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Minimax policies for adversarial and stochastic bandits

 achieves the distribution-free optimal rate while still having a distribution-dependent rate logarithmic in the number of plays.

Introduction

In the multi-armed bandit problem, at each stage, an agent (or decision maker) chooses one action (or arm), and receives a reward from it. The agent aims at maximizing his rewards. Since he does not know the process generating the rewards, he needs to explore (try) the different actions and yet, exploit (concentrate its draws on) the seemingly most rewarding arms. The multi-armed bandit task has been first considered by Robbins (1952) and was originally motivated by a simplified view of clinical trials (in which an action consists in choosing a treatment and the reward depends on its efficiency on a patient).

To set the notation, let K ≥ 2 be the number of actions (or arms) and n ≥ K be the time horizon. In both stochastic and adversarial K-armed bandit problems, the game between the agent and the environment goes as follows: At each time step t ∈ {1, . . . , n}, (i) the agent chooses a probability distribution p t on a finite set {1, . . . , K}, (ii) the environment chooses a reward vector g t = (g 1,t , . . . , g K,t ) ∈ [0, 1] K , and simultaneously (independently), the agent draws the action (or arm) I t according to the distribution p t , (iii) the agent only gets to see his own reward g It,t . The goal of the decision maker is to maximize his cumulative reward n t=1 g It,t . The stochastic K-armed bandit problem is parameterized by a K-tuple of probability distributions (ν 1 , . . . , ν K ) on [0, 1]. In this model, the components of the reward vector are i.i.d. realizations of respectively ν 1 , . . . , ν K . Besides the reward vectors at different times are independent.

The adversarial K-armed bandit problem is more general: The environment is much less constrained as it may choose a reward vector g t as a function of the past decisions I 1 , . . . , I t-1 (and possibly of an independent randomization). A simple, but interesting, adversarial environment is obtained by considering deterministic reward vectors: in this case, known as the oblivious deterministic opponent, the environment is just parameterized by the nK real numbers (g i,t ). Note that in the adversarial environment, past gains have no reason to be representative of future ones in contrast to the stochastic setting in which confidence bounds on the mean reward of the arms can be deduced from the rewards obtained so far.

A policy is a strategy for choosing the drawing probability distribution p t based on the history formed by the past plays and the associated rewards. So it is a function that maps any history to a probability distribution on {1, . . . , K}. We define the regret of a policy with respect to the best constant decision as

R n = max i=1,...,K E n t=1 g i,t -g It,t . 1
To compare to the best constant decision is a reasonable target since it is well-known that (i) there exist randomized policies ensuring that R n /n tends to zero as n goes to infinity, (ii) this convergence property would not hold if the maximum and the sum would be inverted in the definition of R n .

The minimax rate of the expected regret is inf sup R n , where the infimum is taken over all policies and the supremum over all K-tuples of probability distributions on [0, 1] for the stochastic case and over all adversarial environments with rewards in [0, 1] for the adversarial case. [START_REF] Auer | Gambling in a rigged casino: the adversarial multi-armed bandit problem[END_REF] proved an upper bound on this quantity in the adversarial case (and thus also in the stochastic case) and a lower bound in the stochastic case (and thus also in the adversarial case). We recall here the results of [START_REF] Auer | Gambling in a rigged casino: the adversarial multi-armed bandit problem[END_REF][START_REF] Auer | The non-stochastic multi-armed bandit problem[END_REF].

Theorem 1 The EXP3 policy described in Fig. 1 satisfies sup R n ≤ 2.7 nK log K, 1 In the case of an oblivious deterministic opponent this regret is equal to the strong regret: E maxi n t=1 gi,t -gI t,t . In the case of an oblivious stochastic opponent (parametrized by nK probability distributions over [0, 1]), one can prove that the difference between the regret and the strong regret is at most √ n log K. Thus at the price of this second order additional term, the bounds in Theorems 4 and 5 hold for the strong regret in the case of an oblivious opponent.

for η = min 0.8 log K nK , 1 K , where the supremum is taken over all adversarial environments. Besides we have

inf sup R n ≥ 1 20 √ nK,
where the supremum is taken over all K-tuple of probability distributions on [0, 1].

EXP3 (Exploration-Exploitation with Exponential weights):

Parameter: η ∈ (0, 1/K].
Let p1 be the uniform distribution over {1, . . . , K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated gain for each arm: gi,t = g i,t

p i,t 1I t =i and update the estimated cumulative gain: Gi,t = t s=1 gi,s.

(3) Compute the new probability distribution over the arms: For stochastic environments, the goal is also to adapt to the simplicity of the bandit problem. To be more precise and set up the notation, let µ i denote the expectation of ν i . The suboptimality of an arm i is measured by ∆ i = max j=1,...,K µ j -µ i . The quantities ∆ i for suboptimal arms (i.e., arms having ∆ i > 0) characterize the simplicity of the task. The larger they are, the easier it is to spot the best decision from a few observations. The upper bounds on the expected regret are usually stated in terms of the parameters ∆ i , and we say that they are distribution-dependent bounds. The UCB1 strategy [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], is known to be distribution-dependent optimal since the following upper and lower bounds hold.

pi,t+1 = (1 -Kη) exp η Gi,t K k=1 exp η Gk,t + η.
Theorem 2 The UCB1 policy satisfies

R n ≤ 10 i:∆i>0 1 ∆ i log n. ( 1 
)
For any ε > 0, for large enough n, there is no policy with

R n ≤ i:∆i>0 1 (2 + ε)∆ i log n, (2) 
uniformly for all reward distributions ν 1 , . . . , ν K .

The upper bound is a simple variant of [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], Theorem 1) while the lower bound comes from (Lai and Robbins, 1985, Theorem 1) applied to the parametric family of Bernoulli distributions. An easy modification of the proof of (1) gives

R n ≤ max ti≥0, i ti=n i:∆i>0 min 10 ∆ i log n , t i ∆ i ,
INF (Implicitly Normalized Forecaster):

Parameter: function ψ : R * -→ R * + satisfying (3). Let p1 be the uniform distribution over {1, . . . , K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated gain for each arm: gi,t = g i,t p i,t 1I t=i and update the estimated cumulative gain: Gi,t = t s=1 gi,s.

