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Abstract

We deal with the problem of outsourcing the debt for a big investment, according two situations: either the firm out-

sources both the investment (and the associated debt) and the exploitation to a private consortium, or the firm supports

the debt and the investment but outsources the exploitation. We prove the existence of Stackelberg and Nash equilibria

between the firm and the private consortium, in both situations. We compare the benefits of these contracts. We conclude

with a study of what happens in case of incomplete information, in the sense that the risk aversion coefficient of each

partner may be unknown by the other partner.
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1 Introduction

With the significant increase in recent years of public debt in many developed countries, together with the associated

concerns related to possible defaults of some of them, the question of financing public projects is more than ever at the

center of economic and political considerations. To overcome this problem, leveraging on the private sector appears at

first glance as a good idea. This type of Public-Private Partnership (PPP) was initiated in the United Kingdom in 1992,

under the name Private Financing Initiative (PFI), and has widely been used since then, so that it represented one third

of all public investments made in the UK during the period 2001-2006. It has also been used in many other countries,

in particular in Europe, Canada and in the United States, to finance hospitals, prisons or stadiums among others. It is

also recommended by the OECD. We refer among many others to [3] for an overview of the extent of PPPs in Europe

and in the US, the website of the European PPP Expertise Center (EPEC) or the website of the National Council for

Public-Private Partnerships, and to [7] for a global overview made by the OECD.

However, as emphasized by the recent discussions in the UK, although the benefits of this type of partnership are

mainly admitted, there are still many concerns about its drawbacks (see [8] for a detailed overview). Even though

some drawbacks are of political, social or behavioral natures, others are purely economic and are the ones that we are

interested in. More precisely, we would like to answer the following question: from an economic point of view, and taking

into account the constraints that a country faces when issuing a new amount of debt, is it optimal for this country to

finance a public project via a private investment?

Although already of a big interest, this question does not need to be restricted to debt emission by a country but can

be generalized to any economic agent, be it a country or a firm. Indeed, any firm has some constraints on its debt level
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for several reasons. In some cases, banks will simply not allow a company to borrow enough money to sustain a very

expensive project. But even if it is not the case, since the debt level appears on the company’s accounts, issuing too much

debt will affect the opinion and confidence of investors, and in particular deteriorate its rating. This can lead to a higher

credit spread when issuing new bonds, difficulties to increase the capital of the firm, a drop of the company’s stock price,

dissatisfaction of shareholders or in the worst case, bankruptcy. We can cite some concrete examples where the dilemma

between investing directly or resorting to outside investment can occur: owning or renting offices or factories, owning or

leasing trucks, trains or planes, some industrial machines or some office materials (such as computers).

Therefore we will consider in this paper the problem of outsourcing from the debt point of view. Since the question of

outsourcing some operations has already been widely studied and our aim is only to study the relevance of outsourcing an

investment in order to reduce the debt of a firm (or economic agent), we will compare two situations where the operations

are always outsourced. In the first one, the firm outsources both the investment/debt and the operations, while in the

second one, the firm supports the debt and the investment but outsources the operations.

In [5], Iossa, Martimort and Pouyet give some results on the comparison of the costs and benefits associated to PPP.

Hillairet and Pontier [4] propose a study on PPP and their relevance, assuming the eventuality of a default of the coun-

terparty, but they do not take into account the government debt aversion. However, the attractivity for government of

PPP contracts relies obviously on the short term opportunity gain to record infrastructure assets out of the government’s

book. To our knowledge, there does not exist any references in Mathematics area. In Economics, a narrow strand of

literature is dedicated to the discussion of Build-Operate-Transfer (BOT) concession contracts, which is a frequent form of

PPP. Under BOT contracts the private sector builds and operates an infrastructure project for a well defined concession

period and then transfers it to public authorities. The attractiveness of BOT contracts to governments stems from the

possibility to limit governmental spending by shifting the investment costs to a private consortium. In [1], Auriol and

Picard discuss the choice of BOT contracts when governments and consortia do not share the same information about

the cost parameter during the project life. They summarize the government’s financial constraint by its “shadow” cost

of public funds, which reflects the macro-economic constraints that are imposed on national governments’ surplues and

debt levels by supranational institutions such as the I.M.F. Using linear demand functions and uniform cost distributions,

they compute theoretical values of shadow costs that would entice governments to choose BOT concessions contracts.

