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Unified formal reduction for fluid models of

free-surface shallow gravity-flows

François Bouchut ∗ Sébastien Boyaval †

June 12, 2013

Abstract

We propose a unified approach to the formal long-wave reduction
of several fluid models for thin-layer incompressible homogeneous flows
driven by a constant external force like gravity. The procedure is based
on a mathematical coherence property that univoquely defines one re-
duced model given one rheology and one thin-layer regime. For the first
time, as far as we know, various known reduced models can thus be in-
vestigated within a single mathematical framework, for various rheologies
(viscous and viscoelastic) and various limit regimes (fast inertial flows and
slow viscous flows). Furthermore, our systematic procedure also produces
new reduced models for viscoelastic non-Newtonian fluids and improves
on our previous work [Bouchut & Boyaval, M3AS (23) 8, 2013].

1 Introduction

Formal a priori simplifications of a model is a game physicists and mathemati-
cians have been playing for years, in particular for fluid equations. Historically,
reduced models indeed proved useful because they were more amenable to ana-
lytical (exact) solution than full models, for instance the Saint-Venant equations,
and thus helped understand a few simple phenomena (e.g. dam breaks) in a time
where computer simulations did not exist. Nowadays, reduced models are still
sometimes preferred to full models, for instance to numerically simulate cheaply
complex fluid flows, and next discriminate against various possible rheologies
by comparison with experiments. In this work, we have more precisely in mind
paving the way for a better modelling of the rheology in e.g. mud flows and land-
slides, which are still much investigated, by experimentalists in particular [4].
Indeed, their thin-layer geometry apparently suits well with simplifications, see
e.g. [5].
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†Université Paris-Est, Laboratoire d’hydraulique Saint-Venant, Ecole Nationale des Ponts
et Chaussées – EDF R&D – CETMEF, 6 quai Watier, 78401 Chatou Cedex, France ; MICMAC
team INRIA Rocquencourt ; sebastien.boyaval@enpc.fr (corresponding author)

1



Unified derivation of reduced models for shallow flows 2

Numerous reduced models have already been derived for gravity-driven free-
surface shallow flows with various rheologies in various regimes, however they
are still difficult to connect one another. A unifying viewpoint of various
surface wave models for water (Newtonian) flows has been constructed re-
cently [17], but it holds only for purely-irrotational water flow models. A generic
mathematically-inclined derivation procedure for slow flows closed to a station-
ary solution has also been used recently for various rheologies, see e.g. [23, 29],
but it holds only for viscous (laminar) flow regimes. Our primary goal here is to
establish another mathematically-inclined framework, that is common to vari-
ous thin-layer flows (slow/fast) and several fluids (Newtonian/non-Newtonian).
To this aim, we introduce a procedure that yields various long-wave reduced
models when using various rheologies with Navier-Stokes equations depending
on various thin-layer flow regimes.

Our procedure, inspired by [31, 36] where the viscous shallow water equations
are derived (see Section 3), is based on a very natural mathematical coherence
property. Although it cannot certify rigorously when and how a solution to
the reduced model is a good approximation of a solution to the full model, our
formal procedure is univoque at least: it delivers a single reduced model given
one rheology and one thin-layer long-wave flow regime, whose solution should
approximately solve the original full model provided the assumptions used for
the derivation hold.

We obtain a synthetic viewpoint of various possible simplifications of the
Navier-Stokes equations modelling a fluid under gravity in a free-surface thin-
layer geometry, when the rheology varies (that is, the modelling of the internal
stresses), as well as when the scaling assumptions for the flow regime vary (i.e.
in the momentum equation, the hydrostatic forces are mainly balanced by the
purely kinematic hydrodynamic forces in fast inertial flows, as opposed to the
internal stresses in slow viscous flows).

We also obtain new reduced models for fluids with complex rheologies.

• For viscous Newtonian fluids (modelled by the standard Navier-Stokes
equations), we obtain either viscous shallow water equations in inertial
regimes (as e.g. in [31, 36]) or lubrication equations in viscous regimes (as
e.g. in [41, 23, 26]), in Section 4.

• For viscous non-Newtonian fluids (nonlinear power-law models), we ob-
tain either a nonlinear version of the shallow water equations in inertial
regimes that is apparently new, or nonlinear lubrication equations in vis-
cous regimes (see [29] and references therein), in Section 5.

• For viscoelastic non-Newtonian fluids, we obtain either shallow water
equations with additional stress terms which extends the recent work [18]
in inertial regimes, or new lubrication equations in viscous regimes (dif-
ferent than those in [24, 25]), in Section 6.

A few remarks are also in order.
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• The case of perfect fluids (no internal stresses) is singular, and it seems
one cannot naturally derive a closed reduced model without coming back
to an assumption about the dissipation terms initially neglected: we treat
it as the inviscid limit of the viscous Newtonian case.

• The case of some viscoplastic Non-Newtonian fluids (i.e. some Bingham
fluids) occurs as a singular limit of the nonlinear power-law models. Now,
this case is interesting from the modelling viewpoint (some plastic non-
Newtonian fluids are believed to possess a yield-stress that seems to suit
well for modelling transitions of fluid-solid type like e.g. in avalanches),
but already difficult from the mathematical viewpoint (the model is un-
determined below the yield-stress) as well as from the physical viewpoint
(the existence of a yield-stress to account for a transition of the fluid-solid
type is still much debated). That is why it is in fact the single fluid model
with plasticity that we investigate here. Our framework could nevertheless
serve as a basis for future thin-layer investigations of models taking into
account transitions of fluid-solid type, the modelling of viscoplasticity still
being in its infancy.

• Concerning viscoelastic fluids, we improve here the model derived in [18]
from simple constitutive equations (only linear in the tensor state variable
“conformation” that accounts for viscoelasticity, though already physically-
consistent from the frame-invariance viewpoint) in the sense that here, we
take into account friction at the bottom, surface tension, two-dimensional
effects and a purely Newtonian additional viscosity.

For a recent physically-inclined review of thin-film flows, we recommend [26],
and [41] for an older one with a focus on stability. Let us now mathematically
set the problem.

2 Mathematical setting of the problem

We endow the space R
3 with a Galilean reference frame using cartesian coor-

dinates (ex, ey, ez). We denote by ax (respectively ay, az) the component in
direction ex (resp. ey, ez) of a vector (that is a rank-1 tensor) a, by axx, axz, . . .
the components of higher-rank tensors, by aH the vector of “horizontal” com-
ponents (ax, ay), by (aH)⊥ = (−ay, ax) an orthogonal vector, by ∇Ha the
horizontal gradient (∂xa, ∂ya) of a smooth function a : (x, y) → a(x, y), and by
Dta the material time-derivative ∂ta + (u · ∇)a. We use the Frobenius norm
|a| = tr(aTa)1/2 for a 2-tensor.

Gravity flows of incompressible homogeneous fluids are governed by Navier-
Stokes equations

(1)

{

Dtu = div(S) + f in D(t) ,

divu = 0 in D(t) ,
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on a regional scale where gravity is the single external force f , with the velocity
field u as unknow variable plus Cauchy stress tensor S = −pI + T (T is the
deviatoric part of S when tr(T ) = 0).

We consider cases where the fluid is contained for all times t ≥ 0 within a
cylindrical domain

(2) D(t) = {x = (x, y, z) , (x, y) ∈ Ω0 , 0 < z − b(x, y) < h(t, x, y)} ,
with a free surface z = b(x, y)+h(t, x, y) (a simplified modelling for a liquid-gas
interface). The free surface and the bottom topography z = b(x, y) are thus
unfolded (i.e. single-valued) two-dimensional parametrized manifolds. Further-
more, we are more specifically interested in the case of shallow flows where the
two manifolds are assumed close to one-another in the “vertical” direction ez
– whatever the “horizontal” position (x, y) ∈ Ω0 – in comparison with a chara-
cateristic horizontal length L, and where they a priori never touch (though one
usually next extends the application of the model to cases with vacuum). We
write this assumption

h ∼ ε

using an adimensional small parameter ε ≥ 0. It means that h/(εL) is bounded
above and below independently of (x, y) ∈ Ω0, t ≥ 0 as ε → 0, as opposed to
a = O(ε) for a variable a, which simply means that the adimensional quantity
a/(εA) (where A is the natural characteristic size of a as a function of L, T , see
below) is bounded above, and may in fact decay faster than ε to zero as ε → 0.
Note that we shall also use componentwise notation, e.g. a1, a2 = O(εα1 , εα2)
for a1 = O(εα1) and a2 = O(εα2 ).

The goal of this work is to derive a closed system of approximate equations
for the flow that hopefully define a simpler and useful (that is, physically mean-
ingful) mathematical model than (1) in the vicinity of the limit ε → 0. Note
that we limit to cases where ∇Hh = O(ε) holds, so that the reduced model
captures only long-wave oscillations of the free surface.

Of course, at this stage, the system of equations (1) is not closed. One still
need to specify the rheology of the fluid (that is, invoke other equations linking
S with u) as well as boundary conditions. We recall that it is exactly the goal of
this work to derive approximations of (1) for various rheologies and flow regimes
using the same procedure, thereby defining a common framework to compare
rheological models with experimental measures through simple reduced models
in the case of free-surface thin-layer flows. We have in mind rheological models
for:

• viscous Newtonian fluids like water, such that the deviatoric stress tensor
is a linear function of the rate-of-strain tensor D(u) = 1

2 (∇u + ∇uT ),
hence T = 2ηsD(u), with ηs a constant kinematic viscosity,

• viscous non-Newtonian fluids, what most complex fluids are in a small
range of shear rates at least, such that the mechanical behaviour is still
decsribed with a purely viscous deviatoric stress tensor, but using a non-
linear power-law T = 2ηs|D(u)|n−1D(u) (termed pseudoplastic or shear-
thinning if 0 < n < 1, dilatant or shear-thickening if n > 1) for viscosity,
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• viscoelastic non-Newtonian fluids like polymer solutions, such that T =
2ηsD(u) + τ invokes a non-Newtonian extra-stress τ that is not neces-
sarily deviatoric and defined through supplementary (integro-)differential
equations.

Note that there is a huge amount of non-Newtonian models in the literature [6].

• Interestingly, the nonlinear power-law models for viscous non-Newtonian
fluids coincide with the standard Navier-Stokes equations for viscous New-
tonian fluids when n = 1 and with a Bingham model for viscoplastic fluids
when n = 0. Although stress is undetermined in Bingham model when
|D(u)| = 0 ⇔ |T | < 2ηs, Bingham model can be understood as the limit
of a regularized model [28] and remains the least disputed basic model for
the still much debated viscoplastic non-Newtonian fluids.