(3) Compute the normalization constant Ct = C( Gt) where Gt = ( G1,t, . . . , GK,t).

(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1) where pi,t+1 = ψ( Gi,t -Ct).

Figure 2: The proposed policy for the adversarial case. which in the worst case i.e., ∆ 1 = 0 and

∆ 2 = • • • = ∆ K = 10K(log n)/n is equal to 10n(K -1) log n.
This means that even in the stochastic bandit problem, there is a logarithmic gap between the lower and upper bounds.

Outline and contributions. Section 2 presents a new family of randomized policies to address the adversarial multiarmed bandit problem, and proves that many of them satisfy a regret of order √ nK. This bridges the logarithmic gap between the known upper and lower bounds presented in Theorem 1.

Section 3 defines a policy achieving the best distributionfree regret √ nK for stochastic bandits as well as a distributiondependent regret of order K log n K .

2 The adversarial case: √ nK regret

We start by defining a new class of randomized policies. Let us consider a function ψ : R * -→ R * + such that ψ increasing and continuously differentiable, ψ ′ /ψ nondecreasing, lim u→-∞ ψ(u) < 1/K, and lim u→0 ψ(u) ≥ 1.

(

3)

Lemma 3 There exists a continuously differentiable function

C : R K + → R satisfying for any x = (x 1 , . . . , x K ) ∈ R K + , max i=1,...,K x i < C(x) ≤ max i=1,...,K x i -ψ -1 (1/K) , (4) 
and

K i=1 ψ(x i -C(x)) = 1. (5) 
Proof: See Appendix A.

The implicitly normalized forecaster (INF) is defined in Fig. 2. Equality (5) makes the fourth step in Fig. 2 legitimate.

From (4), C( Gt ) is roughly equal to max i=1,...,K Gi,t . This means that INF chooses the probability assigned to arm i as a function of the (estimated) regret. Note that, in spirit, it is similar to the traditional weighted average forecaster, see e.g. Section 2.1 of [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF], where the probabilities are proportional to a function of the difference between the (estimated) cumulative reward of arm i and the cumulative reward of the policy, which should be, for a wellperforming policy, of order C( Gt ). Our main result is the following.

Theorem 4 For any real q > 1, the Implicitly Normalized

Forecaster with ψ(x) = 1 K 9 √ qnK -x q + q q/(2q-2) √ nK satisfies sup R n ≤ 37 1 -1/q qnK, ( 6 
)
where the supremum is taken over all adversarial environments with rewards in [0, 1].

Proof: We put here the main lines of the proof. We need to lower bound

n t=1 g It,t = n t=1 K i=1 p i,t ( Gi,t -Gi,t-1 )
. By an Abel transform, we come down to upper bounding

n-1 t=1 K i=1 Gi,t (p i,t+1 -p i,t ), which is equal to K i=1 n-1 t=1 ψ -1 (p i,t+1 )(p i,t+1 -p i,t ).
Note that this striking last equality is closely linked to our specific class of randomized algorithms. Then we use a Taylor-Lagrange expansion, which makes appear

n-1 t=1 pi,t+1 pi,t ψ -1 (u)du = pi,n 1/K ψ -1 (u)du.
The difficulty is then to control the residual terms. See Appendix B.

For q = 3, inequality (6) gives sup R n ≤ 100 √ nK. In fact, much better constants can be obtained by proper tuning. In Theorem 4, we take ψ(x) = α(-x) -q + β for appropriate α > 0 and β > 0. The role of β is to keep away from zero the probabilities of seemingly low rewarding arms. EXP3 contains a similar term. For low values of q, that is for 1 < q ≤ 2, it can be established (proof omitted here) that this additional term is not necessary to achieve a √ nK regret. For instance, for ψ

(x) = 1 K 2.5 √ nK -x 1.5 , we have shown that sup R n ≤ 15 √ nK. Remark 1 For ψ(u) = η + exp(ηu) with η ∈ (0, 1/K], we have exp(-ηC(x)) = (1 -Kη)/ K j=1 exp(ηx j )
, so that INF reduces to EXP3. Except for this particular choice of ψ, the (normalizing) function C has usually no closed form expression, hence the name of the policy. However this does not lead to a major computational issue since, in the interval given by (4), C(x) is the unique solution of φ(c) = 1, where

φ : c → K i=1 ψ(x i -c) is a decreasing function. Remark 2
The policies in the theorem, as the other ones presented in this paper, are not "anytime" since their implementation requires the knowledge of the horizon n. By using the doubling trick, see e.g. Section 2.3 of Cesa- [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF], one can make them anytime.

The stochastic case

By considering the deterministic case when the rewards are g i,t = 1 if i = 1 and g i,t = 0 otherwise, it can be proved that the INF policies considered in Theorem 4, as well as EXP3, have an expected regret lower bounded by √ nK. In this simple setting, and more generally in most of the stochastic multi-armed bandit problems, one would like to suffer a much smaller regret.

We recall that the suboptimality of an arm i is measured by ∆ i = max j=1,...,K µ j -µ i . Our second contribution is to provide a strategy achieving a √ nK regret in the worst case, and a much smaller regret as soon as the ∆ i of the suboptimal arms are much larger than K/n.

Let X i,s be the empirical mean of arm i after s draws of this arm. Let T i (t) denote the number of times we have drawn arm i on the first t rounds. In this section, we propose a policy inspired by the UCB1 policy [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], where each arm has an index measuring its performance, and at each round, we choose the arm having the highest index (see Fig. 3). The index of an arm that has been drawn more than n/K times is simply the empirical mean of the rewards obtained from the arm. For the other arms, their index is an upper confidence bound on their mean reward, which, from Hoeffding's inequality, holds with high probability.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an arm i, define its index Bi,s by Bi,s = Xi,s + max log( n Ks ) , 0 s .

for s ≥ 1 and Bi,0 = +∞.