Our approach is different from the modelization and the resolution point of view.

The present paper is organised as follows. In Section 2 we set the problem of outsourcing between two firms and

we define the optimization problems in Situation 1, in which the firm outsources both the investment/debt and the

operations, and in Situation 2 , in which the firm supports the debt and the investment but outsources the operations.

Section 3 provides the main results. Section 4 is devoted to the proofs of existence and characterization of Nash and

Stackelberg equilibria in Situation 1, then Section 5 does the same in Situation 2. Section 6 concerns the proofs of the

comparison results between the two situations and the results obtained in incomplete information.

2 Problem formulation

2.1 Costs and revenue

Consider two firms. Firm I is the one who wants to reduce its debt and therefore considers the possibility of outsourcing

an investment to a second firm J . In any case, firm J is the one that will support the operational cost of the project, on

the time horizon T . Let (Cot ) such that the operational cost on the time-interval [t, t+ dt] is C0
t dt, be given by :

Cot = µt − ϕ(et)− δψ(a),(2.1)

where

• µt is the “business as usual” cost, such that Eµt represents the “average” benchmark cost (it takes into account the

price of commodities, employees, rents...). We assume that µt is not dt× dP a.e. constant, that there exists k > 0

such that µt ≥ k (for all t, P-a.s) and that

(2.2) ∀λ ∈ R, E

∫ T

0

eλµsds < +∞.

Notice that this implies that the function λ 7→ E
∫ T
0
eλµsds is infinitely differentiable. For instance, we may consider

that µt = µ(t, Pt) where µ is a function bounded from below by k and also bounded from above, and Pt is a Markov

process with the following dynamics:

dPt = diag(Pt)σ(t, Pt)(θ(t, Pt)dt+ dWt),(2.3)
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where W is a d-dimensional Brownian motion, θ : R+ × R
d → R

d and σ : R+ × R
d → R

d×d are measurable in time

and Lipschitz in space uniformly in time, θ is bounded.

• et is non-negative and represents the effort made in order to reduce the operational cost between t and t+dt, such as

logistics improvements, research and development, maintenance or more efficient or less workers, and will in general

have a social impact for firm I,

• δ ∈ R represents the impact of the quality of the investment on the reduction of operational costs. We do not

impose any restriction on the sign of delta, since, as suggested in [5], both signs can make sense depending on the

situation. Indeed, when constructing a building, using more expensive material usually bring less maintenance costs

and therefore a positive delta. On the contrary, for a hospital, using more sophisticated (and expensive) machines

can bring bigger maintenance costs and a negative delta.

• a = A
T

where A ≥ 0 is the effort done on the (initial) quality of the investment, improving the social value of the

project. Depending on δ, A affects positively, negatively or does not affect the operational cost. The reason why

we work with a instead of A is that a has the same dimension as the effort et,

• ϕ : R+ → R+ and ψ : R+ → R+ are C1, increasing and strictly concave functions, satisfying the Inada conditions

ϕ′(0) = +∞ and ϕ′(∞) = 0, ψ′(0) = +∞ and ψ′(∞) = 0. We also assume that ϕ(∞) + δ+ψ(∞) ≤ k, where

δ+ = max(δ, 0), which ensures that Cot ≥ 0; as a consequence, ∀(x, y) ∈ R
2
+, ϕ(x) + δ+ψ(y) < k. We assume

furthermore that (ϕ′)−1(x) ∼ (ψ′)−1(x) for x→ 0 for technical reasons and to make the computations lighter even

if we could relax it.

The function e is a control for firm J , while a is a control for the firm that supports the investment, I or J depending on

the situation. In a sense, µ represents the trend on the cost.

The minimal investment required by the project is C0 > 0 and the total investment is the sum C0 + A of this minimal

investment and of the initial effort. Introducing D = C0

T
, the total investment is equal to (D+ a)T . The total investment

is assumed to be entirely covered by issuing a debt with horizon T at time 0. To take into account the possibility that the

cost of borrowing is in general not the same for different firms, we denote the respective non-negative constant interest

rates of firms I and J by rI and rJ . For t ∈ [0, T ), the amount to be reimbursed by the borrower K ∈ {I, J} between t

and t+ dt is (1 + rK)(D + a)dt.

