N
N

N

HAL

open science

The effects of technological voids on the
hydro-mechanical behaviour of compacted
bentonite-sand mixture
Qiong Wang, Anh Minh A.M. Tang, Yu-Jun Cui, Pierre Delage,

Jean-Dominique Barnichon, Wei-Min Ye

» To cite this version:

Qiong Wang, Anh Minh A.M. Tang, Yu-Jun Cui, Pierre Delage, Jean-Dominique Barnichon, et al..
The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mix-
ture. Soils and Foundations, 2013, 53 (2), pp.232-245. 10.1016/j.sandf.2013.02.004 . hal-00829480

HAL Id: hal-00829480
https://enpc.hal.science/hal-00829480
Submitted on 3 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://enpc.hal.science/hal-00829480
https://hal.archives-ouvertes.fr

N

© 0o N O~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The effects of technological voids on the hydro-haeucal

behaviour of compacted bentonite-sand mixture

Qiong Wang, Anh Minh Tand, Yu-Jun Cui®, Pierre Delage Jean-Dominique
Barnichon?, Wei-Min Ye®

! Ecole des Ponts ParisTech, Navier/CERMEBance
2 Institut de Radioprotection et de S(reté NuclédiRSN), France
3. Tongji University, China

Corresponding author:

Prof. Yu-Jun CUI

Ecole des Ponts ParisTech

6-8 av. Blaise Pascal, Cité Descartes, Champs-suné/
77455 MARNE LA VALLEE

France

Telephone : +33 1 64 15 35 50
Fax : +33 164 15 35 62
E-mail : yujun.cui@enpc.fr

! Centre d’Enseignement et de Recherches en MéaadiegiSols



26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65

Abstract

Compacted bentonite-based materials are often asédffer materials in radioactive
waste disposal. A good understanding of their ydezhanical behaviour is essential
to ensure the disposal safety. In this study, aurexof MX80 bentonite and sand was
characterized in the laboratory in terms of wagtemtion property, swelling pressure,
compressibility and hydraulic conductivity. Theesfts of the technological voids or
the voids inside the soil were investigated. Thehmelogical voids are referred to as
the macro-pores related to different interface®iving the buffer material, whereas
the voids inside the soil is referred to as the mmm macro-pores within the

compacted bentonite/sand mixture. The results nbtdashow that at high suctions,
the amount of water absorbed in the soil depenfidyson suction, whereas at low
suctions it depends on both suction and bentoriie vatio. There is a unique

relationship between the swelling pressure and#rgonite void ratio, regardless of
the sample nature (homogeneous or not) and santiofra However, at the same
bentonite void ratio, a higher hydraulic condudtiwwas obtained on the samples with
technological voids. The effect of sand fractiorsveaidenced in the mechanical yield
behaviour: at the same bentonite void ratio, thetdrete-sand mixture yielded at a
higher pre-consolidation stress.

Keywords. Bentonite-sand mixture; Technological voids effedfgater retention
property; Swelling pressure; Hydraulic conductiviBompressibility.

1 INTRODUCTION

Most designs of deep geological repository for Heyjrel radioactive wastes (HLW)

are based on the multi-barrier concept with isotatiof the waste from the

environment. The multi-barrier concept includes tiaural geological barrier (host
rock), engineered barriers made up of compacted-bantonite mixtures (placed

around waste containers or used as buffer andngealements) and metal canister.
Compacted bentonite-based materials are relevateriala for this purpose thanks to
their low permeability, high swelling and high raduclide retardation capacities
(Pusch, 1979; Yong et al., 1986; Villar and Llo2208; Komine and Watanabe, 2010;
Cui et al., 2011).

Engineered barriers are often made up of compdutells. When bricks are placed
around waste canisters or to form sealing bufférs,so-called technological voids
either between the bricks themselves or betweearkdyricanisters and the host rock
are unavoidable. As an example, 10 mm thick gapedssn bentonite blocks and
canister and 25 thick mm gaps between the bentbioteks and the host rock have
been considered in the basic design of Finland af@koski, 2010). These
technological voids appeared to be equal to 6.6 #heovolume of the gallery in the
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FEBEX mock-up test (Martin et al., 2006). Fractutleat appear in the excavation
damaged zone within the host rock in the near fielastitute additional voids. In the
French concept, the volume of the bentonite/rogisga estimated at 9 % of the
volume of the gallery by the French waste managemgenicy (ANDRA 2005). This

value reaches 14 % in the SEALEX in-situ test earrbut in the Tournemire

Underground Research Laboratory (URL) run by IR8Mdt{tut de radioprotection et
de sdreté nucléaire, the French expert nationanisgtion in nuclear safety) in
South-West of France (Barnichon and Deleruyell©920