• Viscoelastic fluid models have been used successfully for the accurate de-
scription of polymer solutions for instance, see e.g. [15, 16]. We repeat
that we shall be content here with simple prototypical models among the
numerous possibilities (see Section 6).

We believe that the various prototypical rheologies mentionned above are
representative enough to define a first common mathematical framework for
various shallow flows with various rheologies. We now complement them with
the following common boundary conditions (BCs).

Let us denote by n : (x, y) ∈ Ω0 → n(x, y) the unit vector of the direction
normal to the bottom

(3) n =

(

−∇Hb
1

)

/
√

1 + |∇Hb|2

(inward the fluid) and by (Nt,N) the time-space normal at the free surface
(outward the fluid)
(4)

Nt = −∂t(b + h)/
√

1 + |∇H(b + h)|2 N =

(

−∇H(b + h)
1

)

/
√

1 + |∇H(b + h)|2 .

An orthonormal frame is defined locally everywhere on the bottom using as
basis in tangent planes

(5) t1 =

(

(∇Hb)⊥

0

)

/|∇Hb| t2 =

(

−∇Hb
−|∇Hb|2

)

/(|∇Hb|
√

1 + |∇Hb|2)

when |∇Hb| 6= 0, otherwise t1 = (0,−1, 0)T , t2 = (−1, 0, 0)T . We require, at
the bottom of the fluid, no penetration in the normal direction

(6) u · n = 0 , for z = b(x, y), (x, y) ∈ Ω0 ,

and a Navier friction dynamic condition with coefficient k in the tangent plane

(7) Sn ∧n = ku ∧ n , for z = b(x, y), (x, y) ∈ Ω0 ;
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at the free surface, the usual kinematic condition Nt +N · u = 0, i.e.
(8)
−∂t(b+h)−ux∂x(b+h)−uy∂y(b+h)+uz = 0 , for z = b(x, y)+h(t, x, y), (x, y) ∈ Ω0 ,

and surface tension with coefficient γ as dynamic condition

(9) SN = γκN , for z = b(x, y) + h(t, x, y), (x, y) ∈ Ω0,

where κ(t, x, y) = − divN(t, x, y) is the (local) mean curvature at z = b(x, y)+
h(t, x, y), (x, y) ∈ Ω0; and finally, at the lateral boundary {x = (x, y, z) , (x, y) ∈
∂Ω0, 0 ≤ z − b(x, y) ≤ h(t, x, y))}, inflow/outflow or periodic boundary condi-
tions (for example).

Note that the question of existence and uniqueness of solutions to the Bound-
ary Value Problem (BVP) above is difficult and precisely answered only in a
few specific situations, for instance see [1, 3, 13, 43] for Newtonian viscous fluids
and [38] for non-Newtonian fluids. In this work, we simply assume that specify-
ing the BCs as above (plus initial conditions) allows one to precisely determine
one solution (at least) to the bulk equations. On the other hand, the fact that
we restrict to reduced models that only capture long-wave oscillations of the
free surface is also an implicit assumption about the regularity of the solutions
to our models (reduced or not).

In the next sections, it will be possible to derive simplified equations that
are verified by (univoque) approximations of the solutions to the BVP above
in the limit ε → 0 only over fixed time ranges T , of course. Then, for the
sake of clarity, we rewrite the system of equations using adimensional vari-
ables that are functions of the non-dimensional scaled coordinates (t̃, x̃, ỹ, z̃) =
(t/T, x/L, y/L, z/L), which we next abusively still write (t, x, y, z). On noting
that p and T both have the dimension (L/T )2, we normalize the gravity con-
stant as gT 2/L and obtain adimensional bulk equations which we abusively still
write

(10)











Dtu = −∇p+
∑

i=x,y,z

(∂xTix + ∂yTiy + ∂zTiz)ei − f ,

divu = 0 ,

without tilde, and that are complemented with the boundary conditions

(uH · ∇H)b = uz , for z = b(x, y),(11a)

Tn− ((Tn) · n)n− k (u− (u · n)n) = 0 , for z = b(x, y),(11b)

∂th+ (uH · ∇H)(b+ h) = uz , for z = b(x, y) + h(t, x, y),(11c)

−pN + TN + γ div(N )N = 0 , for z = b(x, y) + h(t, x, y).(11d)

where k and γ have been scaled by L/T and L3/T 2 respectively.
We obtain simplified equations by successive approximations of the solu-

tions to (10–11a–11b–11c–11d) following [31, 36], first for generic Navier-Stokes
equations in Section 3, then specifically for many rheologies in various limit
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regimes in Sections 4 (Newtonian fluids), 5 (power-law fluids) and 6 (Oldroyd-B
fluids). Solutions to those simplified equations shall indeed (formally) approxi-
mate solutions to (10–11a–11b–11c–11d) insofar as they satisfy the full system
of equations plus small error terms.

3 A generic long-wave thin-layer framework for

free-surface gravity flows

A usual assumption to formally reduce the thin-layer flow equations for long-
wave oscillations of the free-surface is small topography variations. Extensions
to the case of an arbitrary topography are nontrivial, see e.g. [19]. We thus
next content ourself with the quite general case of a topography slowly varying
around a plane inclined by a constant angle Θ. More precisely, we choose in (10)

f = (fx ≡ +g sinΘ, fy ≡ 0, fz ≡ −g cosΘ)

(Navier-Stokes equations are Galilean frame-invariant and rotation is a Galilean
change of frame) and we assume

(12) (H1) : ∇Hb = O(ε) .

It is also natural to assume bounded horizontal velocities uH = O(1), at
z = b+ h in particular, and divH uH = O(1). Successive implications can next
be “naturally” derived following a procedure similar to that in [31, 36], up to
the introduction of an additional assumption (i.e. kuH |z=b = O(ε)).

1. We consider first the mass continuity equation divu = 0 with BC (11a)

uz = uH |z=b · ∇Hb−
∫ z

b

divH uH .

Using uH = O(1) at z = b, this yields uz = O(ε), and ∇Hh = O(ε)
by (11c). In fact, assuming that only long-wave oscillations of the free sur-
face matter at first order in ε, i.e. ∇Hh = O(ε), is equivalent to uz = O(ε)
as long as (H1) holds, by the formula uz = uH |z=b+h · ∇H(b+ h) + ∂th+
∫ z

b+h divH uH combining (11c) and divu = 0.
Reciprocally, the mass continuity equation and the BCs (11a,11c) are sat-
isfied up to error terms of order O(εa,a+1,a+1), respectively (with a > 0),
if h, uz,uH are replaced with approximations up to error terms of order
O(εa+1,a+1,a), respectively (recall h ∼ ε), provided of course divH uH and
∂th are also approximated up to O(εa) and O(εa+1) (like uH and h).

2. Second, using uz = O(ε), one infers from the momentum equation pro-
jected along ez that

(13) ∂zp = fz + (∂zTzz + divH THz) +O(ε)
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must be satisfied by p, Tzz,THz , as well as by approximations of p, Tzz,THz

up to errors O(ε2,2,1), respectively (assuming ∂zp, ∂zTzz, divH THz are ap-
proximated up to O(ε1,1,1)).

Moreover, using ∇Hh = O(ε) and ∇Hb = O(ε), one infers divN (t, x, y) =
−∆H(b+h)+O(ε3), so the BC (11d) rewrites (recall γ ∼ 1 is a constant)

(14) p|z=b+h = −γ∆H(b + h) + (Tzz − THz · ∇H(b + h)) +O(ε3)

which is satisfied as well by approximations of h, p, Tzz,THz up to errors of
order O(ε3,3,3,2) (at z = b+h at least for p, Tzz,THz , provided ∆Hh,∇Hh
are approximated as well as h).

Since (14) still holds with O(ε3) replaced by O(ε2), one can use (14)
consistently with (13) in order to obtain (after integration)

(15) p = fz(z − (b+ h))− γ∆H(b+ h) + Tzz − divH

∫ b+h

z

THz +O(ε2) .

Like (13), (14) with O(ε3) replaced by O(ε2) and (15) are satisfied by
approximations of p, Tzz,THz up to errors of order O(ε2,2,1), and an ap-
proximation of h up to O(ε2), which in turn requires approximations of
uz,uH up to errors of order O(ε2,1) (recall the first item).

3. Third, it is natural to assume ∆H(b+ h) = divH(∇Hb+∇Hh) = O(ε) on
the one hand, and max(THH , Tzz,THz)|z=b+h = O(1) on the other hand.
One then gets

(16) THz |z=b+h = (THH − TzzI)∇H(b+ h) +O(ε2)

from BC (11d) with (14) (even with O(ε3) replaced by O(ε2) in (14)) plus
the scaling

(17) THz |z=b+h = O(ε) .

Moreover, from (11b) and ∇Hb = O(ε), we get at z = b using (5)

THz · (∇Hb)⊥ − (∇Hb)⊥ · THH∇Hb

= kuH · (∇Hb)⊥(1 +O(ε2)) ,

(1−O(ε2))THz · ∇Hb−∇Hb · THH∇Hb+ |∇Hb|2Tzz

= k(uH · ∇Hb+ uz|∇Hb|2)(1 +O(ε2)) ,

thus one obtains, with (11a) and, if ∇Hb 6= 0,

THz =
THz · ∇Hb

|∇Hb|2 ∇Hb+
THz · (∇Hb)⊥

|∇Hb|2 (∇Hb)⊥ ,

(18) THz |z=b = (THH − TzzI)∇Hb+ kuH(1 +O(ε2)) + |THz |O(ε2) .
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If ∇Hb = 0, THz |z=b = kuH straightforwardly follows from (11b), so (18)
remains true.

To proceed, although assuming max(THH , Tzz,THz)|z=b = O(1) seems
natural, it is clear that one shall also need an assumption for the scaling
of kuH |z=b, which is less natural.

Note already that the approximations (16–18) of the BCs (11d,11b) are
also satisfied by approximations of THH , Tzz, THz up to error terms of
order O(ε1,1,2) at least at z = b, b + h, as long as (14) holds (possibly
with O(ε3) replaced by O(ε2)) and kuH |z=b is approximated up to an
error O(ε2). At this stage, this is in contrast with (15) which requires
approximations of Tzz,THz up to O(ε2,1). But recall that T is still to be
connected to the other unknown variables through additional equations
once we will have fixed the rheology of the fluid. In fact, most of the
work in the sequel will consist in deriving approximations of the stresses
that are coherent with approximations of the other variables. (Antici-
pating the case of Newtonian fluids, we shall for instance be able to use
approximations of THH , Tzz,THz up to O(ε2,2,2).)