At time t, draw an arm maximizing B i,T i (t-1) .

Figure 3: The proposed policy for the stochastic case.

Theorem 5 MOSS satisfies sup R n ≤ 49 √ nK, (7) 
where the supremum is taken over all K-tuple of probability distributions on [0, 1].

Proof: Here are the main steps. Without loss of generality consider that µ

1 ≥ . . . ≥ µ K , hence ∆ i = µ 1 -µ i . By Wald's identity, we have R n = E i ∆ i T i (n).
Tightly upper bounding R n is difficult because of the heavy dependence between the random variables T i (n). To decouple the arms, we introduce the key thresholds z i = µ 1 -∆i 2 , and the r.v. Z = min 1≤s≤n B 1,s and τ i = min{t : B i,t < z i }, and essentially prove that

R n ≤ i ∆ i Eτ i + nP(Z < z i )(∆ i -∆ i-1 ) .
The expectations Eτ i = +∞ ℓ=0 P(τ i > ℓ) are then bounded by using Hoeffding's inequality, and the probabilities Remark 3 A careful tuning of the constants in front and inside the logarithmic term of B i,s and of the thresholds used in the proof leads to sup R n ≤ 5.7 √ nK. However, it makes the proof more intricate. So we will only prove (7).

The distribution-dependent upper bound for MOSS is the following.

Theorem 6 MOSS satisfies

R n ≤ 23K i:∆i>0 max log n∆ 2 i K , 1 ∆ i . ( 8 
)
Proof: It follows the same route as the previous proof. See Appendix D.

Theorem 6 contains a K factor, which does not appear in the logarithmic bound of UCB1 given in Theorem 2. This means that for fixed ∆ 1 , . . . , ∆ K and n going to infinity, UCB1 will perform better than MOSS (if the bounds are representative of the behaviour of the algorithms, which, we believe, is the case). Note that, despite the K factor, the bound has the right order in the critical case when A Proof of Lemma 3

∆ 1 = 0, ∆ 2 = • • • = ∆ K = γ K/n for γ ≥ 3. Indeed, in that case, MOSS satisfies R n ≤ 46 √ nK log γ γ ≤ 17 √ nK,
Consider a fixed x = (x 1 , . . . , x K ). The decreasing function φ : c → K i=1 ψ(x i -c) satisfies lim c→ max i=1,...,K xi φ(c) > 1 and lim c→+∞ φ(c) < 1.
From the mean value theorem, there is a unique C(x) satisfying φ(C(x)) = 1. From the implicit function theorem, the mapping x → C(x) is continuously differentiable.

B Proof of Theorem 4

We start with three lemmas which study INF in general for functions ψ such that (3) holds. The proof of Theorem 4 follows by applying the last lemma to the particular class of ψ we use. Let us set G0 = 0 ∈ R K + and C 0 = C( G0 ).

Lemma 7 Let

A T = sup t∈{1,...,T -1} ψ ′ ( GIt,t -C t ) ψ ′ ( GIt,t-1 -C t-1 )
and

B T = sup t∈{1,...,T -1},i∈{1,...,K} ψ ′ ( Gi,t-1 -C t-1 ) ψ ′ ( Gi,t -C t ) .
For any T ≥ 2, INF satisfies

C T -1 - T t=1 g It,t ≤ K i=1 p i,T (-ψ -1 )(p i,T ) + K i=1 1/K pi,T (-ψ -1 )(u)du + A T (A T + B T ) 2 T -1 t=1 ψ ′ ( GIt,t-1 -C t-1 ) ψ( GIt,t-1 -C t-1 ) 2 .
Proof: The proof is divided into five steps. We start with the following equalities:

First step: Rewriting

T t=1 g It,t = T t=1 K i=1 p i,t gi,t = T t=1 K i=1 p i,t ( Gi,t -Gi,t-1 ) = T -1 t=1 K i=1 (p i,t -p i,t+1 ) Gi,t + K i=1 p i,T Gi,T ,
where the last step comes from an Abel transformation. Now,

K i=1 p i,T Gi,T ≥ K i=1 p i,T Gi,T -1 = C T -1 + K i=1 p i,T ψ -1 (p i,T ).
Hence, so far, we have proved

C T -1 - T t=1 g It,t ≤ K i=1 p i,T (-ψ -1 )(p i,T ) + T -1 t=1 K i=1 (p i,t+1 -p i,t ) Gi,t .
Let us rewrite the last sum by using Gi,t = ψ -1 (p i,t+1 )+C t and K i=1 (p i,t+1 -p i,t )C t = 0. We obtain

C T -1 - T t=1 g It,t ≤ K i=1 p i,T (-ψ -1 )(p i,T ) + T -1 t=1 K i=1 (p i,t+1 -p i,t )ψ -1 (p i,t+1
).

Second step: A Taylor-Lagrange expansion.

For x ∈ [0, 1] we define f (x) = x 0 ψ -1 (u)du. Remark that f ′ (x) = ψ -1 (x) and f ′′ (x) = 1/ψ ′ (ψ -1 (x)).
Then by the Taylor-Lagrange formula, we know that for any i, there exists

p ′ i,t+1 ∈ [p i,t , p i,t+1 ] (with the convention [a, b] = [b, a] when a > b) such that f (p i,t ) = f (p i,t+1 ) + (p i,t -p i,t+1 )f ′ (p i,t+1 ) + (p i,t -p i,t+1 ) 2 2 f ′′ (p ′ i,t+1 ),
or, in other words:

(p i,t+1 -p i,t )ψ -1 (p i,t+1 ) = pi,t pi,t+1 (-ψ -1 )(u)du + (pi,t-pi,t+1) 2 2ψ ′ (ψ -1 (p ′ i,t+1
)) . Now remark that by summing over t we get the term

1/K pi,T (-ψ -1 )(u)du
which appears in the statement of the lemma. Moreover, using that ψ ′ • ψ -1 is increasing (since ψ is increasing and convex from the assumption on ψ ′ /ψ) we have

1/ψ ′ ψ -1 (p ′ i,t+1 ) ≤ 1/ψ ′ ψ -1 (min(p i,t , p i,t+1
)) . To finish the proof, we have to upper bound

T -1 t=1 K i=1 (p i,t -p i,t+1 ) 2 2ψ ′ {ψ -1 (min(p i,t , p i,t+1 ))} . ( 9 
)
Third step: Preliminary remarks to bound (p i,t+1 -p i,t ) 2 .