Once placed in the galleries, engineered barriexspeogressively hydrated by pore
water infiltrating from the host-rock. This watefiltration is strongly dependent on

the initial state of the compacted material (watamtent, suction and density, e.g. Cui
et al. 2008). Indeed, it has been shown that wadéasfer in unsaturated swelling
compacted bentonites or sand bentonite mixturestngngly dependent on the
imposed boundary conditions in terms of volume dgeai\s shown in Yahia-Aissa et
al. (2001), Cui et al. (2008) and Ye et al. (2009g degree of swelling allowed

significantly affects the amount of infiltrated \eatwith much water absorbed when
swelling is allowed and a minimum amount of watesa@bed when swelling is

prevented. Volume change conditions also appeardave, through microstructure
changes, significant influence on the hydraulic caniity.

In this regard, the degree of swelling allowed bg technological voids described
above has a significant influence on the hydro-raacdal behaviour of the

compacted bentonite and their effects need to ierhenderstood. Swelling results in
a decrease in dry density that may lead to a datjoed of the hydro-mechanical
performance of engineered barriers (Komine e28l09, Komine, 2010). As a result,
the safety function expected in the design may ogér be properly ensured.
Therefore, a better understanding of the effectheftechnological voids is essential
in assessing the overall performance of the repuysit

In this study, a series of tests was performed comapacted bentonite-sand mixture
samples, aiming at investigating the effects ofhtetogical voids on their
hydro-mechanical behaviour. Temperature effectsewet considered and tests were
carried out at constant ambient temperature (20%x1Gven that the paper deals with
the hydration of engineered barriers in the repogitneither the drying process nor
hysteresis effects were considered.

Firstly, the water retention curve was determinedenrboth free swell and restrained
swell conditions; secondly, the effects of a prestixg technological void on both the
swelling pressure and hydraulic conductivity wenevestigated; finally, the
compressibility at different void ratios was stutliey means of suction-controlled
oedometer tests. An overall analysis of the effettgoids on the hydro-mechanical
response of the engineered barrier was finallygoeréd.
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2MATERIALSAND METHODS

2.1 Materials and sample preparation

A commercial MX80 Na-bentonite from Wyoming, USA svased. The bentonite
powder was provided with an initial water contentl@2% and was stocked in a
hermetic container to maintain the water contemistant, in a room at 20+1°C. All
tests were performed at this temperature.

This MX80 Na-bentonite is characterised by a higintmorillonite content (80%), a
liquid limit of 575%, a plastic limit of 53% and umnit mass of the solid particles of
2.77 Mg/n?. The cation exchange capacity (CEC) is 76 meq/188d of Na). The
grain size distribution (Figure 1) determined usadiydrometer (French standard
AFNOR NF P94-057) on deflocculated clay shows thatclay fraction (< 2 um) is
84%. The X-Ray diffractometer diagram of the clagcfion presented in Figure 2
shows a peak at 12.5 A, typical of montmorillonteis peak shifted from 12.5 to
16.9 A when treated with glycol and to 9.5 A wheied). These data are comparable
with that provided by Montes-H et al., (2003).

The sand used in the mixture was a quartz sand fnenregion of Eure and Loire,
France, that passed through a 2 mm sieve. Figusholvs the sand grain size
distribution curve determined by dry sieving (AFNONWE P94-056).The curveis
characterized by a uniformity coefficient, 6f 1.60 and a B close to 0.6 mm. The
unit mass of the sand grain2i§5 Mg/nf.

A water having the same chemical composition as ploee water of the
Callovo-oxfordian claystone from the ANDRA URL inuB (France), called
synthetic water, was used in the experiments. Theresponding chemical
components (see Table 1) were mixed with distikeder in a magnetic stirrer until
full dissolution.

The grain size distribution of the bentonite powdbtained by “dry” sieving is also

presented in Figure 1, showing a well graded dhstion around a mean diameter
slightly larger than 1 mm. This curve is close kattof sand. The powder was
carefully mixed with dry sand (70% bentonite - 3@#nd in mass) giving a water
content of 8.5% for the mixture. Prior to compafithe mixture powder was put into
a hermetic container connected to a vapor cirauragystem (see Figure 3) containing
free water (100% relative humidity), so as to readhrget water content of 11%. The
samples were weighed every two hours until theetavgater content was attained
(after around two days).