4. Last, whatever the rheology, we will have recourse to the additional (but
usual) assumption

(19) (H2) : kuH |z=b = O(ε) .

Indeed, we then next get THz |z=b = O(ε) from (18), so THz = O(ε)
from (17) and finally

(20) ∂zTHz ≡ DtuH +∇Hp− divH THH − fH = O(1) ,

a “horizontal” projection (20) of the momentum equation that makes
sense as a cornerstone for model reduction (all terms are bounded). Note
that (20) is also satisfied up to additional error terms O(ε) by approxi-
mations of THz , uH , p, THH up to O(ε2,1,1,1), assuming as usually that
∂zTHz , DtuH , ∇Hp, divH THH are then all approximated up to O(ε).

So far, in Section 3, we have (formally) established relations that are nec-
essarily satisfied by smooth solutions to the BVP (10–11a–11b–11c–11d) as
h ∼ ε → 0 under the scaling assumptions (H1) and (H2). Moreover, using
“natural” assumptions (such that all the terms uH , uz, p, THH , THz , Tzz that
appear in the equations of the initial BVP remain bounded, in particular) we
have also obtained that uz, p − Tzz,THz are small terms of order O(ε) every-
where in the domain. The observations above are thus natural candidates for the
construction of a reduced model whose solution coincide with an approximation

(21) (h0,u0
H , u0

z, p
0 − T 0

zz,T
0
HH − T 0

zzI,T
0
Hz)

= (h,uH , uz, p− Tzz,THH − TzzI,THz) +O(ε2,1,2,2,1,2)
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of a solution to the initial BVP when ε → 0. Such a reduced model could read
e.g.

(22)



































































Dtu
0
H +∇H(p0 − T 0

zz)− divH(T 0
HH − T 0

zzI)− ∂zT
0
Hz − fH = 0 ,

∂z(p
0 − T 0

zz)− divH T 0
Hz − fz = 0 ,

divH u0
H + ∂zu

0
z = 0 ,

(u0
H · ∇H)b− u0

z|z=b = 0 ,

ku0
H + (T 0

HH − T 0
zzI)∇Hb− T 0

Hz |z=b = 0 ,

∂th
0 + (u0

H · ∇H)(b + h0)− u0
z|z=b+h0 = 0 ,

γ∆H(b+ h0) + T 0
Hz · ∇H(b+ h0) + (p0 − T 0

zz)|z=b+h0 = 0 ,

(T 0
HH − T 0

zzI)∇H(b + h0)− T 0
Hz |z=b+h0 = 0 ,

where, in comparison with (10–11a–11b–11c–11d), the higher-order terms in ε
have been forgotten. Though, a reduced model is coherent only when a corrected
approximation exists

(23) (h0,u0
H , u0

z, p
0 − T 0

zz,T
0
HH − T 0

zzI,T
0
Hz) +O(ε2,1,2,2,1,2)

= (h,uH , uz, p− Tzz,THH − Tzz,THz)

that is solution to the initial BVP under the same assumptions as those that have
been used to define the reduced model (that is, a solution to (22) adequately
corrected to solve the initial BVP should yield back (13), (14), (16), (18) and
(20) with error terms of exactly the same scaling as the one observed above
for the solution to the initial BVP). Coherence implies that the approximation
relationship (21) may indeed hold (formally as ε → 0 for smooth enough so-
lutions) insofar as the correction terms in (23) have the right scaling in order
to balance the error terms appearing in the initial BVP due to the definition
of the reduced model like (22) by truncation of the initial BVP. Furthermore,
similarly to the BVP (10–11a–11b–11c–11d), the system (22) is not well-posed
without complementing it by equations that come from the rheology of the fluid
material that it describes. Then one expects these equations to be also coherent
simplifications of those equations complementing (10–11a–11b–11c–11d).

Before proceeding further to construct reduced models that are coherent
for specific rheologies, let us also introduce a generic (widely used) additional

manipulation of the initial equations at this stage. On noting uH = 1
h

∫ b+h

b
uH+

O(ε) whenever e.g. ∂zuH = O(1) holds (this will often be the case), one in fact

often thinks of an approximation u0
H = uH + O(ε) as u0

H = 1
h

∫ b+h

b uH +
O(ε). Then, on noting that acceleration classically rewrites with (11a–11c)
using Leibniz rule as

∫ b+h

b

DtuH = ∂t

∫ b+h

b

uH + divH

∫ b+h

b

(uH ⊗ uH) ,

one often considers the “horizontal” momentum equations (20) integrated along
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z ∈ (b, b+ h)

(24) (THz − (THH − TzzI)∇H(b + h))|z=b+h

− (THz − (THH − TzzI)∇Hb)|z=b +

∫ b+h

b

fH

= ∂t

∫ b+h

b

uH+divH

∫ b+h

b

(uH⊗uH)+

∫ b+h

b

∇H(p−Tzz)−divH

∫ b+h

b

(THH−TzzI)

where, recalling (15), p − Tzz can be approximated up to an error O(ε2) using
h, i.e.

(25) p0 − T 0
zz = fz(z − (b + h0))− γ∆H(b+ h0) .

Clearly, on using (18), (17), and the integrated continuity equation

(26) ∂th+ divH

∫ b+h

b

uH = 0

to define an approximation h0 = h+O(ε2), this is a priori more useful than
(27)
∂zT

0
Hz = Dtu

0
H − fH − fz∇H(b+ h0)− γ∇H∆H(b+ h0)− divH(T 0

HH −T 0
zzI) ,

as a consequence coherent with (20), provided one can close
(28)

∂t

∫ b+h

b

uH+divH

∫ b+h

b

(uH⊗uH) = −kuH |z=b+divH

∫ b+h

b

(THH−TzzI)+hfH+O(ε2) ,

or the next-order evolution equation for approximate momentum h0u0
H =

∫ b+h

b uH+
O(ε2)

(29) ∂t

∫ b+h

b

uH + divH

∫ b+h

b

(uH ⊗ uH)− divH

∫ b+h

b

(THH − TzzI)

= −kuH |z=b + hfH + hfz∇H(b + h) + hγ∇H∆H(b+ h) +O(ε3) ,

with a coherent approximation of
∫ b+h

b (THH − TzzI) (which typically requires
one to vertically integrate the rheological equations), since indeed, whenever

∂zuH = O(1) holds, it also holds 1
h

∫ b+h

b (uH⊗uH) = 1
h

(

∫ b+h

b uH

)

⊗
(

∫ b+h

b uH

)

+

O(ε). One may also note the latter “depth-averaged” approach invokes lower-
dimensional variables that depend only on the horizontal coordinates (not z),
which justifies the label “reduced model” (lower-dimensional variables are par-
ticularly useful for analytical computations as well as fast numerical simula-
tions). And it a priori does not seem to necessarily require an explicit approx-
imation of the shear component of the stress THz (to close the reduced model
at least). Though, to show the coherence with (18), one will in fact still need
an expression for T 0

Hz |z=b at least; and by the way, this is also often very useful
to physical interpretations of the reduced model.
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Remark 1 Assuming (H1) : ∇Hb = O(ε) proved directly connected to our goal
of modelling only long-waves, and shows up for instance through the dimension
reduction in the reduced model (22) (where the variable Tzz is not autonomous
anymore). On the contrary, assuming (H2) : kuH |z=b = O(ε) is less intuitive
although it is straightforwardly connected with the useful scaling THz = O(ε)
(a consequence of kuH |z=b = O(ε) through THz |z=b = kuH |z=b + O(ε)). The
latter assumption is key, in fact, to get formal simplifications like (28) or (29).
Yet, this hypothesis may of course not be true in a number of flows ! Then one
should either use the full system of equations or another reduced model than the
ones derived in the present work (then derived with another strategy).

4 Application to Newtonian fluids

Internal stresses in Newtonian fluids are defined, after rescaling, with a Reynolds
number Re

(30) T =

(

THH THz

T T
Hz Tzz

)

=
1

Re

(

2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)
T 2∂zuz

)

.

Without further assumption than (H1) − (H2), one simply obtains (from uz =
O(ε))

T =
1

Re

(

2DH(uH) ∂zuH +O(ε)
(∂zuH +O(ε))T −2 divH uH

)

.

Then, to derive a closed reduced model invoking coherent approximations of the
stresses (such that THz = O(ε) in particular), one needs further assumptions.
Depending on the treatment of kuH |z=b = O(ε), one can in fact obtain different
reduced models in the limit ε → 0.

4.1 The inertial regime

If we specify (H2) as

(31) (H2a) : k ∼ ε

and, for the scaling of T in (30) to be compatible with the relations in Section 3,
further assume

(32) (H3) : Re ∼ ε−1 , and (H4) : ∂zuH = O(1) ,

one first obtains THH , Tzz = O(ε) and then the improved scalings THH −
TzzI, p− Tzz = O(ε) using (H3). Moreover, because of (H4), a non-degenerate
approximation u0

H = uH + O(ε) that does not go to zero almost everywhere
when ε → 0 must have a flat profile (∂zu

0
H = 0), that is

(33) uH(t, x, y, z) = u0
H(t, x, y) +O(ε) ,

also termed a “motion by slices”. Last, (H4) suffices to justify the depth-
averageing procedure introduced at the end of Section 3 for the construction
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of a reduced model, so an approximation (h0,u0
H) ≈ (h,uH) +O(ε2,1) may be

simply determined as a solution to (26–28) where the higher-order terms O(ε2)
have been neglected, i.e. the system

∂th
0 + divH(h0u0

H) = 0 ,(34)

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H) + ku0
H − h0fH = 0 .(35)

But whereas the solutions to (34–35) straightforwardly allow one to construct
a “first-order” approximation (h0,u0

H , u0
z, p

0) = (h,uH , uz, p) +O(ε2,1,2,2) that
is coherent with the continuity equation, with (11c) and with the BCs (11a–14)
as
(36)

u0
z = u0

H ·∇Hb+(b−z) divH u0
H , p0 = fz(z−(b+h0))−γ∆H(b+h0)− 2

Re
divH(u0

H)

when assumptions (H1 −H2a−H3−H4) hold, at this stage, one still cannot
compute approximations T 0