Finally, we need to add the remaining costs coming from the effort et as well as the maintenance costs denoted by mt :

Cmt = et +mt.(2.4)

The maintenance costs mt are non-negative and will have a social impact for firm I.

Since firm I gives to firm J either a rent or the right to exploit the project on [0, T ], in both cases we can consider

a process Rt which corresponds to the endowment for firm J and the rent or shortfall for firm I, on [t, t + dt]. This

process is computed using a reasonably simple rule, decided at t = 0 and subject to a control of firm I. In reality, in such

contracts, the endowment can be indexed on the price of commodities in the case of transportation or on a real-estate

index for the rent of a building. Since firm I wants to have a project of good quality as well as a well maintained project,

we assume that Rt is non-negative and depends on both Cot and the maintenance cost in the following way:

Rt = α+ βCot + γg(mt),(2.5)

with α ≥ 0, β ∈ R, γ ≥ 0 and g is a C1, increasing and strictly concave function on R+, such that g′(0) = ∞ and

g′(∞) = 0. Moreover, we assume that

m0 := inf{m > 0 : g(m) > 0} < +∞.(2.6)

The constants α, β and γ are controls of firm I. We do not put any randomness in the coefficients α, β and γ of R since

we consider that they are defined at time t = 0 by a contract between firms I and J . All the randomness in R comes from

the operational cost term Cot . Still, this model allows for an indexation on a benchmark such as the price of commodities

or inflation through this dependence with respect to operational costs.

2.2 Optimization problems

Let ρ be the discount factor that relates the preferences for today of both1 firms I and J . We assume that the risk aversions

of firm I and J are represented respectively by the exponential utility functions U(x) = −e−ux and V (x) = −e−vx, x ∈ R,

1We take the same discount factor for both firms since it does not change the reasoning while it adds some notational complexity.
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with u, v > 0.

We consider two different situations: in Situation 1, firm J supports the debt and takes care of the exploitation; its controls

are a, e and m, whereas the controls of firm I are α, β and γ. In Situation 2, firm J only takes care of the exploitation,

its controls are e and m, whereas the controls of firm I are a, α, β and γ. Firm I is the one that chooses between the

two situations. The optimization problems for firm J respectively in Situation 1 and 2 are v1 = sup(a,e,m) J
1(a, e,m) and

v2 = sup(e,m) J
2(e,m) respectively, where:

J1(a, e,m) = E

(∫ T

0

V
(
α+ (β − 1)(µs − ϕ(es)− δψ(a)) − es + γg(ms)−ms − (1 + rJ )(D + a)

)
η(ds)

)

J2(e,m) = E

(∫ T

0

V
(
α+ (β − 1)(µs − ϕ(es)− δψ(a)) − es + γg(ms)−ms

)
η(ds)

)

denoting the probability measure

η(ds) := e−ρs
ρ

1− e−ρT
1[0,T ](s)ds.

In these optimization problems, we have assumed that the controls of firm I are given (they have no reason to be the

same in the two cases). We look for controls in the following admissible sets : a is a non-negative constant, e and m are

adapted and non-negative processes. The eventuality that firm J does not accept the contract will be taken into account

in the constraints of the optimization problem for firm I.

On the other hand, we consider that the project has an initial “social” value ba(a) for firm I, and a good maintenance

also represents a social benefit bm(m). The benefits of the efforts on operational costs are modelled through the function

be. We also introduce a penalization function f representing the aversion for debt emission of firm I. Those functions

satisfy the following hypotheses

• ba : R+ → R+ is a C1, increasing and concave function. (ba)′(0) > 0, possibly infinite, (ba)′(∞) = 0 and ba(∞) <∞.

• bm : R+ → R+ is a C1, increasing and concave function, such that (bm)′(∞) = 0.

• be : R+ → R+ is a C1, increasing and concave function, such that (be)′(0) = ∞ and (be)′(∞) = 0

• f is an increasing and strictly convex function, satisfying f ′(∞) = ∞.