A given quantity of mixture was then placed intdgad ring (35 or 38 mm diameter)
and statically compacted using an axial press abresstant displacement rate of
0.05 mm/min to different target dry densities (\e&wgiven in the following section).
Once the target dry density reached, the displasesteaft was fixed for more than

4



143
144

145
146
147
148
149
150
151
152
153
154
155
156
157

158

159

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175
176
177
178
179
180
181

15 h to attain axial stress stabilization (defitgdchanges in axial stress as low as
0.05 MPa/h). This procedure minimized the samgbewuad during unloading.

The results fromMercury intrusion porosimetry (MIP) tests the bentonite/sand
mixtures compacted to dry densitigs= 1.67 and 1.97 Mg/fand freeze dried are
shown in Figure 4. A typical bimodal porosity (eAhmed et al. 1974, Delage et al.
1996, Romero et al. 1999) was observed in both Emnpefining intra-aggregate
pores (micro-pores) with a mean size of 0.0&h and inter-aggregate pores
(macro-pores) that depend on the dry density anderdrom 10um (for pq= 1.67
Mg/m®) to 50um (pg= 1.97 Mg/ni). As shown by Delage and Graham (1995) from
the data of Sridharan et al. (1971), this confittmst compaction only affects the
largest inter-aggregate pores while intra-aggrepgates remain unaffected (see also
Lloret and Villar, 2007). In compacted bentonitéshas been shown that a further
smaller sized pore population (ranging betweenab@ 2 nm) corresponding to the
intra-particle (interlayer) pores within the aggregaand not detectable by the MIP
had to be also considered (Delage et al., 2006gt_knd Villar, 2007).

2.2 Experimental methods

2.2.1 Water retention test

The water retention curve (WRC) of the bentonitedsaixture was determined under
both free swell and restrained swell conditionsubing both the vapour equilibrium
technique (s > 4.2 MPa) and osmotic technique 42MPa) for suction control.
Three identical samples were used in parallel &edfinal water content calculated
corresponds to the mean value. To apply suctiothéwapour equilibrium technique
under free swell conditions the as-compacted sar(§8enm diameter and 5 mm
height) was placed into a desiccator containingtarated salt solution at bottom. The
sample mass was regularly measured to monitor #terwontent variation over time.
In a standard fashion, equilibrium was consideestihhed when the mass stabilized.
To apply the osmotic technique (Delage et al. 1998lage and Cui, 2008a and
2008b), the sample was wrapped by a cylinder-shaeetu-permeable membrane and
placed in a PEG 20 000 solution at a concentratmmesponding to the required
suction. The water content at equilibrium underheaaction was determined by
weighing.

Following Yahia-Aissa et al. (2001), the determioatof the water retention curve
under prevented swell conditions (constant volumoeddions) was carried out on
samples of 50 mm in diameter and 5 mm in heiglaced into a specially designed
rigid stainless steel cell allowing vapour exchang&@ough two metal porous disks
put on both sides. To apply the osmotic technitjue semi-permeable membrane was
placed between the porous stone and the soil sa(fdeire 5a); all was then
sandwiched between two perforated discs and immderge a PEG solution at the
required concentration. Water infiltrated into 8@l through the porous stone and the
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semi-permeable membrane until the target suctichr@ached. To apply suction with

the vapour equilibrium technique, the sample sacked between two porous stones
was installed between two external plates with esl{Figure 5b) that were connected
to a suction control system using the vapour dguiim technique. The water content
at equilibrium under each suction was determinedéghing.

All the tests performed and the solutions usedémtion control (Delage et al., 1998;
Ye et al., 2009) are presented in Table 2. Sampérs statically compacted at a dry
density of 1.67 Mg/m) corresponding to the final dry density adoptedhia in situ
experiment at the Tournemire URL.

2.2.2 Hydration test with technological void (SP-@4)

The effect of technological void on the swellinghbeiour of the compacted

sand-bentonite mixture was investigated using thécdeshown in Figure 6. In this

system, a sample is placed inside an oedometerptatied into a rigid frame

comprising a load transducer that allows the messeant of vertical stress during
hydration. The small vertical strain due to theodefability of the set-up is measured
by a digital micrometer.

A technological void of 14% of the total cell volenthat corresponds to the situation
of the SEALEX in situ test at the Tournemire URLsaset by choosing an initial
diameter of the compacted sample smaller thanabtite hydration cell. With a ring
diameter of 38 mm, the annular technological vatested (14% of the total cell
volume representing 17% of the initial sample vadinsorresponded to a sample
diameter of 35.13 mm.

The sample was hydrated by injecting synthetic wabeder constant pressure
(0.1 MPa) through a porous disk in contact with blaétom face while the top face
was put in contact with another porous stone so aflowed free expulsion of either
air or water (see Figure 6). The small water presgiurl MPa) was adopted to avoid
any effect on axial pressure measurement. Chamgasial stress, displacement and
injected water volume over time were monitored. ©tice axial stress stabilized
(after more than 35 h , see Figure 9), water ilgaainder 0.1 MPa was continued for
24 h more in order to determine the hydraulic catigity under permanent flow
condition. Indeed, a linear relationship betweeunx fland time was observed,
confirming the observation of Dixon et al. (199Bpat the validity of Darcy’s law for
saturated compacted bentonites.