It is now convenient to consider the functions f i and h i defined for any

x ∈ R K + by f i (x) = ψ(x i -C(x)) and h i (x) = ψ ′ (x i -C(x)).
We are going to bound p i,t+1 -p i,t = f i ( Gt ) -f i ( Gt-1 ), and consequently (9), by using the mean value theorem. This step gathers preliminary results before applying the mean value theorem. First, we have

∂f i ∂x j (x) = 1 i=j - ∂C ∂x j (x) h i (x).
Now, by definition of C, we have

K k=1 f k (x) = 1 and thus K k=1 ∂f k ∂xj (x) = 0, which implies ∂C ∂x j (x) = h j (x) K k=1 h k (x) ≥ 0, (10) 
and

∂f i ∂x j (x) = 1 i=j - h j (x) K k=1 h k (x) h i (x). (11) 
Let x = (x 1 , . . . , x K ) and x j = (x 1 , . . . , x j +ζ, . . . , x K ) where ζ ∈ R + . From (10), we have for i = j,

x j i -C(x j ) ≤ x i -C(x). Now since ψ and ψ ′ are increasing, we have for i = j f i (x j ) ≤ f i (x) and h i (x j ) ≤ h i (x).

(12) Moreover remark that

1 = K i=1 f i (x j ) ≤ f j (x j )+ K i=1,i =j f i (x) = f j (x j )-f j (x)+1
and thus f j (x) ≤ f j (x j ) which in turn implies x j -C(x) ≤ x j j -C(x j ) (since ψ -1 is increasing). Hence we have f j (x j ) ≥ f j (x) and h j (x j ) ≥ h j (x).

(13) Fourth step: Upper bounding (p i,t+1 -p i,t ) 2 .

Recall that p i,t+1 -p i,t = f i ( Gt )-f i ( Gt-1 ) and that Gt and Gt-1 only differs by g It,t /p It,t at their I t -th coordinate. Thus there exists ζ ∈ (0, g It,t /p It,t ) such that the following is true with G′ t = ( G1,t-1 , . . . , GIt,t-1 + ζ, . . . , GK,t-1 ),

p i,t+1 -p i,t = f i ( Gt ) -f i ( Gt-1 ) = g It,t p It,t ∂f i ∂x It ( G′ t ).
From (11) and since the rewards are in [0, 1], we obtain

(p i,t+1 -p i,t ) 2 ≤ 1 p 2 It,t 1 i=It - h It ( G′ t ) K k=1 h k ( G′ t ) 2 h i ( G′ t ) 2 ≤ 1 p 2 It,t h It ( G′ t ) 2 1 i=It + 1 p 2 It,t h i ( G′ t ) 2 h It ( G′ t ) 2 K k=1 h k ( G′ t ) 2 1 i =It ≤ h It ( G′ t ) p 2 It,t h i ( G′ t )1 i=It + h i ( G′ t ) 2 K k=1 h k ( G′ t ) 1 i =It ≤ h It ( Gt ) p 2 It,t h i ( Gt )1 i=It + h i ( Gt-1 )h i ( G′ t ) K k=1 h k ( G′ t ) 1 i =It ,
where the last step comes from ( 12) and ( 13).

Fifth step: Bounding

T -1 t=1 K i=1

(pi,t-pi,t+1) 2 2ψ ′ {ψ -1 (min(pi,t,pi,t+1))} .

Notice that ( 12) and ( 13) imply that p It,t+1 ≥ p It,t and for i = I t , p i,t+1 ≤ p i,t . (14)

Thus we have

ψ ′ ψ -1 (min(p i,t , p i,t+1 )) = ψ ′ ψ -1 (p i,t ) 1 i=It + ψ ′ ψ -1 (p i,t+1 ) 1 i =It = h i ( Gt-1 )1 i=It + h i ( Gt )1 i =It , hence (p i,t -p i,t+1 ) 2 ψ ′ {ψ -1 (min(p i,t , p i,t+1 ))} ≤ h It ( Gt ) p 2 It,t h i ( Gt ) h i ( Gt-1 ) 1 i=It + h i ( Gt-1 )h i ( G′ t ) h i ( Gt ) K k=1 h k ( G′ t ) 1 i =It ≤ h It ( Gt ) p 2 It,t A T 1 i=It + B T h i ( G′ t ) K k=1 h k ( G′ t ) 1 i =It ,
where we have used the definitions of A T and B T for the last inequality. It is now clear that by summing over i we get

K i=1 (p i,t -p i,t+1 ) 2 ψ ′ {ψ -1 (min(p i,t , p i,t+1 ))} ≤ (A T + B T ) h It ( Gt ) p 2 It,t
.

This last term is equal to

(A T + B T ) h It ( Gt ) f It ( Gt-1 ) 2 ≤ A T (A T + B T ) h It ( Gt-1 ) f It ( Gt-1 ) 2
which concludes the proof.

In essence, Lemma 7 gives the result we want to apply

for ψ(x) = 1 K 9 √ qnK -x q + q q/(2q-2)
√ nK . Unfortunately, we still need to answer positively to questions of the type: is the probability of drawing arm i at time t of the same order as the one at time t + 1 (or more technically speaking, do A T and B T are bounded by constants)? While this seems an obvious point, it requires to our knowledge the unfortunately complicated and recursive arguments that follows.