Therefore we write the optimization problem for firm I in both situations as u1 = sup(α,β,γ) I
1(α, β, γ) and u2 =

sup(a,α,β,γ) I
2(a, α, β, γ) where:

I1(α, β, γ) = E

(
ba(a) +

∫ T

0

e−ρsU
(
bm(ms) + be(es)− α− β(µs − ϕ(es)− δψ(a))− γg(ms)

)
ds

)

I2(a, α, β, γ) = E

(
ba(a)− f

(
(1 + rI)(D + a)T

)

+

∫ T

0

e−ρsU
(
bm(ms) + be(es)− α− β(µs − ϕ(es)− δψ(a))− γg(ms)

)
ds
)
.

Hypotheses on ba and f imply that F (a) := ba(a) − f((1 + rI)(D + a)T ) is strictly concave, satisfies F ′(∞) = −∞ and

F (∞) = −∞. Finally we assume that F ′(0) > 0, possibly infinite. The admissible sets are:

- in Situation 1, α ≥ 0, β ∈ R, γ ≥ 0 and such that

(2.7) E

(∫ T

0

V
(
α+ (β − 1)(µs − ϕ(es)− δψ(a))− es + γg(ms)−ms − (1 + rJ )(D + a)

)
η(ds)

)
≥ V (0);

- in Situation 2, a ≥ 0, α ≥ 0, β ∈ R, γ ≥ 0 and such that

(2.8) E

(∫ T

0

V
(
α+ (β − 1)(µs − ϕ(es)− δψ(a))− es + γg(ms)−ms

)
η(ds)

)
≥ V (0).

The constraint ensures that firm J will accept the contract, since it is better or equal for it than doing nothing.

Depending on the power balance between the two firms, different kinds of equilibria can be relevant. In fact, we will

look for the existence of two different equilibria between the two firms: a Nash equilibrium and a Stackelberg equilibrium

where I is the leader. The first situation corresponds for example to an industrial group which wants to outsource its

trucks/trains to a big transport company. The second one corresponds for example to a government which outsources

the construction of a stadium.
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Remark 2.1 We could also consider Stackelberg equilibria with firm J as the leader, which corresponds for instance

to a small firm wanting to outsource to a big company. In Situation i ∈ {1, 2}, since µs − ϕ(es) − δψ(a) > 0, Ii is

decreasing w.r.t. β, while J i is increasing w.r.t. β. Therefore if firm J is the leader, for any choice of its controls, firm

I’s optimal controls will always saturate the constraint J i ≥ V (0), and therefore we obtain a Stackelberg equilibrium. As

a consequence, in this framework, Stackelberg equilibria with firm J leader is not relevant from an economical perspective.

3 Main results

The best responses of firm J to given controls of firm I turn out to be easily derived. That is why we first present them,

before stating our main results concerning Nash and Stackelberg equilibria where these best responses appear. The proofs

of the main results are postponed in Sections 4, 5 and 6.

3.1 Best responses of firm J in Situations 1 and 2

Let us first consider Situation 1 and suppose that (α, β, γ) is given in R+ ×R×R+. For firm J the optimization problem

is ω by ω and t by t, and since U is increasing it writes:

sup
e≥0

{(1− β)ϕ(e) − e}+ sup
m≥0

{γg(m)−m}+ sup
a≥0

{δ(1− β)ψ(a) − (1 + rJ )a}.

Since ψ, ϕ and g are strictly concave, the first order conditions characterize the points maximizing each function between

braces and, with the convention that (φ′)−1(∞) = 0 for φ = ψ, ϕ, g, we have :

(3.1) m∗ = (g′)−1(1/γ) ; e∗ = (ϕ′)−1

(
1

(1− β)+

)
; a∗ = (ψ′)−1

(
1 + rJ

(δ(1− β))+

)
.

Let us now consider Situation 2 and suppose that (a, α, β, γ) is given. Similarly we obtain that

(3.2) m∗ = (g′)−1(1/γ), e∗ = (ϕ′)−1

(
1

(1− β)+

)
.