Four tests with the same technological void of {8R01 - SP04) were conducted on
samples with the same initial water content of 148d various initial dry densities
obtained by changing the compaction pressure (le#t\88 and 85 MPa, giving rise to
dry densities comprised between 1.93 and 1.98 NKggee Table 3). An initial axial
stress of 0.5 MPa was applied on the specimen ddigdration to ensure good
contact and satisfactory load measurement (seerd=igu When water injection
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started, the piston was fixed and the build-upxwdlestress was monitored by the load
transducer.

2.2.3 Suction controlled oedometer test (SO-01 8D-0

Controlled suction oedometer compression tests warged out on samples of 10
mm in height and 38 mm in diameter by circulatirgpour at controlled relative
humidity at the base of the sample as shown inrEigu(tests SO-02/04). A high
pressure oedometer frame was used so as to appibavstresses as high as 50 MPa
(Marcial et al., 2002). Zero suction was applieddirgulating pure water. Vertical
strain was monitored using a digital micrometec(aacy £0.001 mm).

Prior to compression, samples were hydrated undewavertical stress of 0.1 MPa
by applying a suction lower than the initial as-gatted value (estimated at 65 MPa
from the water retention curve in Figure 8at 11%).

As seen in Table 4, the testing program includetaBdard tests (SO-02 to 04) carried
out on 38 mm diameter samples with an initial density of 1.67 Mg/munder
controlled suctions of 4.2, 12.6 and 38 MPa, rehpaly. Stabilisation of swelling
under the imposed suctions and a vertical stre€sloMPa were waited for prior to
compression.

The configuration of test SO-Oaq( = 1.97 Mg/, internal diameter of 35.13 mm), is
similar to that described in Figure 6, with an danwoid between the sample and
ring corresponding to a 14% technological voidtHis test, the sample was flooded
with synthetic water, imposing zero suction througle liquid phase. The higher
1.97 Mg/n? density was chosen so as to correspond to thequewalue of 1.67
Mg/m? once the technological void clogged by the lateaahple swelling. Obviously,
even though that the global density of sample SQva4 equal to that of samples
S0-02/04 after swelling, the density of sample SOsfiould not be homogeneous
and should follow a rather axisymetrical distriloati with lower values in the zone of
former technological void clogged by soil swelling.

3EXPERIMENTAL RESULTS

3.1 Water retention curves

Figure 8 presents the wetting path of the watezntean curves (WRCs) obtained
under both free swell and restrained swell condsti¢tor suctions higher than 9 MPa,
the two curves are very similar while a significaifference can be identified in the
range of suction below 9 MPa. When suction readh®d MPa, the water content
under free swell condition is 246.0%, a much highsdue than that under restrained
swell condition (25.4%). This confirms that the ymeted swelling condition

7
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significantly affects the retention property onlg the range of low suctions
(Yahia-Aissa et al. 2001, Cui et al. 2008, Ye eaD9).

The WRCs of samples of pure MX80 bentonite comphétel.7 Mg/nidry unit
mass under both free swell and constant volume tiondidetermined by Marcial
(2003) are also presented in Figure 8. In the lighetion range (s > 9 MPa), all data
fall on the same curve, regardless of the imposedlidon (swelling allowed or
constant volume) and type and density of mater@n{onite-sand mixture at
1.67 Mg/n? or pure bentonite at 1.7 Mghin By contrast, at lower suctions
(s < 9MPa), the water content of the mixture urfdeg swell condition is lower than
that of the pure bentonite at the same suctionevalu

3.2 Effects of the technological void (tests SPO1-SP04)

Figure 9 presents the results of the four test®1SHP04) carried out to investigate
the effect of technological void on the swellinggsure during water injection under
a constant pressure of 0.1 MPa. As seen in Phatome water escaping from the top
of the cell was observed at the beginning of watdjection during the initial increase
of vertical stress (Figure 9). This phase of 2530 duration corresponded to the
circulation of water in the annular gap between gshmple and the ring. After this
period, the gap was obviously filled by hydratedtbaite with no more outflow
observed. After about 35 h, the vertical stressired stabilization with final values of
2.07, 2.77, 2.44, and 3.06 MPa for tests SER1~ 1.93 Mg/ni), SP02 ps = 1.96
Mg/m®), SP03 fui = 1.96 Mg/nf) and SP044; = 1.98 Mg/n?), respectively. Note
that even though the piston was fixed (Figure &als volume changes (vertical
displacements between 10 and 90 um) were recongdaebdisplacement transducer
because of the deformability of the system.

