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Abstract

The macroscopic strength properties of a purelyesnie soil reinforced by a periodic
distribution of “stone columns” made of a highlycfional granular material are investigated in a
rigorous way on the basis of the yield design hoamiation approach. Starting from a first crude
lower bound approximation to the macroscopic stitemgiterion of the stone column reinforced
soil, a much more accurate failure surface is tthe&wn in the space of stresses as a result of a
series of numerical elastoplastic simulations peréx on the reinforced soil unit cell subject to
radial strain controlled loading paths. The anigoit characteristics of the so obtained original
criterion are then highlighted by means of its egpntation in the Mohr plane attached to any
oriented facet. The paper concludes with a fitasifative implementation of the method on the
derivation of an upper bound estimate for the wtenbearing capacity of a stone column

reinforced foundation.

Key words: yield design; periodic homogenization; macroscairength criterion; reinforced

soil; stone column; load bearing capacity.



1. Introduction

Many attempts have been made over at least thalpdagtyears to predict the overall strength
properties of fiber or inclusion-reinforced compgesnaterials from the knowledge of the strength
characteristics of their individual components (xaand reinforcement) along with such key
parameters as the reinforcement volume fractiofierReg more specifically to the limit analysis
or yield design method applied to periodic medmg, fundamentals of which have been laid by
Suquet (1985) in a general framework or de Buh&@8@) in the context of reinforced soil
mechanics, the macroscopic strength condition dfi semposites are derived from the solution to

a yield design boundary value problem relativehesunit periodic cell.

In the particular situation when the fiber volumraction is small, whereas the reinforcing
material (metal or concrete) exhibits considerdbgher strength characteristics than those of the
matrix (soil in the case of inclusion-reinforcedls) a quite simplified, but exact, formulation of
the macroscopic strength condition may be obtairsske for instance McLaughlin (1972),
Majamdar and McLaughlin (1975), de Buhan and Salend987) or de Buhan and Taliercio
(1991). As regards engineering applications infigld of geomechanics, this criterion has proved
particularly convenient for describing the globakagth anisotropy of reinforced earth and thus
provide a rational basis for stability analysesstiictures: Sawicki (1983), de Buhah al
(1989), Sawicki and Lesniewska (1989), di Priscal atova (1993), Abdiet al (1994),
Michalowski and Zhao (1995), Michalowski (1997).

Unfortunately, this simplified criterion is not ajpriate to describe the macroscopic yield
strength of soft foundation soils reinforced byimgtical inclusions or columns, since the two
above mentioned conditions are not satisfied. lddaecording to this type of soil improvement
technique, the volume fraction of the columns (aalted substitution factor) may range between
10% to 40%, while at the same time, the strengbipgnties of the column material are higher, but
remain of the same order as those of the soil. @ensg for instance a soft clayey foundation
soil, two subcategories of reinforcement techniguesolumns may be envisaged, depending on

the kind of column material to be used.

The so called “lime column” reinforcement techniqiBeoms, 1982) consists in mixing the
weak soil mass with a given percentage of limeimeicement, thus providing an important
increase of the solil initial shear strength (uR@times) along with a relatively small friction
angle, which can be neglected as a first approxamatt this case, where both constituents are



modeled as purely cohesive materials. bbey Tresca or von Mises conditions), the macrascop
strength criterion is of the purely cohesive, buisatropic kind, with the column orientation as
symmetry axis. A fairly accurate closed form expias of this criterion can be derived and then
incorporated into yield design calculations of feined soil structures with no particular
difficulty (Jellali et al, 2005, 2011).

The second main category is the “stone column’riggle, where the reinforcing material is a
vibrocompacted granular material or ballast exmpithigh frictional properties with a negligible
cohesion (Priebe, 1995). The strength of the columaterial is adequately described by a Mohr-
Coulomb (or Drucker-Prager) criterion and the goesmay then arise as to how the soil is
actually strengthened by the stone columns. Thiblpm is illustrated in Figure 1, where the
Tresca (respectively Mohr-Coulomb) criterion addpfer the soil (respectively column material)
is represented as an intrinsic curve drawn in tldaplane. As can be immediately seen from this
Figure, the purely frictional column material is mgesistant than the initial purely cohesive soil

for large compressive normal stresses, but offargistance no resistance at all to tensile stsesse

A
stone column

|friction angle =~

Figure 1. Representation of the soil and stonengolatrength criteria in the Mohr plane

A sufficiently accurate and reliable knowledge ¢ie tmacroscopic strength criterion is
therefore needed for assessing the actual reinfpeffect to be expected from installing frictional
columnar inclusions into the purely cohesive soft. §he present contribution is devoted to this
task, striving to derive in a rigorous way the nescopic strength condition on the basis of the

yield design homogenization method for periodic raed



2. Stability analysis of stone column-reinfor ced soil structures: a challenging issue

2.1. Yield strength properties of soil and columaterials
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Figure 2. &) stone column reinforced soil ang) fepresentative unit cell

A stone column-reinforced soil as sketched in Feg2imay be perceived as a “geo-composite”
material, made of a regular array of cylindricaluconar inclusions embedded into the soil mass.