To describe the Nash and Stackelberg equilibria, we introduce the continuous mappings Ce : R → R and Be : R×R+ → R

defined for any e ∈ R+ by

Ce(β) :=
1

v
lnE

∫ T

0

ev(1−β)(µs−ϕ(e))η(ds),(3.3)

Be(β,m) := eu(Id−b
m)(m)eu(Id−b

e)(e)e+uCe(β)E

∫ T

0

e−ρseuβ(µs−ϕ(e))ds.(3.4)

If e is taken as the optimal effort e∗(β), we denote Ce∗(β) and Be∗(β) respectively as

C(β) :=
1

v
lnE

∫ T

0

ev(1−β)(µs−ϕ◦e
∗(β))η(ds),(3.5)

B(β,m) := eu(Id−b
m)(m)eu(Id−b

e)◦e∗(β)euC(β)
E

∫ T

0

e−ρseuβ(µs−ϕ◦e
∗(β))ds.(3.6)

3.2 Nash equilibria

In the case of the Nash equilibria, we will see that the optimal β is v
u+v and the mapping Be and B defined in (3.4) and

(3.6) simplify as :

for β =
v

u+ v
, Be(β,m) =

1− e−ρT

ρ
eu(Id−b

m)(m)eu(Id−b
e)(e)e(u+v)Ce(β)(3.7)

B(β,m) =
1− e−ρT

ρ
eu(Id−b

m)(m)eu(Id−b
e)(e∗(β))e(u+v)C(β).(3.8)

To describe the Nash equilibria, we also need the following technical results about the function g.

Lemma 3.1 We have limm→∞
g(m)
g′(m) − m = +∞. Moreover, the function G : m 7→ g(m)

g′(m) − m is decreasing on

[0,m0] (where m0 is defined in (2.6)) and increasing from −m0 to +∞ on [m0,+∞) thus admitting an inverse G−1 :

[−m0,+∞) → [m0,+∞).
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Proposition 3.1 In Situation 1, there exists an infinite number of Nash equilibria, namely the vectors (α̂, β̂, γ̂, ê, m̂, â)

defined by

β̂ =
v

u+ v
, ê = (ϕ′)−1(

u+ v

u
), â = (ψ′)−1

(
(u + v)(1 + rJ)

δ+u

)
, γ̂ =

1

g′(m̂)
,

α̂ = C(β̂) + (1 + rJ )(D + â) + ê−
u

u+ v
δψ(â)−G(m̂),

for m̂ varying in M̂1(rJ ) := [0, G−1(C(β̂) + (1 + rJ)(D + â) + ê− u
u+v δψ(â))].

The corresponding optimal values for firms J and I are respectively V (0) and

Î1(m̂) = ba(â)− e−uδψ(â)eu(1+rJ )(D+â)B(β̂, m̂),

with C(β̂) and B(β̂, m̂) defined in (3.5) and (3.8).

Remark 3.1 • Although there exists an infinite number of Nash equilibria, the controls β, e and a are the same in

all these equilibria.

• Since µ̂s − ϕ(ê)− δψ(â) ≥ 0, one has C(β̂)− u
u+v δψ(â) ≥ 0 so that [0, G−1((ϕ′)−1(u+v

u
) +D)] ⊂

⋂
rJ≥0 M̂1(rJ ).

• It is natural to wonder whether there exists in Situation 1 a Nash equilibrium among the infinite family of such

equilibria exhibited in Proposition 3.1 which maximizes Î1. This function depends on the Nash equilibrium only

through the term bm(m̂)− m̂ which has to be maximized. The function m̂ 7→ bm(m̂)− m̂ being concave, it admits a

unique maximum on the interval M̂1(rJ ) where m̂ associated with a Nash equilibrium varies.

Proposition 3.2 Let F (a) = ba(a)− f((1 + rI)(D + a)T ). For constant e,m ≥ 0

argmax
a≥0

[
F (a)− e−uδψ(a)Be(

v

u+ v
,m)

]
6= ∅.

Moreover, in Situation 2, there exists an infinite number of Nash equilibria namely the vectors (α̂, β̂, γ̂, ê, m̂, â) defined by

m̂ ≥ 0, β̂ = v
u+v , ê = (ϕ′)−1

(
u+v
u

)
, γ̂ = 1

g′(m̂) ,(3.9)

â ∈ argmaxa≥0

[
F (a)− e−uδψ(a)B(β̂, m̂)

]
,(3.10)

α̂ = C(β̂) + ê− u
u+v δψ(â)−G(m̂),(3.11)

and such that C(β̂) + ê − u
u+v δψ(â)−G(m̂) ≥ 0, condition satisfied when m̂ ≤ G−1((ϕ′)−1(u+v

u
)). Moreover, α̂+ γ̂ > 0

and if δ ≥ 0, then â > 0 and is unique for each m̂.