3.3 Controlled suction compression tests (SO-01, SO-02, SO-03 and SO-04)

The changes in vertical strain with time duringtgut imposition for tests SO-01,
S0-02, SO-03 and SO-04 are presented in Figurdnl@.standard fashion, higher
vertical strain rates were observed at smalleri@gtwith final strains of 1.2%e(=
0.69), 5.4% ¢ = 0.73), 6.8%¢ = 0.75) and 18.0%e(= 0.97) obtained for suctions of
38 MPa, 12.6 MPa, 4.2 MPa and 0 MPa, respectively.

The significantly faster hydration observed in t88-01 (in which liquid water was
used imposing a zero suction) was mainly due tadhknological void that allowed
water circulation around the sample. This firstgghevas comparable with that of tests
SP-02/04 presented in Figure 9.

Figure 11 depicts the final void ratios obtainedsue the imposed suctions in a
semi-logarithmic plot. The points are reasonablyated along a line and the
following relationship can be derived:

e=-0.048In(s) + 0.848 (Eq.1)
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whereeis the void ratio at equilibrium argds suction in MPa.

Once equilibrated at the desired suction, sampée wubmitted to controlled-suction
compression. The compression curves are presamtédure 12 in a diagram giving
the changes in void ratewith respect to vertical net stress, & w,) in which u, is
the air pressure, equal to the atmospheric pres§iiwen the significant concerns
about the validity of effective stress in unsatedasoils, it was preferred to use the
independent variables approach involving the vakinet stressd, — u) and suction
(s = uy— W), (Coleman 1962, Fredlund and Morgenstern, 19ns@996).

Initial void ratios were very different becausetloé significant dependence of initial
swelling with respect to the suction imposed. Alfte sample SO-01 was not a
homogeneous one, as commented above.

Each sample exhibited a slightly S-shaped compmessirve. In a standard fashion,
the compression curves are characterized by aralidibear branch with a low
compressibility (pseudo-elastic domain) followed decond branch with a higher
compressibility (plastic domain) and a slight upavaurvature at higher stresses.

As suggested by other authors (Keller et al., 20@41g et al., 2009), the points at
high stresses were not used for determining thepoession coefficientd;) and the
yield stress &) delimitating the pseudo-elastic zone and thetilame. Figure 13
shows the changes in yield stress with respecticta. Also plotted in this Figure
are the data obtained by Marcial (2003) on puretdrete samples. Figure 13
confirms that suction decrease significant redieeyield stress for both the mixture
and pure bentonite samples. There is a linearioaktiip between yield stress and
suction, and moreover, both curves are reasonabllpl. At a same suction, smaller
yield stresses are observed for the mixture.

As also observed by Marcial (2003), the change ampression coefficient with
respect to suction appeared to be non monotongu(€il4) with a decrease when
suction was reduced from 38 MPa and 12.6 MPa, i@tb by an increase when
suction was below 12.6 MPa. Comparison between Ipeinéonite and sand-bentonite
mixture shows that at any suction, the latter app&@abe more compressible with a
larger compression coefficient.

3.4 Hydraulic conductivity measurements

The hydraulic conductivity of hydrated samples withial technological void (tests
SP2-SP4) was measured under constant head whewyingpphe 0.1 MPa water
pressure by recording the volume of injected waiemeans of a Pressure/Volume
controller (no data were available for test SPO& thua technical problem with the
Pressure/Volume controller). The determination ydiraulic conductivity was done
over the last 24 h once swelling stabilised. Theraylic conductivity was also
determined indirectly based on the consolidatiorvesi during different compression
stages of test SO-01 (see Figure 12) using Casdgjsammethod. As mentioned

9
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before, the sample density was not homogeneousosetsamples. Therefore, a non
uniform hydraulic conductivity can be expected feach sample. The measured
values correspond to the global hydraulic conditgtiv

The changes in hydraulic conductivity with respectiry density obtained from both

methods are presented in Figure 15 and compardd amiistant head permeability
measurements obtained by Gatabin et al. (2008)oomogeneous samples at similar
densities. The data obtained for the heterogensanmples with both methods are in
good agreement. In a standard fashion, the hydraudnductivity decreases with

density increase following a slope comparable tat thbtained by Gatabin et al.

(2008). An in-depth examination shows that the dampested here exhibit higher
hydraulic conductivity than that by Gatabin et @008), with a difference of one

order of magnitude. This difference is suspectedetalue to a preferential water flow
in the looser zone (initial technological voidspand the samples.