Hz = THz + O(ε2) and it is thus not clear yet that
a solution (h0,u0

H) to (34–35) also defines a coherent approximation of equa-
tions (10–11b–11d) used in the derivation of (34–35). (Note that it suffices to
show that T 0

Hz |z=b+h = O(ε2) and T 0
Hz |z=b = ku0

H +O(ε2) hold.)
Fortunately, after an adequate combination of (34) and (35), we note that

it holds

(37) ∂tu
0
H + (u0

H · ∇H)u0
H + ku0

H/h0 = fH

so that the approximation proposed above would indeed be a first-order approxi-
mate solution to the horizontal projection of the momentum equation (10) (that
is (27) without the higher order termsO(ε)) if one could construct T 0

Hz such that
∂zT

0
Hz = ku0

H/h0 + O(ε). In fact, it is now classical that one can achieve this
construction thanks to a so-called parabolic correction [31, 36]. The point is to
construct an approximation ũH = u0

H+u1
H to uH , with u0

H a solution to (34–35)
plus possibly higher-order terms O(ε2), and u1

H = O(ε) a correction such that
one can characterize T 0

Hz = THz +O(ε2). Plugging the ansatz ũH = u0
H +u1

H

for uH in (27) yields, on noting ∂zTHz = 1
Re(∂

2
zzu

1
H +∇H divH u0

H) +O(ε) ≡
1
Re∂

2
zzu

1
H +O(ε),

∂tu
0
H + (u0

H · ∇H)u0
H =

∂2
zzu

1
H

Re
+O(ε)

so that, recalling (37) for u0
H solution to (34–35) plus O(ε2) terms, the correction

must satisfy

(38)
1

Re
∂2
zzu

1
H = Dtu

0
H − fH +O(ε) = − k

h0
u0
H +O(ε) .

Since furthermore Re ∼ ε−1 and ∂zuH = O(1) in (17) imply THz |z=b+h =
O(ε2), (38) requires

(39)
1

Re
∂zu

1
H = ku0

H

b+ h− z

h
+O(ε2) .
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Now, the trick is to require 1
h

∫ b+h

b u1
H = O(ε2), so one can build a coherent

approximation ũH = u0
H +u1

H = uH +O(ε) of the initial BVP with a parabolic
correction to u0

H

(40) u1
H =

Rek

2h

(

(b+ 3h/2− z)(z − b− h/2) + h2/12
)

u0
H

that is simply an explicit function of u0
H . On the other hand, u0

H can indeed
be computed coherently with the second-order approximation of the depth-
averaged equation (29)

∂t

(

hu0
H +

∫ b+h

b

u1
H

)

+divH

(

hu0
H ⊗ u0

H + u0
H ⊗

∫ b+h

b

u1
H +

∫ b+h

b

u1
H ⊗ u0

H

)

= hfH+hfz∇H(b+h)+hγ∇H∆H(b+h)+
2

Re
divH

(

h(DH(u0
H) + divH u0

HI)
)

+
2

Re
divH

(

∫ b+h

b

DH(u1
H) +

(

∫ b+h

b

divH u1
H

)

I

)

− kũH |z=b +O(ε3)

using
∫ b+h

b u1
H = O(ε3), and ũH |z=b = u0

H(1 − hRek/3). With the integrated
continuity equation and neglecting O(ε3) terms, one obtains a closed system of
equations for (h0 = h+O(ε2),u0

H)

∂th
0 + divH(h0u0

H) = 0(41)

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H)−
(

h0fH + fzh
0∇H(b+ h0)

)

(42)

= γh0∇H∆H(b + h0)− ku0
H(1− h0Rek/3) +

2

Re
divH

(

h0
(

DH(u0
H) + divH u0

HI
))

that also defines, when (H1 −H2a −H3 − H4) hold, a coherent reduced model
for a first-order approximation (h̃, ũH , ũz, p̃) of the true solution (h,uH , uz, p)
of the initial BVP. Indeed, if we set h̃ = h0, if ũH is defined as above using the
parabolic correction (40) to u0

H , if we define ũz = u0
z and p̃ = p0 like in (36),

then the “horizontal” momentum equation is satisfied up to a first-order error
term O(ε) (recall (38)), the continuity equation is satisfied up to an O(ε) error
term, the “vertical” momentum equation is satisfied up to an error term O(ε)
(recall (13)), and (11a), (11b) (11d) as well as (11c) are satisfied up to an error
O(ε2).

Note that when (7) is replaced with pure slip (k = 0), u1
H does not depend

on z anymore. Then, from (38), the stronger motion-by-slice ∂zuH = O(ε)
holds, and coherent simplifications do not need explicit approximations for THz

provided THz = O(ε2). In particular, an approximation ũH can be straightfor-
wardly defined from the solution u0

H ≡ ũH to (41–42) where k = 0.
Note also that the case of no-tension boundary conditions is obtained by

letting γ → 0 in the reduced model as well as in the initial BVP. (The limit
γ → 0 commutes with ε → 0.)

The scaling regime in this section is termed inertial because the leading
terms are purely inertial and the viscous terms appear only in the correction,
as opposed to the viscous regime below.
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Remark 2 (Inviscid limit and perfect fluids with shallow water equations)
Note that our scaling implies that as ε → 0 the full model (Navier-Stokes equa-
tions) formally reduces to the incompressible Euler equations, while the reduced
model (the so-called viscous shallow water equations) reduces to the inviscid shal-
low water equations without friction. But if we had considered perfect fluids from
the beginning, thus T = 0, the choice of a motion by slice (H4) is not so much a
“natural assumption” dictated by the internal stresses. This shows not only that
various limit procedures do not necessarily commute, but also the importance of
choosing adequate dissipation terms at the finest level of modelling (even when
these terms are small). Otherwise, one encounters such infamous difficulties as
the modelling of Reynolds stresses that occur in turbulence modelling.

Remark 3 (Dam break, long waves and vorticity with shallow water equations)
It may be a bit surprising that we derive the shalow water system of equations
from Navier-Stokes equations under the assumption of small deformation of the
free surface. Indeed, shallow water equations have been used numerically with
success for a long time to simulate dam breaks, a case that does not seem to
agree well with ∇Hh = O(ε). But this is consistent with the fact that inviscid
shallow water equations can also be obtained as a natural limit for potential ideal
flows, see e.g. [17], in regimes where surface waves with a short wavelength com-
pared with the water depth are neglected. Now, dam breaks indeed correspond
to the case of surface waves with an amplitude of order h similar to the water
depth that is small compared with wavelengths of order L similar to a supposedly
infinitely-long channel, a particular case of tidal waves [34] where viscosity and
vorticity are also neglected. Besides, note that the scalings used above to ob-
tain the shallow water equations imply in turn that the vorticity has the scaling
curlu = (O(ε), O(ε), ω = ∇H ∧ uH) where ω = O(ε) must also hold since the
vorticity equation Dt(curlu) = [(curlu) · ∇]u + 1

Re
∆(curlu) implies

ω∂zuH = O(ε) Dtω = ω∂zuz+
1

Re
∆ω = ω∂zuz+O(ε2) ⇔ ∂tω+divH(ωuH) = O(ε2)

on using ∂zω = O(1). So a negligible vorticity is not only a sufficient condition
to obtain shallow water equations from Euler equations in some cases [17], it
also seems necessary, at least in the cases where the scalings of the previous
Section above hold.

4.2 The viscous regime

Instead of assuming (H2a) to achieve (H2), one can also look for a regime where
k ∼ 1 holds and

(43) (H2b) : uH |z=b = O(ε) .

Then, one should still require (H3) : Re ∼ ε−1 and (H4) : ∂zuH = O(1) in
order to next use the observations of Section 3 necessarily satisfied by smooth
enough solutions. On using (H2b) and (H4), note that it holds uH = O(ε),
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which is of course stronger than (H2b), thus also uz = O(ε2) by (11a) and the
continuity equation. This is at the basis of the viscous regime, where viscous
terms dominate in the momentum conservation. In particular, the latter rewrites
(recall (27))

(44)
1

Re
∂2
zzuH = fH +O(ε)

and after using (17) (in fact only ∂zuH |z=b+h = O(ε)), we obtain
(45)
1

Re
∂zuH =

1

Re
∂zuH |z=b+h+fH(z− (b+h))+O(ε2) = fH(z− (b+h))+O(ε2).

Note that if Θ = O(ε), this yields ∂2
zzuH = O(1), thus ∂zuH = O(ε), and

(46)
1

Re
∂2
zzuH = fH + fz∇H(b+ h) + γ∇H∆H(b + h) +O(ε2) ,

so finally (45) with fH replaced by fH + fz∇H(b+h)+ γ∇H∆H(b+h) and an
error O(ε3) (recalling that (17) actually implies ∂zuH |z=b+h = O(ε2)).

We next consider the boundary condition (18) more carefully, it reads

(47)
1

Re
∂zuH |z=b = kuH +O(ε3)

and thus yields kuH |z=b = −fHh+O(ε2) = O(ε) in the general case, so finally

(48) uH = fH

(

Re
(

(z − (b+ h))2/2− h2/2
)

− h/k
)

+O(ε2)

(or kuH |z=b = − (fH + fz∇H(b + h) + γ∇H∆H(b+ h)) h + O(ε3) = O(ε2) if
Θ = O(ε), thus the scaling uH = O(ε2), uz = O(ε3), and finally yielding (45)
with fH replaced by fH + fz∇H(b+ h) + γ∇H∆H(b+ h) and an error O(ε3)).

Finally, we can derive an autonomous equation for h using

(49)

∫ b+h

b

fH

(

Re
(

(z − (b+ h))2/2− h2/2
)

− h/k
)

= −fH

(

Re
h3

3
+

h2

k

)

for an approximation of
∫ b+h

b uH up to order O(ε3) (or O(ε4) depending on Θ)

in the integrated continuity equation ∂th+ divH
∫ b+h

b uH = 0. The solution h0

to

(50) ∂th
0 − divH

(

fH

(

Re
|h0|3
3

+
|h0|2
k

))

= 0

(with fH + fz∇H(b + h0) + γ∇H∆H(b + h0) instead of fH when Θ = O(ε))
allows one to define a coherent approximation of the initial BVP as long as
(H1 − H2b − H3 − H4) hold, with u0

H reconstructed from h0 following (48)
(slightly modified when Θ = O(ε)) and u0

z, p
0 reconstructed like in the previous

section. The stress terms are also easily reconstructed with u0
H .
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Note that (50) is exactly (2.28) in [41], where one also comments on the fact
that this reduced model is strongly reminiscent of Reynolds lubrication equa-
tion [12] except that here one has a free-surface condition, so the pressure is
known to be hydrostatic, while the boundary z = h is unknown. One also com-
pute sometimes higher-order approximations of the discharge (49) as a function
of h from the momentum equation, see e.g. [14, 22, 35, 29], but the resulting
models involve high-order derivatives of h (which is a difficulty for numerical
simulations) and the coherence of these approximations is not obvious.