The corresponding optimal values for firms J and I are respectively V (0) and

Î2(m̂) = ba(â)− f [(1 + rI)(D + â)T ]− e−uδψ(â)B(β̂, m̂).

Remark 3.2 Notice that the order the different controls are determined is important, since some of them depend on the

other ones. Indeed β̂ depends on no other control and therefore should be determined first, leading to the value of ê. Then

one should fix m̂, in order to have γ̂, which allows then to determine â, and once this is done, we can find α̂. Although

α̂ and γ̂ essentially play the same role, the fact that γ̂ only depends on m̂ makes this order important. If one chooses α̂

first, then the determination of â is not clear, since then â depends on m̂, while m̂ depends on â and α̂.

The following Proposition gives the monotonicity of the optimal initial effort â1 in Situation 1 (respectively â2 in Situation

2), function of the interest rate rJ (respectively rI).

Proposition 3.3 The application rJ 7→ â1(rJ ) is non increasing.

At least in case δ > 0, the application rI 7→ â2(rI) is non increasing.

Let M̂2(rI) denote the set of m̂ ≥ 0 for which there exists (α̂, β̂, γ̂, ê, â) such that (α̂, β̂, γ̂, ê, m̂, â) is a Nash equilibrium

in Situation 2. By Proposition 3.2 and Remark 3.1, [0, G−1((ϕ′)−1(u+v
u

))] ⊂ M̂1(rJ ) ∩
{⋂

rI≥0 M̂2(rI)
}
.

We now compare the respective optimal values Î1(m̂) and Î2(m̂) for firm I in Situations 1 and 2 for the same maintenance

effort m̂. We are going to exhibit cases in which Situation 1 (meaning outsourcing/PPP) (respectively Situation 2, meaning

debt issuance/MOP) is the more profitable for firm I.
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Proposition 3.4 Let rate rJ ≥ 0 be fixed and m̂ ∈ M̂1(rJ ) ∩
{⋂

rI≥0 M̂2(rI)
}
. In case of rate rI satisfying

(3.12) rI ≤
f−1

[
B(β̂, m̂)euδψ(â1(rJ ))

(
eu(1+rJ )(D+â1(rJ )) − 1

)]

(D + â1(rJ ))T
− 1,

we have Î2(m̂) ≥ Î1(m̂) and the better contract for firm I is the second one, meaning debt issuance.

Condition (3.12) has a clear economical interpretation. The right-hand-side does not depend on rI . Therefore for a fixed

rJ , debt issuance is the best choice for firm I as soon as its interest rate rI is small enough. Note the impact of the

function f modeling its debt aversion : the larger f , the smaller the threshold on rI in condition (3.12).

Proposition 3.5 We assume δ > 0. Let rate rJ ≥ 0 be fixed (thus â1(rJ ) is fixed) and m̂ ∈ M̂1(rJ )∩
{⋂

rI≥0 M̂2(rI)
}
.

In case of rate rI satisfying

(1 + rI)f
′[(1 + rI)(D + â1(rJ ))T ] > (ba)′(â1(rJ )) + uδψ′(â1(rJ ))B(β̂, m̂)e−uδψ(â1(rJ )),

or(3.13)

ψ′(â2(rI)) >
(u+ v)(1 + rJ )

uδ

and

(3.14) (1 + rI)(D + â2(rI))T ≥ f−1
[
B(β̂, m̂)euδψ(â2(rI))

(
eu(1+rJ )(D+â2(rI)) − 1

)]

one has Î1(m̂) ≥ Î2(m̂) and the better contract for firm I is the first one, meaning outsourcing.

The economical interpretation of condition (3.13) is also natural. Indeed, the right-hand-sides of the inequalities do not

depend on rI whereas the left-hand-sides are increasing functions of rI . Hence (3.13), leading to optimality of outsourcing

for firm I, is satisfied as soon as its interest rate rI is large enough. Unfortunately, we have not been able to check that

the second condition (3.14) for optimality is satisfied for large rI . Besides, we see that the more convex f is, the smaller

is the threshold on rI in the first inequality of condition (3.13).

3.3 Stackelberg equilibria

Depending on Situation 1 or 2 and on the sign of δ, the optimal β will be characterized as solution of different equations.