Lemma 8 Let T ≥ 2. Assume that there exist a > 1, b > 1, c > 0 such that C T -1 ≤ c, and for any x ∈ [-c, 0), ψ ′ (x + 1/ψ(x)) ≤ aψ ′ (x) (15) and ψ ′ (x -ab/ψ(x)) ≥ 1 b ψ ′ (x). ( 16 
)
Then we have A T ≤ a and B T ≤ b.

Proof: Let t ∈ {1, . . . , T -1}. The quantities Gi,s are nonnegative and nondecreasing as a function of the time s, hence from (10), s → C s is nondecreasing, and

C T -1 ≤ c implies Gi,t-1 -C t-1 ≥ -c.
Since the function ψ ′ is increasing (because ψ ′ /ψ is nondecreasing) and from ( 15), we have

ψ ′ ( GIt,t -C t ) = ψ ′ GIt,t-1 -C t + g It,t /ψ( GIt,t-1 -C t-1 ) ≤ ψ ′ GIt,t-1 -C t-1 + 1/ψ( GIt,t-1 -C t-1 ) ≤ aψ ′ ( GIt,t-1 -C t-1
).

Thus we have proved A T ≤ a.

For the second inequality, from ( 14), we have p It,t+1 ≥ p It,t , and consequently ψ(

GIt,t -C t ) ≥ ψ( GIt,t-1 -C t-1 ). Let δ t = C t -C t-1 . Since ψ is increasing, this implies gIt,t -C t ≥ -C t-1 , hence δ t ≤ gIt,t ≤ 1/p It,t = 1/ψ( GIt,t-1 -C t-1 ). ( 17 
)
Unfortunately, we need a more precise upper bound on δ t because 1/p It,t is large when the selected arm has low probability. We now prove that in fact, for all i ∈ {1, . . . , K}:

δ t ≤ ab ψ( Gi,t-1 -C t-1 )
.

From ( 17), this holds for any i such that Gi,t-1 ≤ GIt,t-1 . Now let i be such that Gi,t-1 > GIt,t-1 . From ( 14), we have

p i,t+1 + p It,t+1 = 1 - j ∈{i,It} p j,t+1 ≥ 1 - j ∈{i,It} p j,t = p i,t + p It,t ,
which, by using Gi,t-1 = Gi,t , implies

ψ( Gi,t-1 -C t-1 ) -ψ( Gi,t-1 -C t ) ≤ ψ( GIt,t -C t ) -ψ( GIt,t-1 -C t-1 ), (18) 
Now, by using GIt,t -C t ≥ GIt,t-1 -C t-1 (which is a consequence of p It,t+1 ≥ p It,t ), A T ≤ a, and since the functions ψ and ψ ′ /ψ (and therefore ψ ′ ) are nondecreasing, the mean value theorem gives:

ψ( GIt,t -C t ) -ψ( GIt,t-1 -C t-1 ) = ψ( GIt,t-1 -C t-1 + gIt,t -δ t ) -ψ( GIt,t-1 -C t-1 ) ≤ (g It,t -δ t )ψ ′ ( GIt,t -C t ) ≤ ψ ′ ( GIt,t -C t ) ψ( GIt,t-1 -C t-1 ) ≤ a ψ ′ ( GIt,t-1 -C t-1 ) ψ( GIt,t-1 -C t-1 ) ≤ a ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) . ( 19 
)
On the other hand, from the mean value theorem and ( 16), we also have

ψ( Gi,t-1 -C t-1 ) -ψ Gi,t-1 -C t-1 -ab/ψ( Gi,t-1 -C t-1 ) ≥ ab ψ ′ Gi,t-1 -C t-1 -ab/ψ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) ≥ a ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) , ( 20 
)
where we have used Gi,t-1 -C t-1 ≥ -c. By combining inequalities ( 18), ( 19) and ( 20), we get

ψ Gi,t-1 -C t-1 -ab/ψ( Gi,t-1 -C t-1 ) ≤ ψ( Gi,t-1 -C t-1 ) -a ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) ≤ ψ( Gi,t-1 -C t ) = ψ( Gi,t-1 -C t-1 -δ t )
and thus δ t ≤ ab/ψ( Gi,t-1 -C t-1 ). We can now conclude the proof with the same method as for A T . For i = I t :

ψ ′ ( Gi,t -C t ) = ψ ′ ( Gi,t-1 -C t-1 -δ t ) ≥ ψ ′ Gi,t-1 -C t-1 -ab/ψ( Gi,t-1 -C t-1 ) ≥ 1 b ψ ′ ( Gi,t-1 -C t-1 )
where we have used ( 16) for the last inequality.

Lemma 9 Assume that there exist a > 1, b > 1, c > 0, c 1 > 0, c 2 > 0 such that for any x ∈ [-cn, 0) and any q ∈ R K satisfying K i=1 q i = 1, q i ≥ ψ(-cn), we have:

c ≥ 1 + a(a + b) 2 c 2 + c 1 K n + ab K n , (21) 
ψ(-cn) ≤ 1/K, (22) 
- K i=1 q i ψ -1 (q i ) - 1/K qi ψ -1 (u)du ≤ c 1 √ nK, (23) 
ψ ′ (x)/ψ(x) 2 ≤ c 2 , (24) ψ 
′ (x + 1/ψ(x)) ≤ aψ ′ (x), (25) 
ψ ′ (x -ab/ψ(x)) ≥ 1 b ψ ′ (x). (26) 
Then INF satisfies:

R n ≤ 1 + c 1 √ nK + a(a + b) 2 E n-1 t=1 K i=1 ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1
) .