4 INTERPRETATION AND DISCUSSION

In order to further analyse the effects of the tetbgical void, various constitutive
parameters of the compacted mixture are now def(sed Figure 16), such as for
instance the bentonite void rati@); It is supposed that the volume of bentonitg) (V
in the mixture is equal to the difference betwdsmtbtal volume (V) and the volume
of sand (\). Vp is equal to the sum of the bentonite particle rwu(\,s) and the
volume of void, namely intra-void volume {jVThe parametes, consists of two parts
(Eq.2), the intra-bentonite void ratio inside theil s(e,) and the void ratio
corresponding to the technological voald). Eq.3 and Eq. 4 define these two voids,
respectively.

eo = eoi + e[ech (qu)
\V/
=1 Eq.3
€y V.. (Ea.3)
Vtech
= _tech Eg.4
etech Vbs ( q )

whereViechis the volume of technological void. The valueegftan be deduced from
the initial dry unit mass of the mixtureyf) using Eq.5 and Eq.6.

G
g, =P 7 (Eq.5)
Pab
B/10 G
Pap = ( DorCePu (Eq.6)

- G, (1+w,_ /100 - p_ (1- B/100)

wherep,, is the water unit mas$gis the specific gravity of bentoniteg, is the

10
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initial dry unit mass of bentonite in the mixtumhich was calculated using EQ.6
(Dixon et al., 1985; Lee et al., 1999; Agus and&bah 2008; Wang et al., 2012), is

the unit mass of the mixtur® (%) is the bentonite content (in dry mass) in the
mixture, Gssis the specific gravity of sana, is the water content of the mixture. In
this study the decrease of water unit mag$ during hydration (e.g. Skipper et al.,
1991; Villar and Lloret, 2004) was not considered éhe value was assumed to be
constant (1.0 Mg/}, B = 70%,Ges = 2.65.

To analyse the water retention property under Seell condition, a parameter
namely water volume ratioef) defined as the ratio of water volumé,) to the
bentonite volume\(y) is also adopted (Romero et al., 2011). This paranegn be
deduced from the water content of the mixtuvg)(using the following equation:

B (Eq.7)

In the following, the two parametegs ande, are used to analyze all experimental
results obtained in order to evidence the effedtvads on the water retention
capacity, the swelling pressure, the compressjlalid the hydraulic conductivity.

4.1 \Water retention curves

Figure 17a shows the changes in water volume ggtiof both the mixture and the
pure bentonite with respect to suction under frgellscondition. Unlike in the water
content/suction plot (Figure 8), Figure 17a showexcellent agreement with Marcial
(2003)'s data on pure bentonite, with a uniqueti@iahip betweere, and suction
along the wetting path with swelling. It confirnfsat water was only adsorbed in the
bentonite (volume M) and that the lower water content observed inntingure at
same suction (Figure 8) is related to the loweunwd of bentonite in the mixture.

The results from the hydration tests on pure coneglbentonites under restrained
swell condition with different void ratios (Marcjad2003; Tang and Cui, 2010; Villar,
2005) are also presented in Figure 17. A phenomsimitar to that observed in the
water content/suction plane (Figure 8) can be ifledt in the range of low suctions
(<9 MPa for the MX80 bentonite), the water retemtmyoperty of bentonite depends
strongly on the confining conditions; conversely,carves become almost the same
in the range of high suctions (as also observeddus 2005 and Agus et al. 2010) As
suggested by Cui et al. (2002, 2008) and Ye e(28l09), this confirms that the
exfoliation of clay particles from the aggregatewiinter-aggregate pores caused by
hydration is moderate and can be accommodatedgat ductions. By contrast, at
lower suctions, available pores become completdlybfy hydrated clay particles and
no more water can be adsorbed. This is not the wasa swelling is allowed with
much more water adsorbed. Figure 17b is a zoongofr€ 17a at small water volume
ratios (between 0 and 1.5). The difference obsemvete curves at constant volume
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is due to differences in bentonite dry denspty, When the full saturation is
approached, samples with a higher bentonite vdid (lower dry density) logically
absorb more water for a given suction.

4.2 Hydration test with technological void

The values of vertical stress measured on heteemgsnsamples at the end of the
hydration tests on samples with technological vqi#® 01-04) are presented in
Figure 18 with respect to the bentonite void raNote that the bentontie void ratios
for tests SP 01-04 were determined by taken intowtt the system deformation
mentioned above (i.e. vertical displacements batwHe and 90 um). The data of
swelling stresses measured in homogeneous samptks the same conditions of
constant volume by other authors are also plottadcbmparison (MX80 70/30

bentonite/sand mixture from Karnland et al., 2008 pure MX80 bentonite from

Borgesson et al., 1996; Dixon et al., 1996; Kardlahal., 2008; Komine et al., 2009).