Remark 4 (About the existence of two limit regimes) Like the shallow
water equations obtained in the inertial regime, the lubrication equation obtained
in the viscous regime also has a number of applications, see e.g. [41], but this
happens in different situations of course. A regime where viscous forces domi-
nate the inertial terms to balance gravity seems to suit better with small-scale
slow flows (on short times after the flow initiation and in small domains), when
boundary effects are important (and k can be chosen as large as necessary to ap-
proximate the no-slip boundary condition obtained in the k → ∞ limit). On the
contrary, an inertial regime seems to suit better to large-scale fast flows (on long
times after the flow initiation and in large – typically geophysical – domains),
when boundary effects can be reduced to a small effective friction condition on a
fictitious boundary close to the real boundary inward the fluid (thereby defining
a boundary layer with limited amplitude). Of course this description is only
phenomenological and not quantitatively useful. Real flows are the result of par-
ticular initial and boundary conditions, and adequately choosing one of the two
kinds of reduced models (or none, e.g. when boundary effects are important
throughout the domain) seems difficult a priori.

Taking profit of the possible existence of two established regimes, one might
also think of combining them: a viscous thin-layer where boundary effects are
well taken into account could be physically meaningful as a sublayer beneath
an inertial thin-layer. For instance, one may want to construct an interface
z = b+Y (0 ≤ Y ≤ h) between the two layers that would define a fictitious free-
surface for the former (the continuity equation would still yield an autonomous
evolution equation for Y where the viscous regime holds) and a fictitious topog-
raphy (possibly moving) for the latter. There is nevertheless a difficulty: such a
construction would necessarily require the horizontal velocities uH to be discon-
tinuous at the interface (at least in the limit ε → 0, which implies that ∂zuH

hence also THz is unbounded close to the interface) and the stresses at the inter-
face to satisfy a friction law of Navier type with a coefficient k to be consistently
determined with the size Y of the boundary layer. Now, there seems to exist no
easy construction of such a friction law k at a fake interface yet, and we leave
this difficult problem to future works (whatever the rheology). For instance, one
strategy may be to find a transition layer with depth η ∈ (0, h− Y ), η = o(ε), a
velocity field U solution to the momentum equations in z ∈ (b + Y, b + Y + η),
and a friction coefficient k ∼ ε (possibly also a tension γ) such that when ε → 0:

• the limit of U |z=b+Y is a good approximation (at O(ε2)) of the limit of
u|z=(b+Y )− which is given by the velocity solution to the viscous regime in
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z ∈ (b, b+ Y ),

• the limit of U |z=b+Y+η is a good approximation (at O(ε)) of the limit of
∂zu,u|z=(b+Y+η)+ , which is given by the solution to the inertial regime in
z ∈ (b+ Y, b+ h) with a friction coefficient k,

• ∂zU/(kReU)|z=b+Y +η has a limit so that Navier friction law holds at z =
b+ Y + η,

• normal stresses are continuous at z = b+ Y (and one may want to define
a tension coefficient γ at z = (b + Y )+ to formulate this).

5 Application to purely-viscous non-Newtonian

fluids

Purely viscous non-Newtonian fluids can be described by a power-law model

(51) T =
|D(u)|n−1

Re

(

2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)
T 2∂zuz

)

=
|D(u)|n−1

Re

(

2DH(uH) ∂zuH +O(ε)
(∂zuH +O(ε))T −2 divH uH

)

=

(

THH THz

T T
Hz Tzz

)

where internal stresses are nonlinear functions of the strain rate due to the
non-constant viscosity

(52) |D(u)|n−1 = (|DH(uH)|2 + |∂zuH +∇Huz|2/2 + |∂zuz|2)(n−1)/2

= (|DH(uH)|2 + |∂zuH +O(ε)|2/2 + | divH uH |2)(n−1)/2.

The degenerate constant case n = 1 has been treated in the previous section.
The cases 0 < n < 1 and n > 1 are clearly different due to different monotonoc-
ity properties of the stresses with respect to the deformation gradient D(u), see
e.g. [7]. The limit n → 0 is singular: it yields a particular occurence of the Bing-
ham model for viscoplastic fluids with a yield stress |D(u)| 6= 0 ⇔ |T | > 2

Re .

5.1 The inertial regime

Let us look for a coherent approximation of the solutions to the initial BVP when
(H1−H2a−H3−H4) hold, like in the inertial regime of the Newtonian case, so
that the observations of Section 3 are true (at least formally for smooth enough
solutions). In fact, only the internal stresses change in the present purely-viscous
non-Newtonian case compared with the Newtonian case, and one can follow the
same procedure until the construction of a correction. Then, the question is:
can we proceed, starting from the nonlinear version of (39), viz.
(53)
1

Re
(|DH(u0

H)|2+ |∂zu1
H |2
2

+ | divH u0
H |2)(n−1)/2∂zu

1
H = ku0

H

b+ h− z

h
+O(ε2) ,
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and define a correction u1
H = O(ε2) using the same trick as in the Newtonian

case, that is
∫ b+h

b u1
H = O(ε3) ? Notice that this is always possible when

∣

∣

∣

∫ b+h

b
∂zu

1
H

∣

∣

∣
= O(ε2).

For n ≥ 1 (shear-thickening fluids), let us define the function φa : x →
(x2/2 + a)(n−1)/2x that is one-to-one and onto from R≥0 to R≥0, so we can
rewrite (in componentwise sense)

∂zu
1
H = φ−1

a (|Reku0
H(b+ h− z)/h|)sg(Reku0

H(b+ h− z)/h)

as a function of z parametrized by u0
H through a = |DH(u0

H)|2 + | divH u0
H |2.

Notice that it holds 0 ≤ φ−1
a (|Reku0

H(b + h − z)/h|) ≤ |Reku0
H(b + h − z)/h|

for z ∈ (, b + h), and since we could do the computation
∫ b+h

b |Reku0
H(b + h−

z)/h| dz = O(ε2) exactly in the Netwonian case, it follows that a correction u1
H

such that
∫ b+h

b
u1
H = O(ε3) can be constructed here. One can next construct a

first-order approximation u0
H = uH +O(ε) with the solution to (41–42) where

(i) h0 is replaced by1
∫ b+h0

b
|Reku0

H (b+h0−z)/h0|

φ−1
a (|Reku0

H(b+h0−z)/h0|)
dz in the viscous terms of

the RHS of (42)

(ii) the friction term invokes the new value2 of uH |z=b approximated at O(ε2).

This straightforwardly defines a coherent approximation insofar as the only
equation which is different from the (coherent) Newtonian case is the equili-
bration of second-order viscous dissipation terms with friction at the bottom
boundary, and the correction term above has been constructed on purpose for
that coherence to be satisfied.

Note also that this reduced model obtained for n ≥ 1 seems new to us.
Though, it is not very practical (because some terms are implicit) and may
not be very useful for applications (because shear-thickening fluids are not very
common in nature).

For n < 1 (shear-thinning fluids), we are not able to conclude about the
correction with the strategy above. Instead, let us try to compare the cases
0 < n < 1 with the limit case n → 0.

For n = 0, assuming |D(u)| 6= 0 (thus |DH(u0
H)| 6= 0) the point is again to

solve

(54)
∂zu

1
H

√

|DH(u0
H)|2 + |∂zu1

H |2/2 + | divH u0
H |2

=
Reku0

H

h
(b+ h− z) +O(ε) .

Now, (54) has real solutions ∂zu
1
H that are compatible with the scaling implied

by (H1 −H4) if, and only if, the condition 0 < |u0
H | <

√
2/(kRe) is satisfied.

1This is a function of u
0
H

and h0 that one may obtain numerically after integration
∫ b+h0

b
· dz by quadrature of the terms inside divH .

2This is only known to be bounded above by h0 maxz∈[b,b+h0] ∂zu
1
H ≤ Reku0

Hh0.
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For 0 ≤ n < 1, one can then construct a correction that satisfies
∫ b+h

b u1
H =

O(ε3) and define a coherent approximation of the full model provided 0 <
|u0

H | <
√
2/(kRe) (componentwise) and |DH(u0

H)| 6= 0: in that case, the re-
duced model derived for n ≥ 1 still holds. When n → 1, the limit of that
model still coincides (as expected) with the standard (viscous) shallow water
equations, and when n → 0, the correction can be computed exactly, it has the
profile

(55)

u1
H =

√

|DH(u0
H)|2 + | divH u0

H |2 h

Rek|u0
H |

(

2

√

1−
(

Rek|u0
H |√

2h
(b+ h− z)

)2

+

√

1−
(

Rek|u0
H |√

2

)2

+

√
2

Rek|u0
H | arcsin

(

Rek|u0
H |√

2

)

)

u0
H

|u0
H | +O(ε2) .

Moreover, on noting that |DH(u0
H)| = 0 ⇒ |DH(uH)| = 0 (otherwise (54) leads

to a contradiction), the case |DH(u0
H)| = 0 should hold if, and only if, |T | < 2

Re .
So one could also obtain the reduced model starting from a variational inequality
instead of (24) as full model (see e.g. [28]) and get similarly to [21] with a test
function vH

∂th
0 + divH(h0u0

H) = 0 ,(56)
∫

Ω

(

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H) + k(u0
H + u1

H |b)
)

· (vH − u0
H)(57)

+

∫

Ω

2

Re

∣

∣DH(vH)−DH(u0
H)
∣

∣ ≥
∫

Ω

(

2

Re
divH

(

β
DH(u0

H) + divH u0
HI

√

|DH(u0
H)|2 + | divH u0

H |2

))

· (vH − u0
H)

+

∫

Ω

(

γh0∇H∆H(b+ h0) + h0fH + fzh
0∇H(b+ h0)

)

· (vH − u0
H)

where, using the explicit profile (55), one can compute the friction term and the
viscosity modification β. But remember that the latter reduced model (in the
limit n → 0) breaks down when |u0

H | >
√
2/(kRe) while, at the same time, it

has no meaning when |DH(u0
H)| = 0 ⇔ |T | < 2

Re , which seems contradictory.