Proof: 22), we know that T ≥ 1. Since we have C T -1 ≤ cn and from the assumptions ( 25) and ( 26), we may apply Lemma 8 and obtain A T ≤ a and B T ≤ b. So, from inequalities ( 23) and ( 24), and since the gains are bounded by 1, Lemma 7 implies:

Let T = min{t ∈ N : C t > cn}. Since p 1,1 = ψ(-C 0 ) = 1/K and ψ(-cn) ≤ 1/K from (
C T -1 ≤ T + c 1 √ nK + a(a + b) 2 c 2 T.
Now recall from the proof of Lemma 8 that we have

δ T = C T -C T -1 ≤ ab/p i,T for any i and thus C T ≤ C T -1 +abK.
Thus we have

C T ≤ abK + T + c 1 √ nK + a(a + b) 2 c 2 T.
If T ≤ n, we obtain by using ( 21)

C T ≤ abK + n + c 1 √ nK + a(a + b) 2 c 2 n ≤ 1 + a(a + b) 2 c 2 + c 1 K n + abK n n ≤ cn,
which is impossible by definition of T . Thus, whatever arms are chosen, we always have T > n, and we can apply Lemmas 7 and 8 at time n and obtain

C n-1 - n t=1 g It,t ≤ c 1 √ nK + a(a + b) 2 n-1 t=1 S t , with S t = ψ ′ ( GIt,t-1 -C t-1 ) ψ( GIt,t-1 -C t-1 ) 2 . Now from (4), we have C n-1 ≥ max i=1,...,K Gi,n-1 , hence EC n-1 ≥ max i E Gi,n-1 = max i E n-1 t=1 g i,t ,
where we have used that the estimated gains are unbiased estimates of the true gains. Thus we have

R n ≤ 1 + c 1 √ nK + a(a + b) 2 n-1 t=1 ES t .
We can now write

ES t = E E It∼pt ψ ′ ( GIt,t-1 -C t-1 ) p It,t ψ( GIt,t-1 -C t-1 ) = E K i=1 ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) ,
which concludes the proof of the lemma.

We now use the particular choice of the function ψ given in Theorem 4. Let α = (9 √ qnK) q /K and β = q q 2(q-1) / √ nK. Thus we have ψ(x) = α (-x) q + β. We can assume that 37

1 -1/q qnK ≤ n, (27) 
since, otherwise, Theorem 4 is trivially true. We want to prove that the conditions of lemma 9 are satisfied with a = 3/2, b = 2, c 2 = 1/9, c 1 = 36 √ q 1-1/q and c = 18

√ e 1 1-1/q . First, we need to verify that condition (3) holds. The function ψ is indeed increasing and continuously differentiable. It is also easy to prove that ψ ′ /ψ is increasing. The only nontrivial part is to prove lim u→-∞ ψ(u) = β < 1/K. We have q q 2(q-1) = √ q exp log q 2(q-1) ≤ √ eq. Thus we have β ≤ eq nK . But by ( 27) we know that qK/n ≤ 1 37 ≤ 1 2 √ e and thus β ≤ 1 2K . We will now check that ( 21) -( 26) hold.

Inequality (21). The right side of ( 21) is upper bounded by

1.3 + √ q 36 1-1/q K n + 3 K n and c is lower bounded by 10.8. We trivially have 3 K n ≤ 3 K/n ≤ 3 √ q 1-1/q K/n. Thus (21) holds if 9.5 ≥ 39 √ q 1-1/q
K/n and, from (27), this is true.

Inequality (22). Inequality ( 22) is implied by β ≤ 1/(2K) and α/(cn) q ≤ 1/(2K). We already proved that the first inequality is true. The second inequality boils down to

qnK ≤ 1 √ e n 1 -1/q ,
which is true from (27).

Inequality ( 23). We have -ψ -1 (x) = α

x-β

1/q . Thus - K i=1 q i ψ -1 (q i ) = - K i=1 βψ -1 (q i ) - K i=1 (q i -β)ψ -1 (q i ) ≤ βcnK + α 1/q K i=1 (q i -β) 1-1/q
since q i ≥ ψ(-cn). From Holder's inequality, we get

K i=1 (q i -β) q-1 q ≤ K 1/q K i=1 (q i -β) q-1 q ≤ K 1/q .
We also need the following computations:

- K i=1 1/K qi ψ -1 (u)du = K i=1 1/K qi α u -β 1/q du = K i=1 α 1/q (u -β) 1-1/q 1 -1/q 1/K qi ≤ K α 1/q 1 -1/q 1 K 1-1/q = (αK) 1/q 1 -1/q since q i ≥ ψ(-cn) ≥ β and β ≤ 1/K.
Hence we need to verify that

c 1 √ nK ≥ βcnK + (αK) 1/q + (αK) 1/q /(1 -1/q),
which is true with our particular values.

Inequality (24). For any positive real numbers x, y, we have x + y ≥ max(x, y) ≥ x q-1 2q y q+1 2q , hence

ψ 2 (x) = α (-x) q + β 2 ≥ β q-1 q α (-x) q q+1 q
= (αβ q-1 ) 1/q α (-x) q+1 = (αβ q-1 ) 1/q q ψ ′ (x).

With our particular values, we have (αβ q-1 ) 1/q = 9q (n/K) 1/q ≥ 9q and thus ( 24) is satisfied with c 2 = 1/9.

Inequality (25). We have

ψ ′ (x) ψ ′ (x + 1/ψ(x)) = 1 - 1 -xψ(x) q+1 , and 
-xψ(x) = α (-x) q-1 + (-xβ)
≥ (αβ q-1 ) 1/q (q -1) 1/q + (q -1) 1/q-1 ≥ (αβ q-1 ) 1/q ≥ 9q.

Consequently, we have

ψ ′ (x) ψ ′ (x + 1/ψ(x)) ≥ 1 - 1 9q q+1 . Now since (1 -1/u) u-1 ≥ e -1 for any u ≥ 1, we have 1 - 1 9q q-1 ≥ 1 - 1 9q (9q-1)/9
≥ e -1/9 .

In particular, we have

ψ ′ x + 1 ψ(x) ≤ e 1/9 1 - 1 9q -2 ψ ′ (x) ≤ 3 2 ψ ′ (x),
and thus inequality ( 25) is satisfied with a = 3/2.