The strength properties of each component of swngposite may be described as follows.

a) The native soil is generally a purely cohesio# slay, the strength condition of which will

be described bywon Misesyield condition of the form:
f*(g)=41/2s:s-k Q)
wheres denotes the deviatoric stress &ndeld strength under pure shear conditions.

b) Likewise, the column constituent material is @rgby frictional granular soil or ballast

obeying aDrucker-Pragerstrength criterion of the form:

sing

\ 3(B+sin’ @)

where ¢ represents the friction angle. It is worth notithgit the above formulation has been

+

[[X7)

f(o)= %g: tro<0 (2)

chosen in such a way that the Drucker-Prager mitetzoincides, under plane strain conditions,

with the classical Mohr-Coulomb criterion assoalatéth the same friction angke



2.2. Implementation of the upper bound kinematjragch: a tricky problem

The stability analysis of stone column reinforcédictures can be performed in the context of
the yield design (or limit analysis) framework dretbasis of the previously introduced strength
conditions adopted for the soil and the columnspeetively. According to this theory (see
Salencon (1990), for more details), the stabilitygach a structure is ensured if one can exhibit a

stress fieldg in equilibrium with the loading (statically admiske), while satisfying the strength

condition of the different constituents at any poin

Uo staticallyadmissible
Stability = ¢ f*(g) < 0 in thesoll (3)
f°(g)< 0 in thecolumns

The dualisation of the equilibrium conditions byane of the virtual work principle leads to
the much more frequently employed upper bound katemmethod, as opposed to the lower
bound static one derived from definition (3). Tmethod is based on considering virtual velocity
fields (“failure mechanisms”) such as those dispthjor instance in Figure 3, where rigid body
moving blocks, separated by velocity jump surfaees involved. The extreme difficulty to
perform the upper bound kinematic approach will noevexplained on this particular class of

failure mechanisms.
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Figure 3: Yield design of stone column reinforced structures making use of the upper bound

kinematic method:d) rotational andlf) translational failure mechanisms



Indeed, a key ingredient to the kinematic methogield design is the so-called “maximum

resisting work”, defined as follows in the casen@chanisms based on discontinuity surfaces:

W, (U) = [ (n; [U]) d= @)

where U] represents the velocity jump when crossing tteeattinuity surface along its unit
normal n. According to the kinematic approach of yield desia necessary condition for the
structure to remain stable in the sense define(@hyis that the work developed by the external
forces (loading) in any velocity field remains laviean or equal to the maximum resisting work
(4). The expression of the support functmappearing in (4) is completely different dependamng

whether the velocity jump is located in the soilrothe column.

a) Since the native soil is purely cohesive, theogy jump must be tangential to the
discontinuity surface (figure 4)) leading to the classical following expressionr fthe

corresponding support function:

K] if [Uln=0
+ 0 otherwise

o= ©
b) As regards a velocity jump located in the purilgtional column material, this support

function becomes:

0 if [Uln=[U]sing
+ 0 otherwise

#(n,[u]):{ ©)

which means that the velocity jump must be incliaé@n angle larger thah with respect to the

discontinuity surface, as shown in Figure)4(

Velocity jumps complying with the kinematic conditis contained in (5) and (6), for which the
support functions take finite values, are saiddd'ielevant” (Salencon, 1990). This terminology
simply means that “irrelevant” velocity jumps woupdoduce infinite values for the support
function and thus for the maximum resisting work (dading to infinite upper bound values, that
is providing no information as regards the stap#ibhalysis of the structure. Referring to the more
conventional plastic limit analysis, where the sgith criterion is a plastic yield condition, such
purely mathematical conditions are perfectly egeintito saying that the velocity jumps and

associated failure mechanisms are “plastically adiie”.