Remark 5 (About viscoplastic non-Newtonian fluids) The physical per-
tinence and the modelling of viscoplastic non-Newtonian fluids with a yield stress
is still much debated. In any case, Bingham law is a cornerstone of the vis-
coplastic modelling since it allows to mathematically investigate the concept of
yield-stress and it is worth discussing. That is why we would also like to men-
tion that the most usual form of Bingham law is not as above, but includes an
additional viscous dissipative term, and is often thought as a particular case of
the more general Herschel-Bulkley law

T =

(

2

Re
|D(u)|m + Bi

)

D(u)

|D(u)| if D(u) 6= 0, then |T | ≥ Bi, or D(u) = 0 ⇔ |T | < Bi ,
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where this time we have denoted Bi a yield-stress independent of 2
Re

, the usual
adimensional constant for the ratio between the viscous dissipation and inertia.
The standard Bingham law coincides with the case m = 1, while we investigated
the case m → −∞ above when n = 0.

For any m, the conclusion above needs to be modified as follows, provided
one assumes Bi ∼ ε in order to perform our thin-layer reduction procedure. As
above, one cannot go further than derive a reduced-model for the subdomains of
the two-dimensional domain Ω where |DH(u0

H)| 6= 0 holds. And the problem
still consists in computing a correction from a profile solution to
(58)
(

2

Re
|D(u)|m + Bi

)

∂zu
1
H

√

|DH(u0
H)|2 + |∂zu1

H |2/2 + | divH u0
H |2

=
ku0

H

h
(b+h−z)+O(ε2) ,

a polynomial equation in |∂zu1
H | which unfortunately does not seem to be soluble

for any m > 0.
Another paradigm in viscoplastic modelling has attracted much attention re-

cently, see e.g. [33], and we would like to mention it too: a Drucker-Prager yield
criterion can replace Von Mises one
(59)

T =

(

2

Re
|D(u)|m + pBi

)

D(u)

|D(u)| if D(u) 6= 0, then |T | ≥ pBi, or D(u) = 0 ⇔ |T | < pBi .

Note that it is not necessary to assume Bi = O(ε) then since one already has
p = O(ε). In particular, when the viscous component vanishes, the correction
to the velocity profile should satisfy

(60) pBi
∂zu

1
H

√

|DH(u0
H)|2 + |∂zu1

H |2/2 + | divH u0
H |2

=
ku0

H

h
(b+ h− z) +O(ε2) ,

where we recall (25) p = fz(z − (b + h)) − γ∆H(b + h) + Tzz + O(ε2). On
noting (59), it holds

p

(

1 + Bi
divH(u0

H)
√

|DH(u0
H)|2 + |∂zu1

H |2/2 + | divH u0
H |2

)

= fz(z−(b+h))−γ∆H(b+h)+O(ε2)

which, plugged into (60), yields an algebraic equation for ∂zu
1
H at any z ∈

(b, b+ h)
(61)

Bi∂zu
1
H (fz(z − (b+ h))− γ∆H(b+ h))

BidivH(u0
H) +

√

|DH(u0
H)|2 + |∂zu1

H |2/2 + | divH u0
H |2

=
ku0

H

h
(b+h−z)+O(ε2) .

In the case γ = 0 (no surface tension), the formula becomes much easier

(62)

(

1

2
−
(

hBifz
ku0

H

)2
)

|∂zu1
H |2 − 2BidivH(u0

H)

(

hBifz
ku0

H

)

|∂zu1
H |

+ |DH(u0
H)|2 + (1− Bi2)| divH u0

H |2 +O(ε2) = 0
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and one can then also solve explicitly the problem for the correction. So the
solution to (62) allows one to define an admissible velocity correction, and thus
also a coherent approximation of the full model through the reduced model, as
soon as the sole requirement |DH(u0

H)| 6= 0 ⇔ |DH(uH)| 6= 0 is satisfied here
(a condition that unfortunately remains difficult to predict or analyze here ;
in particular, we are not aware of a simpler reformulation of this model as a
variational inequality).

5.2 The viscous regime

Assuming (H1 − H2b − H3 − H4) we again follow, for purely viscous non-
Newtonian fluids, the same procedure as in the Newtonian case. First we obtain
a nonlinear version of (45)

(63)
1

Re
(|∂zuH |2/2)(n−1)/2∂zuH = fH (z − (b+ h)) +O(ε2)

on noting DH(uH) = O(ε) (with additional terms to fH if Θ = O(ε)). With
the friction boundary condition at z = b, this next yields

(64) uH =
(

Re2
n−1

2 a
)

1
n

(

(z − (b + h))
n+1

n − h
n+1

n

n+1
n

)

− a
h

k
+O(ε1+

2/3
n ) ,

where a = fH , or a = fH + fz∇H(b + h) + γ∇H∆H(b + h) if Θ = O(ε),
and an autonomous equation for h0 = h + O(ε2) from the continuity equation

∂th+ divH
∫ b+h

b
uH = 0 and the approximation

(65)

∫ b+h

b

uH =
(

Re2
n−1

2 a
)

1
n

(

2n+ 1

n+ 1
h

2n+1

n

)

− a
h2

k
+O(ε2+

2/3
n ) .

This coincides with the viscous limit recently derived in [29], though with an-
other mathetically-inclined viewpoint and a slightly different scaling (the term
h2/k is absent in particular, somehow a no-slip limit k → ∞). It holds for all
power-law fluids (though, note that the quality of approximation increases with
n in the shear-thinning case but decreases in the shear-thickening case).

6 Application to viscoelastic non-Newtonian flu-

ids

There are numerous models for viscoelastic non-Newtonian fluids, with various
definitions of the extra-stress τ in T = 2ηsD(u) + τ . We concentrate here
on one prototypical model among differential constitutive equations for τ , the
Upper-Convected Maxwell (UCM) equations [15],

(66) Dtτ = (∇u)τ + τ (∇u)T +
1

λ
(2ηpD(u)− τ ) in D(t),
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where λ is interpreted as a characteristic relaxation time for elastic dilute
molecules and ηp as a viscosity. There are many extensions to the UCM equa-
tions, which one also often writes using the total (kinematic) viscosity η = ηs+ηp
and the retardation time λ(1 − θ) ≤ λ where θ = ηp/η ∈ (0, 1)
(67)










Dtu = −∇p+ div(2η(1 − θ)D(u)) + div τ + f in D(t) ,

divu = 0 in D(t) ,

λ(Dtτ − (∇u)τ − τ (∇u)T ) = 2ηθD(u)− τ in D(t).

A simple one for instance combines the power-law and the UCM models T =
2ηs|D(u)|n−1D(u) + τ , see [39]. One can also use nonlinear versions of the
relaxation term in the right-hand side of (66), see [42]. But (66) already contains
the kinematic essence of most differential constitutive equations (material frame
indifference for tensors) and we postpone the discussion of other models to
Remark 6 (and possible future works).

To adimensionalize (67), let us introduce the Deborah number De = λ/T ,
and

T =

(

THH THz

T T
Hz Tzz

)

=
1− θ

Re

(

2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)
T 2∂zuz

)

+

(

τHH τHz

τ T
Hz τzz

)

so the extra-stress τ satisfies the non-dimensional UCM equations

(68) De
(

Dtτ − (∇u)τ − τ (∇u)T
)

=
2θ

Re
D(u)− τ .

Note by the way that the cases De = O(ε) are not the most physically
interesting because they lead us back to a purely-viscous Newtonian extra-stress
at first order of approximation in ε → 0.

In the following, we use the reformulation of (68) with the also well-known
conformation tensor variable σ = I + DeRe

θ τ solution to an evolution equation
using the single scalar parameter De

(69) De
(

Dtσ − (∇u)σ − σ(∇u)T
)

= I − σ .

The infamous Weissenberg number Wi = DeRe/θ then appears in Navier-
Stokes (10) through
(70)

T =
1− θ

Re

(

2DH(uH) ∂zuH +O(ε)
(∂zuH +O(ε))T −2 divH uH

)

+
θ

ReDe

(

σHH − IH σHz

σT
Hz σzz − 1

)

,

where, recalling Section 3, we have also used the continuity equation, h ∼ ε and
(H1) in

∇u =

(

∇HuH ∂zuH

(∇Huz)
T ∂zuz

)

=

(

∇HuH ∂zuH

O(ε) − divH uH

)

.

We recall that for physical reasons3, the conformation tensor should always be
positive-definite, and indeed remains so as long as it is initially and solutions
to (69) are smooth enough (see e.g. [20]).

3More precisely, for the model to be consistent with the usual thermodynamics principles,
see e.g. [44].
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From now on, recalling Section 3, it is natural to assume that σHH and σzz

are not only bounded but also have the same scaling. Then, on noting that (69)
reads
(71a)

De
(

DtσHH − (∇HuH)σHH − σHH(∇HuH)T − σHz ⊗ ∂zuH − ∂zuH ⊗ σHz

)

= σHH−I

(71b)
De (DtσHz − (∇HuH)σHz − σHH(∇Huz)− σHz∂zuz − ∂zuHσzz) = σHz

(71c) De (Dtσzz − 2σHz · ∇Huz − 2σzz∂zuz) = σzz − 1 ,

it stems from (71a) and (71b) that (H4) : ∂zuH = O(1) is also as natural (for
boundedness) in viscoelastic non-Newtonian fluids as in purely viscous (Newto-
nian and non-Newtonian) fluids. Under (H4), one then obtains with De ∼ 1
(72a)

De
(

DtσHH − (∇Hu0
H)σHH − σHH(∇Hu0

H)T − σHz ⊗ ∂zu
1
H − ∂zu

1
H ⊗ σHz

)

= σHH−I+O(ε)

(72b) De
(

DtσHz − (∇Hu0
H)σHz + σHz divH u0

H − ∂zu
1
Hσzz

)

= σHz +O(ε)

(72c) De
(

Dtσzz + 2σzz divH u0
H

)

= σzz − 1 +O(ε)

from (71a–71b–71c), for any first-order approximation u0
H = uH +O(ε) with a

flat profile, possibly corrected by some u1
H = O(ε).