To specify those equations, we need to introduce the functions

(3.15) h(λ) =
E
∫ T
0
e−ρsµse

λµsds

E
∫ T
0 e−ρseλµsds

,

(3.16) S(β) :=

β
1−β + (be)′ ◦ (ϕ′)−1

(
1

(1−β)+

)

(1− β)2ϕ′′ ◦ (ϕ′)−1
(

1
(1−β)+

) ,

(3.17) S̃(β) :=
1 + rJ

δ(1− β)2(ψ′′)((ψ′)−1
(

1+rJ
(δ(1−β))+

)
)



(1 + rJ )
β

1− β
+

(ba)′((ψ′)−1
(

1+rJ
(δ(1−β))+

)
)

ue(Id−bm))((bm)′)−1(1)k(β)



 ,

where k(β) is a positive function of β defined as follows:

(3.18) k(β) := eu(Id−b
e)◦e∗(β)e−uδφ◦a

∗(β)eu(1+rJ )(D+a∗(β))euC(β)
E

∫ T

0

e−ρseuβ
(
µs−ϕ◦e

∗(β)
)
ds

with e∗(β) and a∗(β) defined in (3.1) and C(β) in (3.5).

We consider the following equations

(3.19) h(uβ)− h(v(1− β)) = S(β),

(3.20) h(uβ)− h(v(1 − β)) = S(β) + S̃(β),

(3.21) h(uβ)− h(v(1− β)) = S̃(β).

7



Proposition 3.6 In Situation 1, there exists at least one Stackelberg equilibrium with firm I as the leader. Moreover, if

there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂) with α̂ > 0, then it is characterized by :

ê = (ϕ′)−1
( 1

(1 − β̂)+

)
, â = (ψ′)−1

(
1 + rJ

(δ(1− β̂))+

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂),

α̂ = C(β̂) + (1 + rJ )(D + â) + ê− (1− β̂)δψ(â)−G(m̂).

If δ > 0 then β̂ is a solution of (3.20) and is less than v
u+v .

If δ < 0 then β̂ is a solution either of (3.19) (that is less than v
u+v ) or of (3.21) (that is bigger than one).

Proposition 3.7 In Situation 2, there exists at least one Stackelberg equilibrium with firm I as the leader. Moreover, if

there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂) with α̂ > 0, then it satisfies:

β̂ is a solution of (3.19), ê = (ϕ′)−1
(

1

(1−β̂)+

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂),

â ∈ argmaxa≥0 F (a)− e−uδψ(a)B(β̂, m̂) and α̂ = C(β̂) + ê− (1 − β̂)δψ(â)−G(m̂),

where the mappings C and B are defined by (3.5)-(3.6).

In particular, β̂ < v
u+v . Moreover, if δ ≥ 0, then argmaxa≥0 F (a)− e−uδψ(a)B(β̂, m̂) is a singleton and â > 0.

According to the next Lemma, Equation (3.19) which appears in the characterization of β̂ when α̂ > 0 in both Situations

1 and 2 always admits a solution.

Lemma 3.2 Equation (3.19) admits at least one solution β̂. Moreover, all solutions are smaller than v
u+v .

3.4 Incomplete information

In this section we consider the previous equilibrium problems when the firms do not have a perfect knowledge of the

preferences of the other firm. More precisely, we still assume that the firms’ utility functions are U(x) = −e−ux and

V (x) = −e−vx respectively, but firm I perceives v as a random variable that we will denote V (and knows its distribution),

which is independent of µ and takes values in (0,+∞), and firm J perceives u as a random variable that we will denote

U (and knows its distribution), which is independent of µ as well. According to Section 3.1, firm J optimal controls are

functions of the controls β, γ fixed by firm I that do not depend on the risk aversion parameters u. Therefore, equations

(3.1) and (3.2) still hold in incomplete information and incomplete information on the risk aversion parameter u has no

impact on the equilibria. In contrast, the uncertainty on the parameter v has an impact as the acceptation of the contract

by firm J depends on it. To model the social need of the investment, we introduce a (social) penalty p ∈ R∪ {+∞} that

firm I gets if firm J does not accept the contract.

3.4.1 Stackelberg equilibrium, firm I is leader

We first introduce the events Ai, i = 1, 2 : “firm J accepts the contract” in Situation i.

