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Indoor Calibration using Segment Chains

Jamil Draréni, Renaud Keriven, and Renaud Marlet

IMAGINE, LIGM, Université Paris-Est, FRANCE.

Abstract. In this paper, we present a new method for line segments
matching for indoor reconstruction. Instead of matching individual seg-
ments via a descriptor like most methods do, we match segment chains
that have a distinctive topology using a dynamic programing formula-
tion. Our method relies solely on the geometric layout of the segment
chain and not on photometric or color profiles. Our tests showed that
the presented method is robust and manages to produce calibration in-
formation even under a drastic change of viewpoint.

1 Introduction

Many tasks in computer vision1 , such as structure from motion, expect a set of
features matched across images to register cameras in a common coordinate sys-
tem. For decades, corner detectors such as Harris and KLT detectors represented
the de facto features in computer vision literature. Recently, a new breed of fea-
tures appeared in the literature. Pioneered by the seminal work of David Lowe
[9], this new generation of feature detectors brought two major capabilities that
lacked in the previous generation: geometric invariance and a descriptor. The
first aspect is often achieved by using a scale-space framework [8] and data nor-
malization, whereas the addiction of a feature descriptor yield a better matching
repeatability.

However, in low texture scenes such as man-made environments (Fig.1), fea-
ture point perform poorly. In such scenes, 2D features run short in favor of line
segments and yet, they have not been used extensively as features for image
registration because of the difficulty of matching them. The later stems from
the fact that, segments vicinity are textureless and usually not distinctive which
precludes histogram-based (gradient, color, . . . ) description. Even if a segment
vicinity shows some variety, defining a neighbourhood zone is not tractable be-
cause a segment does not bear a natural scale, as it’s the case with feature points.
Last but not least, segment’s endpoints are seldom accurate thus, using them as
distinctive features is often error-prone.

In [3] authors used Kalman filters to track line segments. Their formulation
is akin to features tracking in video sequences and assumes short baselines.

Schmid and Zisserman [10] used epipolar lines bundles to constrain putative
matches followed by an intensity similarity check (using SSD along the segments)

1 This work was partially supported by the Fondation d’entreprise EADS, contract no
3610.
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Fig. 1. A pair of indoor images used in this paper.

to identify correct matches. Though fast and accurate, their method assumes a
known epipolar geometry which makes it unsuitable for camera calibration. In
[1], a segments matching method with an application to wide baseline stereo is
presented. Here, feature points (SIFT, HOG,...) are extracted and used as an-
chor points. The actual segments pairing is performed by first, grouping putative
matches using their color profiles.Then, anchor-point/segment sideness consis-
tency is exploited to sort out the matches. Obviously, if no or few feature points
were detected and paired, the segment matching will rely solely on color profiles
which are known to be unstable. The idea of using supporting 2D features was
also proposed for segments matching in [5] and more generally for untextured
regions matching in [4].

In [11], the authors proposed an approach where segments are assigned a
descriptor computed from the layout of neighbouring lines (length ratios, relative
angles). As pointed out in [5], line signatures are subject to instabilities because
they rely on segments endpoints locations which are known to be inaccurate.

In this paper, we present a new method for segments matching. The proposed
method is suitable for camera calibration in an indoor environment and is based
on the fact that indoor scenes are often composed of segment chains. While
individual segments might not exhibit saliency, we show how segment chains
topology have a distinctive layout that can be exploited for matching. In this
work, segment chains are extracted and matched using dynamic programming.
The result is then used to compute the epipolar geometry induced by the camera
motion.

The rest of the paper is organized as follows. Section 2 presents the algorithm
used for segments detection. The core of our algorithm is detailed in Section
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3 while experimental results are reported in Section 4. Finally, we draw our
conclusion and discuss further improvement Section 5.

2 Segments Extraction

There are numerous ways to extract line segments in images. The classical ap-
proach consists of applying the Canny detector [2] to the image to extract edges.
These edges are then clipped at high curvature points. Along the curve that con-
nects two high curvature points, a line is fitted by either a least squares method
like in [1, 5] or using a robust method such as the M-estimator technique. In
this paper, we used the Line Segment Detector (LSD) recently introduced in [6].
We would like to point out that our matching procedure is independent of the
underlying line detector and conveniency was the main motivation behind this
choice since an implementation of LSD is freely available on the author’s web
page. In the following we will summarize the LSD detector.

As depicted on Figure.2, line extraction starts by computing the edge map
of the image. Then, starting from a random position, line-support regions are
formed by grouping adjacent pixels that share the same gradient orientation
within a certain tolerance. The formation of the line-supports is done recursively
in a flood-fill fashion. Even though this procedure is based on a greedy algorithm,
the simple operations behind it makes it very fast. As a result, LSD outputs the
coordinates of the each segment endpoints along with the width of the associated
line-support.

Fig. 2. The Line Segment Detector (LSD). Line support regions are gathered recur-
sively if they fall within a certain orientation tolerance.