All data remarkably agree, providing a unique relsthip between the vertical
pressure and the bentonite void ratio, regardiésbensample nature (homogeneous
or not). The correspondence with data from Karnlgpdre bentonite and 70/30
bentonite sand mixture) at bentonite void ratioseldo 1 is particularly good. The
following expression can be deduced for the refetigp between the axial stress (
in MPa) and the bentonite void raggfor the material studied here:

o, = 2250, "% (Eq.8)

This good correspondence between the responseadlirgyvstress of homogeneous
samples and that in axial stress of a hydrateddggeeous sample indeed confirms
that the stress at equilibrium is not affected loy heterogeneity of the samples. The
pressureds in MPa) only depends on the global bentonite vaitbr(g,), regardless
of the technological void and of the presence ofisa

In other words, during the hydration under consggoibal volume and in spite of their
significant difference in form and dimension, tleetinological voids play the same
role as the macro-pores of the homogeneous contpaetgonite in terms of filling
voids by particle exfoliation, as commented aboMee global final bentonite void
ratio (or density) appears to be a relevant paranadtiowing predicting the final axial
stress obtained.

4.3 Compressibility

The interpretation of the compressibility data wased on the well known features of
the aggregate microstructure of compacted soil$ tzve been recalled above,
showing in particular that the compression at camtstvater content of unsaturated
compacted soils initially occurs by the collapsdasfe inter-aggregate pores full of
air with little effect on the aggregates themselvesa consequence, it was observed
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that the changes in suction during compression aatstant water content are
negligible, since suction changes are governed Hiya-aggregate clay water
interactions that are little affected during congsien (Li, 1995; Gens et al., 1995;
Tarantino and De Col, 2008).

The compression curves of the homogeneous samplégyure 12 (SP2 to 4) are

further interpreted by an approximated estimatidntitee changes in degree of

saturation during compression. This estimationdselol on the assumption that the
order of magnitude of the initial water contentstioé samples hydrated from the
initial as-compacted suction (65 MPa) at given isunst (38, 12.6 and 4.2 MPa) prior

to compression can be obtained from the wetting pathe water retention curve in

Figure 17. Based on this assumption, the water eobstafter hydration were

determined, equal to 12.8, 16.8 and 18.6 % foricustof 38, 12.6 and 4.2 MPa,

respectively. The corresponding degrees of saturatre 52, 63 and 68%,

respectively.

The application of suctions as high as 4.2, 12& 3® MPa generated a moderate
swelling of the samples, with void ratio increasingm the initial value of 0.64 to
0.75 at 4.2 MPa suction. In terms of microstructuhe changes corresponds to a
moderate swelling of the aggregates within a stgcstill significantly desaturated
with a maximum degrees of saturation of 68% atMEA suction, indicating that the
inter-aggregates pores remained full of air. Dugngpression, the water content that
was controlled within the aggregates did not sufifem any significant changes and
the changes in degree of saturation could be esdnas shown in Figure 19. The
data show how the degree of saturation increade imiteased stress and provide an
estimation of the stress values at which saturatias reached (9, 14 and 27 MPa at
s=4.2, 12.6 and 38 MPa respectively). Once repoote the compression curves of
Figure 12, we can observe that these stress vaheecated close to the inflection
points observed on the curves, indicating thatehpsnts correspond to the saturation
of the samples. In other words, the change in stdpbe curves corresponds to the
transition between two physical mechanisms, naniedyn the collapse of dry
inter-aggregate pores to the expulsion of interagate adsorbed water. This is in
agreement with the observation by Kochmanova andKa (2011).

When the yield stress\(p) in Figure 13 is plotted versus the correspondiagtonite
void ratio (g) at the yield point (Figure 20), it appears that lfoth the mixture and
pure bentonite, the yield stress increases shariphydecreasing bentonite void ratio.
However, the curve of the mixture lies in the righft the pure bentonite’s one,
evidencing the role of sand in the compression Wieba It can be concluded from
Figure 20 that at the same bentonite void rati@ mhixture yields at a higher
pre-consolidation stress.

4.4 Hydraulic conductivity
The values of global hydraulic conductivities prease in Figure 15 showed possible
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preferential flow pathway in the case of heterogeise samples with initial
technological voids. This observation can be masieia Figure 21 in which the data
of Figure 15 are re-plotted versus the bentoniid vatio and compared to other data
of the pure MX80 bentonite (Karnland et al., 2008%on et al., 1996) and of the
70/30 bentonite-sand mixture (Gatabin et al., 2008g good agreement observed
also confirms a negligible effect of sand on thdraylic conductivity.