Inequality (26). We have

ψ ′ (x) ψ ′ (x -ab ψ(x) ) ≤ 1 + ab 9q q+1 ≤ exp q + 1 9q ab ≤ e 2 9 ab
where we have used log(1 + x) ≤ x. Now for a = 3/2 and b = 2, the last term is upper bounded by b, hence (26) holds.

Application of Lemma 9. One can easily check that ψ ′ (x) ψ(x) ≤ q α 1/q ψ(x) 1/q .

Thus with Holder's inequality we get

n-1 t=1 K i=1 ψ ′ ( Gi,t-1 -C t-1 ) ψ( Gi,t-1 -C t-1 ) ≤ qn α 1/q K 1-1/q = √ qnK 9 .
Then we have

R n ≤ 1 + 36 √ qnK 1 -1/q + 21 √ qnK 72 ≤ 37 1 -1/q qnK.

C Proof of Theorem 5

We follow the steps described in the sketch of proof given right after Theorem 5. We may assume µ 1 ≥ . . . ≥ µ K .

First step: Decoupling the arms. For an arm k 0 , we trivially have

K k=1 ∆ k T k (n) ≤ n∆ k0 + K k=k0+1 ∆ k T k (n). Let ∆ K+1 = +∞, z k = µ 1 -∆ k 2 for k 0 < k ≤ K + 1 and z k0 = +∞. Define Z = min 1≤s≤n B 1,s , and W j,k = 1 Z∈[zj+1,zj ) ∆ k T k (n).
We have

K k=k0+1 ∆ k T k (n) = K k=k0+1 K j=k0 W j,k = K j=k0 j k=k0+1 W j,k + K j=k0 K k=j+1 W j,k . ( 28 
)
An Abel transformation takes care of the first sum of (28):

K j=k0 j k=k0+1 W j,k ≤ K j=k0 1 Z∈[zj+1,zj ) n∆ j = n∆ k0 + n K j=k0+1 1 Z<zj (∆ j -∆ j-1 ). ( 29 
)
To bound the second sum of (28), we introduce the stopping times τ k = min{t : B k,t < z k } and remark that, by definition of MOSS, we have {Z ≥ z k } ⊂ {T k (n) ≤ τ k }, since once we have pulled τ k times arm k its index will always be lower than the index of arm 1. This implies

K j=k0 K k=j+1 W j,k = K k=k0+1 k-1 j=k0 W j,k = K k=k0+1 1 Z≥z k ∆ k T k (n) ≤ K k=k0+1 τ k ∆ k . (30) 
Combining ( 28), ( 29) and ( 30) and taking the expectation, we get

R n ≤ 2n∆ k0 + K k=k0+1 ∆ k Eτ k + n K k=k0+1 P(Z < z k )(∆ k -∆ k-1 ). (31) 
Let δ 0 = e 1/16 K n and set k 0 such that ∆ k0 ≤ δ 0 < ∆ k0+1 .

Second step: Bounding

Eτ k for k 0 + 1 ≤ k ≤ K. Let log + (x) = max(log(x), 0). For ℓ 0 ∈ N, we have Eτ k -ℓ 0 = +∞ ℓ=0 P(τ k > ℓ) -ℓ 0 (32) ≤ +∞ ℓ=ℓ0 P(τ k > ℓ) = +∞ ℓ=ℓ0 P(∀t ≤ ℓ, B k,t > z k ) ≤ +∞ ℓ=ℓ0 P X k,ℓ -µ k ≥ ∆ k 2 - log + (n/Kℓ) ℓ .
Now let us take ℓ 0 = ⌈8 log n K ∆ 2 k /∆ 2 k ⌉ with ⌈x⌉ the smallest integer larger than x. For ℓ ≥ ℓ 0 , since k > k 0 , we have ℓ ≥ ∆ -2 k , and thus 8 log

+ (n/(Kℓ)) ≤ ℓ∆ 2 k , hence ∆ k 2 - log + (n/(Kℓ)) ℓ ≥ ∆ k 2 - ∆ k √ 8 = c∆ k , with c = 1 2 -1 √ 8
. Therefore, by using Hoeffding's inequality and (32), we get

Eτ k -ℓ 0 ≤ +∞ ℓ=ℓ0 P X k,ℓ -µ k ≥ c∆ k ≤ +∞ ℓ=ℓ0 exp -2ℓ(c∆ k ) 2 = exp -2ℓ 0 (c∆ k ) 2 1 -exp (-2(c∆ k ) 2 ) ≤ 1 1 -exp (-2c 2 ∆ 2 k ) . ( 33 
)
Plugging the value of ℓ 0 , we obtain

∆ k Eτ k ≤ ∆ k 1 + 8 log n K ∆ 2 k ∆ 2 k + ∆ k 1 -exp (-2c 2 ∆ 2 k ) ≤ 1 + 8 log n K ∆ 2 k ∆ k + 1 2c 2 (1 -c 2 )∆ k , (34) 
where the last step uses that, since 1 -exp(-x) ≥ x -x 2 /2 for any x ≥ 0, we have

1 1 -exp (-2c 2 ∆ 2 k ) ≤ 1 2c 2 ∆ 2 k -2c 4 ∆ 4 k ≤ 1 2c 2 ∆ 2 k (1 -c 2 ) It is routine to check that 2 e n K is the maximum of x → x -1 log n K x 2
. By using ∆ k ≥ e 1/16 K/n, we finally get

K max k>k0 ∆ k Eτ k ≤ K + 16 e + e -1/16 2c 2 (1 -c 2 ) √ nK ≤ K + 28.3 √ nK. (35) 
Third step: Bounding n

K k=k0+1 P(Z < z k )(∆ k -∆ k-1 ).
Let X t denote the reward obtained by arm 1 when it is drawn for the t-th time. The random variables X 1 , X 2 , . . . are i.i.d. so that we have the maximal inequality (Hoeffding, 1963, inequality (2.17)): for any x > 0 and m ≥ 1,