6.1 The inertial regime

Like in the previous cases, we obtain an inertial limit when one specifies (H2)
as (H2a) : k ∼ ε. On the contrary, to coherently use THz = O(ε) for BCs (17)
and (18) in Section 3 with

(73) THz =
1

Re

(

(1− θ)∂zu
1
H + θ

1

De
σHz

)

,

we should now further assume, in addition to (H4),

(i) either (H3) : Re ∼ ε−1 like in the Newtonian case,

(ii) or (H5a) : 1− θ ∼ ε, plus either (H6a) : σHz = O(ε) or (H6c) : De ∼ ε−1,

(iii) or (H5b) : ∂zuH = O(ε) (which is stronger than (H4)) plus either (H6a),
or (H6b) : θ ∼ ε, or (H6c).

Note that in absence of other assumptions, De ∼ 1 and θ ∼ 1 shall be simply
taken as constants.
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6.1.1 Small internal stresses

Under assumptions (H1 − H2a − H4 − H3), like in the Newtonian case, first-
order approximations (h0,u0

H) solution to (34–35) are not necessarily coherent
with BCs (17) and (18) and the point is how to approximately compute THz .
Introducing a correction u1

H satisfying

(74)
1

Re

(

(1− θ)∂zu
1
H + θ

1

De
σHz

)

= ku0
H

b+ h− z

h
+O(ε2) ,

one would then like to coherently replace (34–35) by a reduced model invoking
the depth-averaged horizontal momentum equation truncated at order O(ε3)
(so the impact of the correction u1

H on u0
H is coherently taken into account),

just like in the Newtonian case, plus simplified UCM equations to close the
system. Now, the dissipative terms involving the viscoelastic stress tensor T in
the momentum equation can be computed using approximations of the UCM
system of equations without any explicit reference to the correction u1

H after
rewriting (74)

(75) ∂zu
1
H =

1

1− θ

(

Reku0
H

b+ h− z

h
− θ

1

De
σHz

)

+O(ε) .

Then a coherent reduced model is obtained as usual after closing the second-
order truncation of the horizontal momentum equation, typically using the same

trick
∫ b+h

b u1
H = O(ε3) as in the Newtonian case. Assuming, for the sake of

simplicity,

(H7a) : ∂zσHH , ∂zσzz = O(1) (H7b) : ∂zσHz = O(1)

a profile can be computed explicitly from (75) such that
∫ b+h

b u1
H = O(ε3) holds

(76) u1
H =

1

1− θ

(

Rek

2h
u0
H

(

h2

3
− (b + h− z)2

)

− θ

2

1

De
σ0

Hz (z − (h+ 2b))

)

,

and a reduced model coherent at first-order with (H1 − H2a − H4 − H3 − H7)
reads

(77a) ∂th
0 + divH(h0u0

H) = 0

(77b)

∂t(h
0u0

H)+divH(h0u0
H⊗u0

H)+ku0
H

(

1− Re

(1− θ)

kh0

3

)

+kσ0
Hz

Re

(1− θ)

θ(b + h0)

2De

=
(

h0fH + fzh
0∇H(b + h0)

)

+ γh0∇H∆H(b + h0)

+
2(1− θ)

Re
divH

(

h0
(

DH(u0
H) + divH u0

HI
))

+
θ

ReDe
divH

(

h0(σ0
HH − σ0

zzI)
)
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(77c) De
(

∂t(h
0σ0

HH) + divH(h0u0
H ⊗ σ0

HH)
)

= h0 De

1− θ

(

σ0
Hz ⊗

(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

−
(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

⊗ σ0
Hz

)

+ h0De
(

(∇Hu0
H)σ0

HH + σ0
HH(∇Hu0

H)T
)

+ h0(σ0
HH − I)

(77d) De
(

∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz)
)

= h0 De

1− θ

(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

σ0
zz+h0De

(

∇Hu0
Hσ0

Hz − divH u0
Hσ0

Hz

)

+h0σ0
Hz

(77e) De
(

∂t(h
0σ0

zz) + divH(h0u0
Hσ0

zz)
)

= h0De(2σ0
zz divH u0

H) + h0(σ0
zz − 1) .

Note that one retrieves the standard viscous shallow water (our reduced
model for the standard Navier-Stokes equations) in the limit θ → 0 (prior or
subsequent to ε → 0 ; i.e. the two formal limits commute here), plus UCM
equations that then become simply enslaved transport equations for a material
tensor (without feedback in the momentum equation). Otherwise, this seems to
be a new model. In particular, it was not identified in our previous work [18] that
focused on the case θ = 1 (where tangential boundary conditions like friction are
a priori useless constraint for the initial BVP) because then, it is not possible
to derive an expression for ∂zuH (with a link between the shear strain and the
shear stress like (74) one cannot compute a coherent approximation of (72b)
like (77d)). Unfortunately, the limit θ → 1 after ε → 0 is unclear, but we next
assume θ = 1 + O(ε) without even assuming Re ∼ ε−1 then, and will next be
able to derive a limit model provided σHz/De = O(ε).

6.1.2 Small viscous internal stresses

Under assumptions (H1−H2a−H5a−H6a), a non-vanishing first-order approx-
imation of σHz can be coherently constructed from (71b) only if (H5b) holds
(since σzz = O(ε) is impossible, having as equilibrium value 1 by (71c) as long
as De remains bounded), which is on the other hand not coherent with (74)
and the horizontal momentum equation unless u0

H = 0. That is why we only
consider (H1 − H2a − H5a − H6c), plus (H7) for the sake of simplicity, which
leads to the reduced model

(78a) ∂th
0 + divH(h0u0

H) = 0

(78b)

∂t(h
0u0

H)+divH(h0u0
H⊗u0

H)+ku0
H

(

1− Re

(1− θ)

kh0

3

)

+kσ0
Hz

Re

(1− θ)

θ(b + h0)

2De

=
(

h0fH + fzh
0∇H(b + h0)

)

+ γh0∇H∆H(b + h0)

+
2(1− θ)

Re
divH

(

h0
(

DH(u0
H) + divH u0

HI
))

+
θ

ReDe
divH

(

h0(σ0
HH − σ0

zzI)
)
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(78c)

∂t(h
0σ0

HH) + divH(h0u0
H ⊗ σ0

HH) = h0
(

(∇Hu0
H)σ0

HH + σ0
HH(∇Hu0

H)T
)

+h0 1

1− θ

(

σ0
Hz ⊗

(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

−
(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

⊗ σ0
Hz

)

(78d) ∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz) = h0(∇Hu0
H)σ0

Hz − h0σ0
Hz divH u0

H

+ h0 1

1− θ

(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

σ0
zz

(78e) ∂t(h
0σ0

zz) + divH(h0u0
Hσ0

zz) = 2h0σ0
zz divH u0

H

whose solutions are coherent with first-order approximations of the initial BVP
when (H1−H2a−H5a−H6c−H7ab) indeed holds.

The latter model (6.13) formally coincides with the limit 1/De → 0, θ → 1
(provided k/(1 − θ) and 1/De(1 − θ) remain bounded) of (6.12), some kind of
“High-Weissenberg limit” (where the UCM model suffers from deficiencies, see
e.g. [20], and Remark 6 for repair suggestions).

6.1.3 Small viscous internal shear stresses

Under assumptions (H1−H2a−H5b), the motion-by-slice is stronger than the
usual one, which thus further restricts a priori the regimes of validity of a possible
reduced model (even if the reduced model had solutions beyond the regime of
validity of our assumptions, such solutions would not necessarily define coherent
approximations of the initial BVP). It implies

(79) uH(t, x, y, z) = u0
H(t, x, y) +O(ε2)

so that the correction u1
H to u0

H is of higher-order than usual ones and does
not show up in the horizontal momentum equation if, on the other hand, the
extra-stress terms can be computed coherently. Now, under (H1−H2a−H5b−
H6a−H7ab) – (H7) for the sake of simplicity – one indeed obtains the following
reduced model coherent with first-order approximations of the initial BVP

(80a) ∂th
0 + divH(h0u0

H) = 0

(80b) ∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H) + ku0
H

=
(

h0fH + fzh
0∇H(b + h0)

)

+ γh0∇H∆H(b + h0)

+
2(1− θ)

Re
divH

(

h0
(

DH(u0
H) + divH u0

HI
))

+
θ

ReDe
divH

(

h0(σ0
HH − σ0

zzI)
)

(80c) De
(

∂t(h
0σ0

HH) + divH(h0u0
H ⊗ σ0

HH)
)

= h0De
(

(∇Hu0
H)σ0

HH + σ0
HH(∇Hu0

H)T
)

+ h0(σ0
HH − I)
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(80d) De
(

∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz)
)

= h0Deσ0
HH

(

∇H(u0
H · ∇Hb) + (divH u0

H)∇Hb− 1

2
h0∇H divH u0

H

)

+h0 De

1− θ

(

Rek

2
u0
H − θ

1

De
σ0

Hz

)

σ0
zz+h0De

(

(∇Hu0
H)σ0

Hz − h0σ0
Hz divH u0

H

)

+h0σ0
Hz

(80e) De
(

∂t(h
0σ0

zz) + divH(h0u0
Hσ0

zz)
)

= h0De(2σ0
zz divH u0

H) + h0(σ0
zz − 1) .

where, contrary to (77a–77b–77c–77d–77e) or its “High-Weissenberg limit” (78a–
78b–78c–78d–78e), the shear component σHz of the viscoelastic stress decouples
from the autonomous system of equations (80a–80b–80c–80e) and is simply com-
puted as a post-processed solution to (80d) enslaved through u0

H . (In (80d),
we have used (74) for the vertical derivative of the horizontal velocity, and the
approximate vertical velocity u0

z = uz +O(ε2) reconstructed from u0
H , the con-

tinuity equation and the impermeability condition at the bottom excatly like
in the Newtonian case, so (80d) is coherent with a first-order approximation
σ0

Hz = σHz +O(ε2).)
The latter reduced model (6.15) is exactly the viscous two-dimensional ex-

tension of the one-dimensional model derived in [18] for the case θ = 1, k = 0.
The case k = 0 (pure-slip boundary condition at bottom close to the topog-
raphy) for θ ∈ [0, 1) is straightforwardly recovered by taking the limit k → 0
in the system above. One cannot compute directly the case θ → 1 ; we refer
to [18] for the singular case θ = 1 (with k = 0, where 10 the computation of
σ0

Hz from the horizontal momentum equation supplemented with the bottom
boundary conditon, and 20 the computation of an approximation of ∂zu

1
H from

an equivalent to (80d), are modified).
When one assumes (H6b − H7ab) in addition to (H1 − H2a − H5b), one

straightforwardly obtains the same autonomous system of equations as in the
reduced model with (H6a), that is (80a–80b–80c–80e). But although it defines
a coherent first-order approximation without even assuming any scaling for σ

(a coefficient θ of the whole tensor is then only responsible for the small scale),
a first-order approximation σ0

Hz = σHz+O(ε) of a shear component that is not
smaller than the other components of the viscoelastic stress tensor would then
be different, and i.e. solve

(81) De
(

Dtσ
0
Hz − (∇Hu0

H)σ0
Hz + σ0

Hz divH u0
H

)

= σ0
Hz .