Let us now consider a velocity jump surfaceunning through the composite reinforced soil as
sketched in Figure 4). It follows from (5) that the velocity jump has be tangential to the
surface at any point of its intersectiag with the soil, while, according to (6), it shoubth the
contrary make an angle at least equap,tat any point of its intersectiany, with the column. This
is obviously feasible for a soil reinforced by tthes or layers perpendicular to the plane of
motion, the transverse cross section of the diswoity surface being a piecewise linear or
“broken” line as drawn in Figure dY, constructed in such a way that the velocity jsmgmain

relevant in the soil and the reinforcing trench.

" reinforcing
., trench

(©) (d)

Figure 4. Relevant velocity jump surfaces). if the soil; b) the reinforcementc] a stone column

reinforced soil; @) a trench reinforced soil

On the other hand, in the case of a stone colurimioreed soil, the construction of such
relevant failure surfaces and associated mechamsaves hardly feasible, if not impossible: to
the Authors’ knowledge, no such relevant mecharswe been exhibited so far. It is primarily
due to the three-dimensional configuration of ttene column reinforcement as suggested by
Figure 4€). This dead end clearly undermines the very userof upper bound kinematic
approach for analyzing the stability of this kinél reinforced soil structure, in the rigorous
framework of the yield design theory. As it will lmeen now, this major difficulty can be
overcome, by resorting to the vyield design homagmion method, where the composite

reinforced soil will be treated as homogeneousadrapic medium.



3 Outline of the periodic homogenization method

3.1. Macroscopic strength condition

The basic features of the periodic homogenizaticethod aimed at solving yield design
problems, such as that formulated in the previagsian, are briefly outlined in this section. A
detailed presentation may be found in Suquet (1985Buhan (1986), de Buhahal (1987), de
Buhan and Taliercio (1991) or more recently Jelilial. (2005, 2011) focusing on column

reinforced soils.

Owing to the fact that the reinforcing columns alistributed throughout the soil mass
following a regular pattern (Figure &j, the reinforced ground may be perceived as &dgier
composite material, the morphology of which is eatyi described by a unit cef” of sides
(spacing between two neighbouring columns). Thig gell contains one single reinforcing
column of radiug surrounded by the native soil (Figurd@( Thereinforcement volume fraction
(also called replacement ratio) is classically niedi as the ratio between the volume occupied by

the column and the volume of the unit cell:

2

n="2 7)

SZ

In practice, the value of this parameter ranges fitwee 10% and 40%.

The homogenization method stems from the intuitdea that, in the formulation of a yield
design problem, the composite reinforced soil canrdplaced by an equivalent homogeneous
medium, the strength properties of which being Sigelcby means of anacroscopic strength

criterion. An important result of this method states thas$ timacroscopic can be derived from
solving a yield design problem attached to the gelt £ and calledauxiliary problem More
specifically, the macroscopic strength criterionlédined as follows:
g staticallyadmissiblewith =
F(2)<0 = (8)
nEnce, t9(c°(§))<o
where &, is the unit cell sub-domain occupied by constitugiit for columnor s for soil) and

f9(.) its yield strength function given by either (1)(@). A stress fields is statically admissible

with a macroscopic stregsif it complies with the following conditions:

= g isin equilibrium with no body forces:



divg =0 (9)

= the stress vector remains continuous across ansibb@sdiscontinuity surfaces of the

stress field:

where [g] denotes the jump af across such a surface following its unit normal

= g.n is anti-periodic which means that it takes opposite values atcuple of points

located on the opposite sides of the unit cell.
= 3 is equal to the volume averageabver the unit cell:

1

Iz
- [

Ig d¢ =(g) (11)

3.2. Lower bound approximation to the plane straimcroscopic strength condition

A first lower bound approximation to the strengitnthin may be obtained from performing
the static approach of yield design, that is immatmg definition (8) using piecewise
homogeneous stress field, as it has previously Heaa in Jellalet al. (2005) for purely cohesive
reinforcing columns or by Jellasit al (2007) in the case of a column material obeyirngadar-

Coulomb condition.

Looking forward to performing the stability analyssf plane strain problems, our analysis is

now focused on the determination of the macroscepingth criterion subject folane strain

conditionsin the Oxy-plane (Figure 2). Denoting bz the two-dimensional tensor formed by the

components of a macroscopic stress teRsartheOxy-plane:

M1

=2.ele , i,]=XYy 12)

ij =i

the two-dimensional plane strain macroscopic camdidssociated with the three-dimensional one

(8) writes:

FE =min{FE+3,.e 0e)}<0 (13)

The following class of piecewise constant streski$ is now considered, defined as:



0
0 (14)
2

in the sub-domais of the unit cell occupied by the soil, and:

