤ 27
log(n∆2

k/K)

∆k
.

For the last term in (37), we use the same cutting scheme and
peeling argument as in the third step of the previous proof
except that we take u = ∆k and replace f(u) with v =
4 log(n∆2

k/K)

∆2
k

. Introducing

A1 = P

(
∃1 ≤ s ≤ v :

s∑

t=1

(µ1 − Xt) >

√
s log

( n

Ks

))
,

and

A2 = P

(
∃v < s ≤ n :

s∑

t=1

(µ1 − Xt) >
su

2

)
,

we have
P (Z < zk) ≤ A1 + A2.

The first peeling argument with a geometric grid of the from
1

2ℓ+1 v ≤ s ≤ 1
2ℓ v gives

A1 ≤ 2
Kv

n
=

8K log(n∆2
k/K)

n∆2
k

.

The second peeling argument with a geometric grid of the
form 2ℓv ≤ s ≤ 2ℓ+1v gives

A2 ≤ 1

exp (vu2/4) − 1
=

1

n∆2
k/K − 1

≤ 4K

3n∆2
k

,

where we again use n
K ∆2

k ≥ 4. By combining the previ-

ous inequalities, we get n∆kP (Z < zk) ≤ 9K log(n∆2
k/K)

∆k
.

Since ∆k0
≤ 2

√
K/n, by plugging the previous results in

(37), we obtain

Rn ≤ 8K

∆k0

1∆k0
>0 +

K∑

k=k0+1

(27 + 9K) log(n∆2
k/K)

∆k

≤ 23K
∑

k:∆k>0

max(log(n∆2
k/K), 1)

∆k
.
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