Last, (H1−H2a−H5b−H6c−H7ab) yields the following reduced model co-
herent with a first-order “High-Weissenberg-limit” approximation of the initial
BVP

(82a) ∂th
0 + divH(h0u0

H) = 0
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(82b) ∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H) + ku0
H

=
(

h0fH + fzh
0∇H(b + h0)

)

+ γh0∇H∆H(b + h0)

+
2(1− θ)

Re
divH

(

h0
(

DH(u0
H) + divH u0

HI
))

+
θ

ReDe
divH

(

h0(σ0
HH − σ0

zzI)
)

(82c) ∂t(h
0σ0

HH) + divH(h0u0
H ⊗ σ0

HH) = h0(∇Hu0
H)σ0

HH + σ0
HH(∇Hu0

H)T

(82d) ∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz) = (∇Hu0
H)σ0

Hz − σ0
Hz divH u0

H

(82e) ∂t(h
0σ0

zz) + divH(h0u0
Hσ0

zz) = 2h0σ0
zz divH u0

H .

The various latter models obtained under assumption (H5b) cannot be easily
linked to any other one. But it is remarkable that in any case, no correction
to the flat profile is necessary under assumption (H5b) (even if a profile can
be reconstructed afterwards from (76)), whereas the presence of purely (New-
tonian) viscous forces is in turn hardly seen but in dissipation terms when one
enforces (H5b) instead of (H5a). Furthermore, requiring the velocity to have a
flat profile (79) is thus a priori a very strong limit for the applicability of our
reduced models to real flows. This may however be particularly interesting for
the cases where the normal stress differences are large, since the stress (70) then
reads

(83) T =
1− θ

Re

(

2DH(uH) O(ε)
O(ε) −2 divH uH

)

+
θ

ReDe

(

σHH − IH σHz

σT
Hz σzz − 1

)

,

where either (H6b) : θ ∼ ε, eor (H8) : σHH = I+O(ε) , σzz = 1+O(ε) , σHz =
O(ε2) (a stronger assumption necessary when starting with (H6a) : σHz ∼ ε) or
(H6c) : De ∼ ε−1 holds but the viscous stretch need not be scaled even though
viscoelastic components are always small.

To conclude this section, note that even though some reduced models have
been identified in the High-Weissenberg limit regime (H6c) : De ∼ ε−1 where
already the model is questionable, we have obtained otherwise two main re-
duced models – the autonomous systems of equations (77a–77b–77c–77d–77e)
and (82a–82b–82c–82e) – whose solutions define coherent approximations of the
initial BVP in physically sensible regimes. It could be interesting to numerically
simulate the first one, which has not been done yet to our knowledge, and maybe
compare it with two-dimenionsal extensions of the solutions to the second model
computed in [18]. Note in particular that shear effects are then not necessarily
small in comparison with elongational/compression effects, which was a prob-
lem for the applicability of the second reduced model to real (often sheared !)
flows already noted in [18].

6.2 The viscous regime

Assuming (H1 − H2b − H4), we proceed for the viscous limit of viscoelastic
fluids as usual. We specify (H2) as (H2b) : uH |z=b = O(ε) and next require
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THz = O(ε) as above in the inertial case, in addition to (H4) : ∂zuH = O(1).
Recall also that the flow is necessary slow here (uH = O(ε)) and one obtains
from the momentum balance

(84)
1

Re

(

(1− θ)∂zuH + θ
1

De
σHz

)

= fH(z − (b+ h)) +O(ε2)

after using THz |z=b+h = O(ε2) and
∫ b+h

z divH(THH − Tzz) = O(ε2).
Assuming (H3) : Re ∼ ε−1 plus (H7) for the sake of simplicity in addition

to (H1 − H2b − H4) (and of course De ∼ 1, θ ∼ 1 as long as nothing different
is precised for these adimensional numbers) leads to a reduced model that is an
autonomous system of equations for (h0,σ0

Hz , σ
0
zz)

(85a) ∂th
0 +

1

1− θ
divH

(

Re

6
fH |h0|3 − θ

1

De
σ0

Hz

|h0|2
2

)

= 0

(85b) De
(

∂t(h
0σ0

Hz)
)

= h0σ0
Hz + h0 De

1− θ

(

Re

2
fH − θ

1

De
σ0

Hz

)

σ0
zz ,

(85c) De
(

∂t(h
0σ0

zz)
)

= h0(σ0
zz − 1) ,

where the discharge in the continuity equation is computed from (84) and

(86) uH =
1

1− θ

(

Re

2
fH (z − (b+ h))

2 − θ
1

De
σ0

Hz(z − b)

)

+O(ε2) ,

and the longitudinal (horizontal) stress components are obtained by the post-
processing

(87) De
(

∂t(h
0σ0

HH)
)

= σ0
HH − I

+ h0 1

1− θ
De

(

σ0
Hz ⊗

(

Re

2
fH − θ

1

De
σ0

Hz

)(

Re

2
fH − θ

1

De
σ0

Hz

)

⊗ σ0
Hz

)

.

If furthermore Θ = O(ε), then the same reduced model hold, but it yields
coherent approximations as long as ∂zuH = O(ε) and σ = O(ε) hold, on noting
the starting point
(88)
1

Re

(

(1− θ)∂zuH + θ
1

De
σHz

)

= (fH−fz∇H(b+h)−γ∇H∆H(b+h))(z−(b+h))+O(ε3) .

Assuming (H5a) : 1− θ ∼ ε and (H6a) : σHz = O(ε) again requires ∂zuH =
O(ε) and cannot be coherent, so we consider (H5a) with (H6c) : De ∼ ε−1 only,
which leads to σzz = 1 + O(ε) constant (equal to physical equilibrium) and a
reduced model consisting of the limits of (85a) and (85b) as 1/De → 0 (with
obvious specificities if Θ ∼ ε, and (87) for post-processing σ0

HH only).
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Last, assuming (H5b) : ∂zuH = O(ε) and (H6b) : θ = O(ε) leads to the
same reduced model as the first one above (and is coherent under the more
restricitive regime where O(ε2) is replaced by O(ε3) in (86)), while (H5b) and
(H6c) gives the same as the second one above.

All these systems seem new to us: other viscous limits of non-Newtonian
viscoelastic fluid models have already been derived, but on assuming different
scalings, see e.g. [10, 9, 11] (De ∼ ε).

Remark 6 (Nonlinear differential constitutive equations and HWNP)
The most used variations of the UCM model are nonlinear modifications of
these differential constitutive equations, for instance the FENE-P model where

the extra-stress reads τ = θ
DeRe

(

σ

1−trσ/b − I
)

, b > 0 is a new parameter such

that 0 ≤ trσ ≤ b is prerserved by smooth time evolutions of the flow, and the
conformation tensor σ is solution to the nonlinear equation

(89) De
(

Dtσ − (∇u)σ − σ(∇u)T
)

= I − σ

1− trσ/b
.

One nice feature of these nonlinear versions is that they usually impose such
constraints as 0 ≤ trσ ≤ b which are believed to alleviate the deficiencies of the
UCM model (High-Weissenberg-Number Problems or HWNP in short) in the
“High-Weissenberg limit” (at least, well-posedness has sometimes been shown
for smooth flows, see e.g. [37]).

Furthemore, for most of them, reduced models are easily derived from the
UCM reduced models above as long as one does not use (H6a) : σHz = O(ε). It
suffices to multiply the last term on the right by 1

1−trσ/b , which is indeed never

small,

• in (77b), (77c) and (77e) under (H1 −H2a−H4 −H3−H7),

• in (82b), (82c) and (82e) under (H1 −H2a−H4 −H5b−H6b−H7).

On the contrary, since 1
1−trσ/b can become arbitrary large when trσ → b, this

is not only incompatible with (H6a) : σHz = O(ε), but also requires additional
assumptions in the case (H6c) : De ∼ ε−1 (thus not treated here).

Another way to avoid HWNP is to assume De ∼ ε like in e.g. [10, 9, 11] !
Then, one cannot expect strong viscoelastic influences on the flow, of course.
Though, this scaling may be enough for some applications, and we would like to
mention that it has recently raised interesting new persepctives: a new approach
to formal model reduction combining micro and macro scales [40] that is indeed
consistent with a Newtonian behaviour in the limit De → 0.

7 Conclusion

We have defined a mathematical framework that allows, for many fluids (i.e.
many rheologies), to derive coherent long-wave thin-layer approximations of
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free-surface Navier-Stokes flows driven by gravity above smoothly varying to-
pographies. Most reduced models derived herein were already known, and the
shallow water equations in particular have already proved useful in the numer-
ical simulation of dam-breaks for instance. On the other hand, the models for
viscoelastic fluids seem to have been much less explored, and some of those
derived herein seem new to us. Of course, the question how well they model
real flows is still to be answered. This could be investigated numerically in
future works (letting alone their well-posedness and the mathematical control
of their distance to the full model) following the same path as in our previous
work [18] where we considered the viscoelastic model without friction nor sur-
face tension in a one-dimensional (fast) inertial flow regime. Note by the way
that the present work also answers important questions concerning the ability of
long-wave thin-layer reduced models at describing viscoelastic fluids in sheared
(as opposed to purely extensional) inertial flow regimes that were raised in [18].
Last, the non-Newtonian viscous fluids with power-law models and their vis-
coplastic limit have attracted much attention recently, in particular with a view
to modelling avalanches and debris flows. Indeed, such complex flows seem to
require complex rheologies, possibly with a yield stress and nonlinear effects,
while many difficulties have been encountered so far as concerns the modelling
of fluid/solid transitions. We hope that the unified framework derived herein
will help characterize features essential to long-wave thin-layer flow modelling,
and evaluate future models for mud flows and landslides in particular.
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