Z><>< Xy 0
o°=|z, o}, O (15)
0 0 =

Y4

in the columnc,

It can be easily verified that any such stresslfiglstatically admissible (in the sense specified

in the previous sectiod.1) with the following macroscopic state of stress:

1=z.elUe+x e e+ e le +Z (e le +telUe) (16)
where, on account of (11):
s, =(0,)=no.,+@1-n)o, (17)

For the particular states of stress defined by &) (15), the strength conditions of the soil (1)
and column material (2) may be put in the followfogm:

a=sc:f(g")<0 - o, (2,.2,2,)<0, <0, (3,.2,2,) (18)
so that on account of (17):
(1-mo,, +no,, <z, < (1-n)o;, +no,, (29)
Consequently the set of stresg2sg,,2, ,Z,, be)onging to the segment:
20 (00 Z,y) = max{1-17)as; +70%; )
5,53 ] with | T o (20)

2 (Ea L) =in{A-), +7}

will obviously satisfy the macroscopic strength dibion. The above optimization procedures are

carried out numerically.

As an illustrative example, the corresponding yistcength surface has been drawn in the
space of non dimensional macroscopic stres&ggk ( Z./k, Zy/k) for the following typical

values:

10



p=035-7=28% ; $=35 (21)
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Figure 5: Lower bound estimate for the macroscsepiength domain under plane strain

conditions: representation in thB, Xy, X,,)-space.

Figure 56) pictures such a surface, in the form of its cresstions by planes of constant non
dimensional shear streZg/k varying between -1 and 1. Figureop(lisplays the particular cross
section obtained for zero shear stress (shadeg, aseavell as those corresponding to the soil and

the column material.

3.3. Representation in the Mohr plane

Let us consider a facet in the homogenized reiefbrsoil, with outwards unit normat
oriented at an angle with respect to the direction of reinforcemény (Figure 6). The normal

> and sheall components generated on this facet by a macrosstpi&s statg are given by:

=nZIn , T=tin (22)

where t =g, In. An alternative, and particularly illustrative presentation of the above lower

bound estimate of the macroscopic condition cosgmstietermining for any given oriented facet,

the convex envelope of the allowable stress veetctiag upon this facet, defined as:

11



6" (a)={(, T);Fe©) <0 (23)

whereF®(.) is the yield strength function associated with previously determined lower bound

approximation.

homogenization

IS NN
/. 3 || W'

Figure 6. Normal and shear macroscopic stress coemi® acting upon an oriented facet in the

homogenized reinforced soll

The results of the analysis are presented in Figushowing the strength domaé®(a) for
differently oriented facets, the axes of the Molanp being put in non dimensional form. Figure 8
provides another representation, where the diffesmength domains have been gathered in the

same Mohr plane.
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Figure 7: Representation in the Mohr plane of tveer bound approximation to the macroscopic

strength condition for different facet orientations

These results deserve two comments.

a) The fact that the strength domaé® in the Mohr plane strongly depends on the facet

orientationa, as it is quite apparent from both Figures 7 ansh®uld be clearly attributed to the
anisotropic strength characteristics of the homogenized retefbrsoil, due to the preferential
orientation of the reinforcing columns. The macogsc strength condition (or at least its lower
bound approximation) is therefore of a genenalotropic cohesive-frictionatind, that is in no
way reducible to a classical Mohr-Coulomb criterion even to any “intrinsic curve” type

criterion.

13
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Figure 8. Representation of the yield strength esidetermined from the lower bound

approximation to the macroscopic strength condition

b) The boundary line of each domagh® exhibits an angular vertex lying on a circle in the

Mohr plane (dashed circle in Figure 8). Indeedheafcthese vertices corresponds to the end point
of the stress vector generated on the inclined fagéhe following particular macroscopic stress:

T =no°+@1-n)o® with g =0~ 1"(g)=0 (24)
o ,7= ,7 = gszik\/ggyljgy — fs(gs):o

that is:

3=@1-n)k3e,Oe, (25)

which therefore complies with the macroscopic gjtlertondition. The corresponding normal and

shear stresses on a facet are given by (22):
2z (a)= (1—/7)k§ (L+cos2a) ; T(a) = (1—/7)k§sin20 (26)

The locus of points3(,, T)(a) for a ranging from -90° to +90° is therefore the circferadius

(1-mk~/3/2 and centre ((3)k~/3/2, 0) as shown in Figure 9.