Note that the looser zone corresponding to thealniéchnological void is a weak
zone with poorer mechanical resistance, at leagh@short term. The question of the
possible further changes that could occur on thg term is opened, given that some
observations already showed that ageing effects sagaificant in compacted
bentonite, both at microscopic scale (Delage et28D6) and macroscopic scale
(Stroes-Gascoyne, 2010), showing a tendency towdetssity homogenisation.
Further studies are needed to investigate the Iwrgn change in hydraulic
conductivity of samples with initial technologicadids.

5 CONCLUSION

The effects of voids on the hydro-mechanical proger of a compacted
bentonite-sand mixture were studied. Water retentest, hydration test, suction
controlled oedometer test and hydraulic test weréopmed on samples with different
voids including the technological void and the vimside the soil. By introducing the
parameters as bentonite void ratio and water voliatie, the effects of voids on the
water retention property, the swelling pressure,dbmpressibility and the hydraulic
conductivity were analyzed.

Under different conditions (free swell and resteairswell), different water retention
properties were observed depending on the suctirevat high suctions, the relation
between the water volume ratio and the suctionnigiue, independent of the test
conditions, indicating that the relatively limitexkfoliated clay particles are mainly
accommodated by the macro-pore of the soil. Onctiverary, in the range of low
suctions, the macro-pores available for accommogagixfoliated particles becomes
limited in the case of restrained swell conditie@xplaining why less water is
adsorbed in this case.

There is a unique relationship between the axiakst(for samples with technological
void) or swelling pressure (constant volume coonditiand the bentonite void ratio,

regardless of the sample nature (homogeneous Or amat presence of sand

suggesting that the technological voids play theesaole as the macro-pores of the
homogeneous compacted bentonite. It also reveatstite swelling mechanisms of
bentonite-sand mixture are the same as that oflpemtonite.

The change in slope of the compression curves sjoreds to the transition between
two physical mechanisms, namely from the collapsdrg inter-aggregate pores to
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the expulsion of inter-aggregate adsorbed water.

At the same bentonite void ratio, bentonite/sandktuneé yields at a higher
pre-consolidation stress, evidencing the effedawnid on the compression behaviour.

Similar relationship between hydraulic conductivapd bentonite void ratio was
observed for the bentonite-sand mixture and the pentonite without technological
void; however, with the technological void in thesudy, the measured hydraulic
conductivity for the same bentonite void ratio iengrally higher, indicating the
possible preferential flow pathway formed by theBan soil that occupied the initial
technological void.

From a practical point of view, the relationshipatmrated between the
hydro-mechanical behaviour with bentonite void aas helpful in designing the
buffers/sealing elements with bentonite-based nadgerif the bentonite proportion
and the technological void are known, the spedibcaof the buffer elements could
be determined using the correlations elaboratedhia study, according to the
requirements in terms of swelling pressure and dayldr conductivity. Then the water
retention property and compressibility of the seddcmaterial can be evaluated. It
should be however noted that the conclusion dragre vas based on the results of
the bentonite/sand mixture with 70% of MX80 bentenkurther experimental studies
on other proportions and other bentonites are rtkexgeneralise it.
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732 Table 1. Chemical composition of the synthetic wate
Components NaHCO NaSO, NaCl KCI CaC}.2H,0 MgCh.6H,O SrC}L.6H,0O
Mass (g) per Litter

) 0.28 2.216 0.615 0.075 1.082 1.356 0.053
of solution

733

734  Table 2. Test conditions for water retention proper

Suction control method Suction (MPa) constant vaum Free swell
LiCl 309 _ \
K,CO; 113 B \
Mg(NOs), 82 _ \
Saturated NaCl 38 J V
salt solution (NH4),S0, 24.9 \ \
ZnsQ, 12.6 \ \
KNO, 9.0 \ \
K,SO, 4.2 \ \
Concentration 0.302 1 \ \
of PEG solution ~ 0.095 0.1 V ol
(9 PEG/g Water)  0.030 0.01 l \

735

736  Table 3. Specimens used for swelling pressure test

Tests Compaction Compacted dry
Stress (MPa) density (Mg/n)

SPO1 65 1.93
SP02 70 1.96
SPO03 80 1.96
SP04 85 1.98

737

738  Table 4 Specimens used for suction controlled oetemest

Tests Pdi D S
(Mg/m®) (mm) (MPa)
SO-01 1.97 35.13 0
S0O-02 1.67 38.00 4.2
S0O-03 1.67 38.00 126
SO-04 1.67 38.00 38

739
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