P ∃s ∈ {1, . . . , m}, s t=1 (µ 1 -X t ) > x ≤ exp - 2x 2 m . Since z k = µ 1 -∆ k /2 and since u → P (Z < µ 1 -u/2) is a nonincreasing function, we have K k=k0+1 P(Z < z k )(∆ k -∆ k-1 ) ≤ δ 0 -∆ k0 + 1 δ0 P Z < µ 1 - u 2 du.
For a fixed u ∈ [δ 0 , 1] and f (u) = 8 log n K u /u 2 , we have

P Z < µ 1 - 1 2 u = P ∃1 ≤ s ≤ n : s t=1 (µ 1 -X t ) > s log + n Ks + su 2 ≤ P ∃1 ≤ s ≤ f (u) : s t=1 (µ 1 -X t ) > s log n Ks + P ∃f (u) < s ≤ n : s t=1 (µ 1 -X t ) > su 2 .
For the first term we use a peeling argument with a geometric grid of the from 1 2 ℓ+1 f (u) ≤ s ≤ 1 2 ℓ f (u):

P ∃1 ≤ s ≤ f (u) : s t=1 (µ 1 -X t ) > s log n Ks ≤ +∞ ℓ=0 P ∃ 1 2 ℓ+1 f (u) ≤ s ≤ 1 2 ℓ f (u) : s t=1 (µ 1 -X t ) > f (u) 2 ℓ+1 log n2 ℓ Kf (u) ≤ +∞ ℓ=0 exp   -2 f (u) 1 2 ℓ+1 log n2 ℓ Kf (u) f (u) 1 2 ℓ   = +∞ ℓ=0 Kf (u) n 1 2 ℓ = 2 Kf (u) n .
We integrate f (u) now: For the second term we also use a peeling argument but with a geometric grid of the form 2 ℓ f (u) ≤ s ≤ 2 ℓ+1 f (u):

P ∃s ∈{⌈f (u)⌉, . . . , n} : From the choice of f (u), this last term is upper bounded by 1 nu 2 /K-1 . Again we need to integrate this quantity. It is easy to show that

1 δ0 1 nu 2 /K -1 du ≤ 1 2 log e 1/16 + 1 e 1/16 -1 K n .
All in all, we have n

K k=k0+1 P(Z < z k )(∆ k -∆ k-1 )
≤ n(δ 0 -∆ k0 ) + 17e 

D Proof of Theorem 6

Without loss of generality, we again assume: µ 1 ≥ . . . ≥ µ K , and use the notation of the proof of Theorem 5. In particular, we recall that z k = µ 1 -∆ k 2 , Z = min 1≤s≤n B 1,s , and τ k = min{t : B k,t < z k }. This time, we use k 0 such that ∆ k0 ≤ δ 0 < ∆ k0+1 with δ 0 = 2 K/n. We start with the following weakened version of (31):

R n ≤ 2n∆ k0 + K k=k0+1 ∆ k Eτ k + nP(Z < z k ) . (37)
Consider k > k 0 . From (34), we have

∆ k Eτ k ≤ 1 + 8 log n∆ 2 k /K ∆ k + 24 ∆ k . Now we have n K ∆ 2 k ≥ 4, hence ∆ k Eτ k ≤ 27 log(n∆ 2 k /K) ∆ k .
For the last term in (37), we use the same cutting scheme and peeling argument as in the third step of the previous proof except that we take u = ∆ k and replace f (u) with v = 4 log(n∆ 2 k /K) ∆ 2 k . Introducing

A 1 = P ∃1 ≤ s ≤ v : s t=1 (µ 1 -X t ) > s log n Ks ,
and

A 2 = P ∃v < s ≤ n : s t=1 (µ 1 -X t ) > su 2 ,
we have

P (Z < z k ) ≤ A 1 + A 2 .
The first peeling argument with a geometric grid of the from

1 2 ℓ+1 v ≤ s ≤ 1 2 ℓ v gives A 1 ≤ 2 Kv n = 8K log(n∆ 2 k /K) n∆ 2 k .
The second peeling argument with a geometric grid of the form 2 ℓ v ≤ s ≤ 2 ℓ+1 v gives

A 2 ≤ 1 exp (vu 2 /4) -1 = 1 n∆ 2 k /K -1 ≤ 4K 3n∆ 2 k ,
where we again use n K ∆ 2 k ≥ 4. By combining the previous inequalities, we get n∆ k P (Z < z k ) ≤ 9K log(n∆ 2 k /K) ∆ k .

Since ∆ k0 ≤ 2 K/n, by plugging the previous results in (37), we obtain

R n ≤ 8K ∆ k0 1 ∆ k 0 >0 + K k=k0+1 (27 + 9K) log(n∆ 2 k /K) ∆ k ≤ 23K k:∆ k >0
max(log(n∆ 2 k /K), 1) ∆ k .

Figure 1 :

 1 Figure 1: A known policy for the adversarial case.
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  To conclude, the following table summarizes the regret upper bounds of the policies discussed in this paper. The bounds for MOSS and UCB1 hold in the stochastic setting only. The bounds for INF and EXP3 hold in the adversarial setting (and thus also in the stochastic case).
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	UCB1	min	√	nK log n , i:∆i>0	log n ∆i
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	Table 1: regret upper bounds (up to a numerical constant factor)
	for different policies in the multi-armed bandit problem.

whereas, for UCB1 and γ = √ log n, the best known bound contains a √ log n factor.

  Now, if K ≥ n/49 2 , we have 49 √ nK ≥ n ≥ R n .On the other hand, if K < n/49 2 then we also have R n ≤ 49

	-1/16 + √ nK. ≤ n(δ 0 -∆ k0 ) + 17.8 Combining (31), (35) and (36), we get that 1 2 log e 1/16 + 1 e 1/16 -1 R n ≤ 48.3 √ nK + K.	√ (36) nK
	since K < 1 49	√	nK.	√	nK
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