14
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Figure 9: Locus of5®(a) vertices in the Mohr plane
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4 An improved evaluation of the macroscopic strength criterion

As it can be observed from Figure 5, the previoustyained lower bound approximation
predicts that the strength of stone column reirgdrsoil subject for instance to a uniaxial tensile
stress along th®x-direction, would be equal to zero, and more gdhetiaat the reinforced soil
could not withstand any tensile stress componemrigathis direction ,<0). This appears to
clearly underestimate the actual strength of thrdaeced soil, since it is to be expected that,reve
in the absence of any reinforcing column, the surding cohesive soil alone would offer some
resistance to such a solicitation. The objectivehef present section is to derive a significantly
improved estimate for the reinforced soil macroscogirength by resorting to a numerical

approach to the problem.

4.1. Macroscopic yield surface as a result of aastlplastic procedure

The determination of the macroscopic strength damrdiand notably of its boundary vyield
surface in the stress space is carried out by me&ns numerical elastoplastic procedure
performed on the reinforced soil unit cedl leading to the evaluation of limit loads along

prescribed loading paths. More precisely, the oglitis subject to a plane strain controlled radial

loading path. This means that a macroscopic stfaine form:

15



cosysino cosd O
C(t) = A(t)A with A(y,9)=| cosd  sinysind O (27)
0 0 0

Is prescribed to the unit cell, whet&) is a scalar multiplier increased from zero toni@ximum
value corresponding to the limit load, while angjesnd o specify the orientation of the radial

loading in the space of plane strains in@herplane (Figure 10).

lyié 0 4] =1
Z (O3> X
/
74

Figure 10: Angular parameterization of the plamaistcontrolled radial loading path of the unit

cell

According to the periodic homogenization method lemented in the context of an
elastoplastic behaviour (Suquet, 1985; Abdelkrind a@e Buhan, 2007), the solution of the

elastoplastic auxiliary problem consists in findatgeach time of the loading path:

a) a velocity field defined up to a rigid body matiby:
0EOC : u(é) = AL +V(E) (28)
wherev(¢$) is aperiodicfluctuation, so that:
(6(W))=0 - () =D (29)

b) a statically (and plastically) admissible permdiress fieldz associated in each point to the
velocity field through the elastoplastic constietibehaviour of the material located in this point;
the macroscopic stress defined by (11) represéetsesponse of the unit cell to the previously

defined strain loading path:

to[0,T]: O = AMA - {u), o)} - £(t) = (o (1)) (30)

16



stress path

Figure 11. Elastoplastic stress response to alrsitign controlled loading and associated limit

load

The corresponding loading path in the space ofsé®is pictured in Figure 11 with the limit
load Z"identified as the intersecting point with the macapic yield surface. Such limit loads are
characterized by the occurrence of an uncontaitetip flow mechanism on the unit cell, which
means that the stress field in equilibrium witfremains constant while the load multipliecan
be arbitrarily increased. The associated plastevffule being assumed for the elastoplastic
constituent materials at the microscopic scale,nlaeroscopic strain rate and th&ns outward

normal to the macroscopic yield surface at paint

_OF o, .
A=xy—(Z),x=0 31
A=x o% &)X (31)
As a direct consequence, the support function efrtfacroscopic yield strength condition

writes:

M) = sup(z:Ab=2":A (32)

F(Z)<0

so that following a given radial strain loadinglpatharacterised by its orientatidnup to plastic
flow failure, yields the limit loadz” as well as the evaluation of the support funcfionthe

macroscopic strength condition.

It is to be noted that such a limit load may naisefor certain orientations of the prescribed
macroscopic strain, that is for certain valuesrajles yand d, which means that the macroscopic
yield strength domain is unbounded in these dioestiand the value of the support function goes

to infinity.

17



4.2. F.e.m-based numerical treatment and results

Figure 12. Finite element model adopted for sohthreyauxiliary problem

The elastoplastic evolution problem defined onuh# cell has been dealt with using the finite
element code Cast3M (2003). Owing to the geométaicd material symmetries on the one hand,
the plane strain loading configuration on the othand, only one half of unit cell has to be
considered, where zero displacements al@agare prescribed on the sides parallel to Gher
plane (smooth contact). Moreover, the fact thatrttagerial properties are independent of yhe
coordinate, allows restricting the analysis to acé&S of arbitrary thickness. This implies in

practice that no particular mesh refinement is edeadong this direction, as shown in Figure 12.

The loading is applied by prescribipgriodicity conditions of the form (28) to the lateral sides
of the model normal to th@x-axis, as well as to the upper and lower sides abtmthe column
axis Oy. The direction of loading is modified by varyingnghes y and 0 with successive

increments of one degree.