Once the segments are extracted, an orientation will be assigned to each of
them according to the direction of their supporting gradient. Namely, a segment
will be oriented such as the darkest region will always lie on its right side. The
purpose of the orientation assignment is to form consistent segments chain as it
will be explained later. It could also be used to leverage matching ambiguities
when cameras orientations are available2.
2 Most modern cameras provide this information in the image header.
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2.1 Segments Merging

Segments detected by LSD are often fragmented because of noise. In order to
simplify the matching step, we post-process LSD output by merging the seg-
ments fragments that share the same orientation (up to a tolerance) and whose
endpoints are close. This is illustrated in Fig.3

Fig. 3. Segments merging. Segments i and j are identified by their start and endpoint.
Left) No merging is done here because angle difference is large. Middle) No merging
neither because the distance between endpoints (||lie − ljs||) is large. Right) Merging is
done because the segments are well aligned and close to each other.

The result of this process is a set of neat segments more suitable for our
matching procedure. As an exemple of such sets, running the merging procedure
on the sequence in Fig.1 is depicted in Fig.4.

Fig. 4. LSD output after post-processing (see text).
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3 Segment Chains Matching

In this section, we will give the details of our segment chain matching method.
Starting from an image, we use LSD to extract segments and merge fragments
as explained in the previous section. We then, form segments junctions by con-
necting salient segments in quasi-intersection situation. Such segments are most
likely to be 3D-coplanar, thus their intersections are the projection of real 3D
points that can be further used for camera calibration. At this stage, segments
in T-junction configuration are avoided as they presage occlusions.

Starting from a junction that connects two salient segments, we form an
initial 2-segment chain. This chain is recursively grown by adding continuous
segments that preserve the overall orientation. Three such chains are depicted
in Fig.5. Even though the extraction procedure is greedy, the running time is
small thanks to the low cardinality of the segments present in indoor scenes.

Fig. 5. Three extracted chains. The added segments must preserve the global orienta-
tion of the chain (clockwise or counterclockwise) and its continuity.

Once segments chains isolated in both images, matching can take place using
a dynamic programing scheme presented in the following.

3.1 Dynamic Programing Formulation

Let C and C ′ be two segments chains to match, given as a list of their junction
points. We define the cost of matching two junctions jk ∈ C and j′l ∈ C ′ in terms
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of their incident angles (θjk
, θj′

l
) as:

match(jk, j′l) = |θjk
− θj′

l
| (1)

The cost of skipping a junction jk is given by the length of its inward segment:

skip(jk) = ||jk − jk−1|| (2)

Fig. 6. The incident angle θjk of a junction jk and the length of its inward segment.

See Fig.6 for further explanations.
The optimal cost of matching the junction jk ∈ C with the junction j′ ∈ C ′

is formulated recursively as:

cost(jk, j′l) = match(jk, j′l) + min


cost(jk−1, j

′
k−1)

cost(jk−1, j
′
l) + skip(jk)

cost(jk, j′l−1) + skip(j′l)
(3)

Because we do not know in advance the corresponding segment chains from
an image to another, we simply cross-match all the chains using our dynamic
programing formulation and assign matches using a winner-takes-all scheme.
Because the number of chains is low, this procedure is fast. To show the effec-
tiveness of this procedure, the cross-matching costs of the 3 chains depicted in
Fig.5 is reported in Fig.7 .

3.2 Camera Calibration

Once segment chains matches have been determined, junctions matches are triv-
ially extracted. However, theses matches are only putative because, unless they
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Fig. 7. Matching cost. The cost of cross-matching 3 different chains. We can see that
real matches have a very low cost compared to other combinations which precludes a
winner-takes-all scheme.

result from coplanar segments, they are not the projection of the same 3D points.
To circumvent this, a RANSAC routine is used to randomly select 7-tuples from
putative junction matches and robustly estimate the fundamental matrix as ex-
plained in [7]. Of course, in the calibrated case, one would prefer estimating the
essential matrix in order to extract the rotations and translations of the cameras.

Our experiments showed that indoor scenes exhibits few outliers. Indeed, in
such scenes, adjacent segments are likely to be coplanar, thus most junctions
turn out to be real features.

4 Experiments

In this section we show the results of our experiments to demonstrate the effec-
tiveness of the proposed method. All images were shot with a hand-held iPhone.
The images were downscaled to a resolution of 1200×800. The estimated epipo-
lar geometry from the first sequence (see Fig.1) is depicted in Fig.8. Notice the
precision of the epipolar lines despite the camera motion.

We also ran our algorithm on a second sequence (see Fig.9). As it can be
seen, this sequence is challenging due to the amount of occlusion and the lack of
texture. The resulting epipolar geometry is shown on Fig.10.

The method was implemented on Mathematica and still, the running time
for each sequence was under 5 seconds on a 2.13 Ghz computer.
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Fig. 8. Estimated epipolar lines on the first sequence along with 2 segment chains (blue
and red).

5 Conclusion

In this paper we presented a novel method to match line segments in an indoor
environment. Instead of building descriptors per segment, we considered segment
chains for their rich geometric topology that makes them very distinctive even in
presence of occlusions and severe viewpoint change. We also presented a simple
dynamic programing formulation to efficiently match such chains based solely
on geometric properties. In fact, our method is completely intensity-blind as no
photometric information was used to achieve the matching.

Moreover we think that our method could be successfully used to reconstruct
interiors from images and furthermore to produce building outlines.

Finally, we are convinced that our system could benefit from advances in
graph theory field to better explore the network of segments and efficiently ex-
tract meaningful chains. In fact, topics such as graph partitioning techniques are
already in study.
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Fig. 9. Second sequence. Top: Original images. Bottom: Detected segments after frag-
ments removal.
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Fig. 10. Estimated epipolar lines and 2 segment chains from the indoor sequence.
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