It should be noted that arbitrary elastic propert@an be assigned in the finite element
calculations to the soil and column material singecording to a well-known result of limit
analysis, the limit loads, and thus in our casentlaeroscopic yield surface, does not depend on
those properties but exclusively on their yiel@sgth properties (soil shear strengtind column

friction angleg).

Figure 13 summarises the results of such numesigallations represented in exactly the same
form as that adopted in Figure 5 for the lower b@pproximation to the macroscopic yield

surface. A comparison with the latter approximati®miven in Figure 13, in the form of the

18



sections of the yield strength surfaces by theelzfrzero shear stress. It shows a quite significan

improvement of the numerical estimate, primarilghe region of tensile stresses.

5, /K 5 Ik

_4 1
02 0 ) BN 0
F NUM (Z) - 0

2 / // =k
: F®(2)=0
= //

Figure 13. 4): Numerical assessment of the macroscopic yie&hgth surface in the stress space;
(b): comparison with the lower bound approximation
4.3. Representation in the Mohr plane and suppeorttion for a velocity jump

Denoting byF"“"™ () the yield strength function associated with mluenerical evaluation of the
macroscopic strength condition (which is expectede very close to the exact criterion), the
domain of allowable stress vectors on any orietiéeet is defined in the same way as for the

lower bound approximation (s&e3.):
" (@) ={(=, T);F"™ ) =0} (33)
This domain can be alternatively characterized lepms of itsupport functiordefined as:

N (mV) = suplV(Z_ sinB+TcosB); (., T) D& (a)} (34)

(ZnT)

where vectoV can be interpreted as a virtual velocity jumpimatl at an angl@with the facet.

The equation of the tangent to the dom@8iti“(a) at point(Z,, T )(8 )is (Figure 14):

V(Z,sinB+T cosp) =N""(nV)=V(Z (B)sinB+T (B)cosp) (35)

19



so that&""M(a) may be drawn as the convex envelope of the familystraight lines (35)

depending on the angular parameier

B/ v
V(Z, sinB+T cosp)
5 :nNUM(D;\_/)
AN

n

Figure 14. Geometrical interpretation of the supfummction of 8*"(a)

Now this support function can be directly evaluatedn the previous numerical simulations.
Indeed, making use of the relations (22) as wedifatefinition (33), it can be rewritten as:
M (n;V) =sudZ:(VsinBnOn+V cospt On); F" (2) < 0}
: = =
=sudz: (v On);F™ (2) <0} =sudz:0; F* (2) <0} =" )
b = = =

(36)

where [0=1/2(n0OV +V 0 n) is a particular macroscopic plane strain rate e form (27)
explored in the above elastoplastic numerical satnahs, which depends on angkeand .
cosasin(f—-a) 1/2cos(B-2a) O

O(a,B) =V| L/2cos(f-2a) sinacosB-a) O (37)
0 0 0

Finite element elastoplastic simulations are tharsied out as follows. For each value of the
facet orientationa, ranging from 0° to 90°, the angfespecifying the direction of the velocity
jump is varied from 0° to 180°. Denoting BY(a, B) the computed value of the limit stress (if

existent) along this strain controlled path, thppsart function is calculated as:

n"“(n;v)=2'(a,8):0 (38)
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and the boundary line o “(a) is then drawn as the locus of poir®,,T')(8 o) as the

envelope of its tangent lines (Figure 14):

(Z.(B)-%,)sinB+(T"(B)~T)cosB =0 (39)

Pl

x| —
J‘h

Q
7\-|3M
= |-

ik
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Figure 15. Representation of the macroscopic stheergerion in the Mohr plane for different

facet orientations: comparison between numeridahases and lower bound approximations

The results of this procedure are representedguarés 15 for different values @f , where the
lower bound approximation is compared with the nucaé evaluation. This confirms that the
numerical procedure leads to significantly improestimates for the actual criterion, specifically
in the range of tensile normal stresses. Figureviiére all numerical results are gathered in the
same Mohr plane, shows the evolution of the yigtength curve as a function of the facet

orientation, which is a clear indicator of the fenged soil strength anisotropy.
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Figure 16. Macroscopic yield strength curves inNt@hr plane for different facet orientations
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This inherent strength anisotropy is further ilfateéd from calculating the value of the support

function relative to a velocity discontinuity, whiecnay be written as:
™" (n;V)=kvr™"(a, B) (40)

where7f""is a non dimensional function of angular parameteaind 5, represented in Figude.

1.8

1.6

num

0.8

0.6

0-4 T T T T T
0 30 60 90 120 150 180

Figure 17. Non dimensional value of the supportfiom for a velocity jump across differently

oriented facets

5 Application to the failure design of a stone column reinfor ced foundation

5.1. Problem statement

As a first illustrative application of the upperuma kinematic approach of yield design, using
the previously obtained numerical estimate of theforced soil macroscopic strength domain, the
following problem is considered. A soil layer oficknessH=20m and horizontal extension
L=80m is subject to vertical loading applied thowghgid strip footing of widttB=5m as shown

in Figure 18§). In order to enhance the load bearing capacithefsoil, a group of floating stone
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columns of length=15m placed beneath the footing has been incomaiato the soil following

a regular arrangement.

The native soil is a soft clay obeying a von Misdterion withk as strength parameter, while
the granular ballast of the reinforcing columnsysba Drucker-Prager strength condition with a
typical value of the friction angle equal #=35°. The reinforcement volume fraction is equal to

n C28% which corresponds to a column radjpequal to 0.3 the spacigbetween adjacent

columns. For the sake of simplicity, the role cd\gty is omitted in the subsequent analysis.

B=10m B=10m

1 1 1 1
1 1 1 1
1 1 1 1
: '+ 1 1
1
! Q=Q ! Q<Q.
........ om
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' et T, ' '
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[ 3 f il * 0 _— . _—
N R RS I Pt

[ =15m

< | =15m ‘J HH
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reinforced soil

iy

L N o Ll

L =80m ' L =80m

(@ ©)

Figure 18. Ultimate bearing capacity analysis sfane column reinforced foundatiom) {nitial

and p) homogenized problems

Denoting byQ the line density of load applied along the footings, theultimate load bearing
capacity of the foundation may be expressed as a functioa @aon dimensional parameter

£defined as the ratio between the columns spacargl the footing widtis:
Q<Q' (&) with e=s/B (41)

with all the other parameters being kept fixed. Viedd design homogenization method (Suquet,

1985; de Buhan, 1986) is based upon the followomyergence property:

imQ"(£)=QL, (42)
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Q... represents the ultimate bearing capacity of tbenogenizedproblem (Figure 18&)),

where the stone column reinforced ground has beetaged by an equivalent homogenous
medium obeying the previously determined macroscapiength criterion. Unlike the initial

problem, this homogenized problem can be dealt asth yield design plane strain problem

5.2. Analysis by the upper bound kinematic approach

An upper bound estimate fd@, is now searched by means of the yield design katiem
approach using the very simple failure mechanisrigfire 19. This mechanism is made of two
rectangular triangular blocks, involving three ey discontinuity lines. The triangular bIo@ 1
located under the footing, characterized by anglés given a velocityJ; inducing a velocity
jump inclined at angl¢g, with respect to the lower discontinuity lideC across the homogenized
reinforced soil. The second adjacent triangularclbl@ characterized by angle, is given a
uniform translation of vectdd,. The corresponding lower discontinuity liG® is located in the

purely cohesive native soil, so that the velocitpnp must remain tangential in order to yield a

finite value of the support function (see Eq. (5)).

2] D
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"
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A AL LL LA L L LSS S T - al

Figure 19. Rigid block failure mechanism used ia yield design kinematic approach

Such a mechanism involves a vertical discontintiitg BC between the two blocks with a
velocity jump equal to:

[Ll] f = le _Ql (43)
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and inclined at an anglg} with the vertical.

It turns out that the mechanism under consideratiary be entirely defined by four angular
parameters ,,a,, 3, 3’) along with the nornU; of the velocity of bloclﬂl. The hodograph of
velocities drawn in Figure 19, makes it then pdsstb calculate the norms of the velocity of
block@ as well as of that of the inter block vetpgump, through the following geometrical

relationships:

U, :UlcoS@l—ﬂl‘zﬁf) . UT zulsin(al+az ‘2,5’1) (44)
cos@, + f;) cos@, + B))

The virtual work of external forcescalculated per unit length along the footing axisthis

failure mechanism may be expressed as:
W,(U,,a;, B) =QU;sin(a, - ) (45)

On the other hand, since only velocity discontilesitare involved in this mechanism, the

maximum resisting wonkrites:

W, Uy U,) = [ 7N, Uy )ds+ [ mtnge [Ul)ds+ [ 7itng,, U, )ds

=ACm(n,.,U,) +BCr(ng, [Q]f) +CDm(ne,,U ) (46)
with
AC=B/cosa;,BC=Btana, andCD = Btana, /sina,

where n, denotes the normal unit vector to the discontinlime 1J. The different support

functions are calculated as follows.

= Along the segmer®D located in the soil where the velocity jutdpis tangential

k) =) Cos@.-B-5)
mDCD'L_JZ) - kUz - kUl COS@'Z +,812) (47)

= Along the segmerAC located in the homogenized reinforced zone, tippaed function

is given by (40):

Ny, Y,) =kU, 7 (a, B) (48)

= Finally, the third discontinuity lineBC being located at the interface between the

reinforced zone and the soil, the support funcigon
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2y 2 __num 2\ — Sin(al-'-az_ﬂl) um 2
n(DBC’[Ll]l) - k[U ]1”:1 (9001181 ) - kUl COS@'Z +,312) m (900’:81 ) (49)

Putting Egs. (46) to (49) together, one finallysget

W, (U..a.a,.B,5) = BkUw, (a,,a,. B, ) (50)

with

er(al’GZ’ﬁl’ﬁlz) =
08@1 + 0'2 ~ ﬂl) um 2 (51)
cos@, + 5) e A)

tana, cos@, - B, - 57) 1 C
. 1 1 1 5 1 + ﬂnum(a'l,ﬂl)+tana'1
sina, cos@, + ) cosa,

The application of the kinematic approach of yidibign to the homogenized problem states
that a necessary condition for the loading to rentalow the ultimate load bearing capacity

writes:
Q<Q,, = U, WU)sW, V) (52)

that is on account of (45) and (50) and after sificption by U;:

O(a,a,,8.8), Q. < AL CALAVNEY) (53)
sin(a, - )

The minimization of the so obtained upper bounchwéspect to the angular parametets
a,, B, and 37 is then performed numerically using the resultshef procedure described in the
previous section for the evaluation of functigt™. It thus leads to the following best upper bound
to be derived from the considered family of failanechanism:

Q.. < 715kB (54)

which corresponds to the following set of angulargoneters:
a,=46°, a, =35, B, =12, B =0° (55)
It is to be noted that the optimized mechanismssoaiated with a tangential velocity jump
B’ =0° across the discontinuity lin8C separating the two translating blocks. This meaas
the optimized upper bound would have been exab#ysame if th&C had been located in the

soil and non in the reinforced zone.
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The above upper bound estimate (54) is worth beorgpared with that obtained for a non
reinforced soil foundation, using the same classvofblocks failure mechanism. Indeed, in such

a case the upper bound estimate is:
Q' <6kB (56)

so that an increase of the load bearing capaaitypstl equal to 20% might be expected from the

reinforcement by stone columns.

6 Conclusion and per spectives

The feasibility of a yield design homogenizationtnoel aimed at overcoming the difficulties
inherent in a direct stability analysis of stonduocan reinforced soil structures, has been clearly
demonstrated in this contribution on a simple thasve example. This method relies upon the
preliminary formulation of a macroscopic strengtiitecion for the composite reinforced soll

regarded as an equivalent homogeneous, but arpsgtoontinuum.

The determination of this macroscopic strength d¢andis derived from the solution of a
specific yield design boundary value problem atéacko the reinforced soil unit representative
cell. A first qualitative assessment of this cieris obtained from a lower bound approximation
based on the consideration of piecewise constegdssfields defined on the unit cell. As a novel
result, an improved and much more accurate yiatdddhas then been drawn from elastoplastic

numerical simulations along radial strain contmlleading paths followed up to failure.

The resulting strength domain represented in theespf stresses shows that the stone column
reinforced soil exhibits both cohesive and fricabproperties, with a marked anisotropy due to
the preferential orientation of the reinforcing woins. This is further illustrated by drawing the
domain of allowable stresses in the Mohr planediierent facet orientations, which is perfectly
equivalent to calculating the support function tigla to a velocity jump in the homogenized
reinforced soil. The tabulated numerical valuesamigd for the latter function make it thus
possible to perform the kinematic approach of ymddign on the homogenized problem, leading
to an upper bound estimate for the reinforced fatind ultimate bearing capacity computed from

considering a very simple two blocks failure mechiam

The extension of the proposed yield design homag¢ion method to more complex failure
mechanisms likely to produce improved, and thusemeliable, stability analyses of stone column
reinforced soil structures highly depends on thet that the macroscopic strength condition
should remain easy to manipulate. Simplified clo®eoh expressions are therefore to be preferred
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to the quite cumbersome tabulated numerical valisesl so far. This sets the agenda of future
research works aimed at turning the homogenizatiethod into an innovative engineering design

procedure.
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