The optimization problem for firm I is

u1I := −p ∨ sup
(α,β,γ)

{I1(α, β, γ)P
(
A1(α, β, γ)

)
− p(1− P

(
A1(α, β, γ)

)
)},(3.22)

in Situation 1 and in Situation 2, it becomes :

u2I := −p ∨ sup
(a,α,β,γ)

{I2(a, α, β, γ)P
(
A2(a, α, β, γ)

)
− p(1− P

(
A2(a, α, β, γ)

)
)}.(3.23)

The functions

I1(α, β, γ) =E

[
ba(a∗(β)) −

∫ T

0

e−ρse−u
(
[bm−γg](m∗(γ))+[be+βϕ](e∗(β))−α−β(µs−δψ(a

∗(β)))
)
ds

]

I2(a, α, β, γ) = F (a)− E

∫ T

0

e−ρse−u
(
[bm−γg](m∗(γ))+[be+βϕ](e∗(β))−α−β(µs−δψ(a))

)
ds

where, e∗, m∗ and a∗ have been defined in (3.1), are the social gain that firm I respectively gets in Situations 1 and 2
if firm J accepts the contract. Notice that the supremum is taken with −p to modelize the possibility for firm J not to
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enter the game and that p = +∞ corresponds to the case where firm I absolutely wants that firm J accepts the contract.
In order to characterize the acceptance set Ai, we introduce

(3.24) J̃
1(v, α, β, γ) := E

∫ T

0

e
−v

(

α+[(1−β)ϕ−Id]e∗(β)+(β−1)(µs−δψ(a∗(β)))+[γg−Id](m∗(γ))
)

e
v(1+rJ )(D+a∗(β))

η(ds)

(3.25) J̃2(v, a, α, β, γ) := E

∫ T

0

e−v
(
α+[(1−β)ϕ−Id]e∗(β)+(β−1)(µs−δψ(a))+[γg−Id](m∗(γ))

)
η(ds).

According to hypothesis (2.2), the functions v 7→ J̃ i(v, · · · ) are differentiable. Since their derivatives v 7→ ∂vJ̃
i are strictly

decreasing, the functions J̃ i(v, · · · ) are strictly convex and continuous.

Taking into account the admissible conditions (2.7),(2.8) in the case of power utility functions , firm J accepts the contract

if and only if J̃ i(V, .) ≤ 1, thus Ai = {ω; J̃ i(V (ω), .) ≤ 1}.

We define the value function of the problem with complete information that firm J ’s risk aversion is equal to v

u1(v) := sup
{(α,β,γ)∈R+×R×R+:J̃1(v,α,β,γ)≤1}

I1(α, β, γ)

u2(v) := sup
{(a,α,β,γ)∈R+×R+×R×R+:J̃2(v,a,α,β,γ)≤1}

I2(a, α, β, γ)

We have the following result:

Proposition 3.8 Let

wiI := −p ∨ sup
v>0

{ui(v)P(V ≤ v)− p
(
1− P(V ≤ v)

)
}.(3.26)

We have wiI ≤ uiI and when either p < +∞ or ∃v ∈ (0,+∞), P(V > v) = 0 then wiI = uiI.

Proposition 3.8 has an important interpretation. Indeed, it means that in order to solve (3.22) or (3.23), firm I first solves

its problem for any given v as if the information was complete or in other words as in Section 3.3, and then ”chooses”

the level v that would bring the greatest social expectation in (3.26).

Theorem 3.1 Let v0 := inf{v > 0 : P(V ≤ v) > 0}. If limv→v+0
ui(v) ≤ −p then the fact that the two firms do not enter

into any contract is a Stackelberg equilibrium in Situation i.

Otherwise, if v1 := sup{v > 0 : P(V > v) > 0} < +∞ then the optimization problem (3.26) has a solution v⋆ ∈

(0, v1] ∩ [v0, v1] (equal to v1 when p = +∞) and any Stackelberg equilibrium for the problem with complete information

and risk aversion v⋆ for firm J is a Stackelberg equilibrium for the problem with incomplete information.

3.4.2 Nash equilibrium

We did not succeed in finding sufficient conditions for the existence of a Nash equilibrium with incomplete information.

Nevertheless, we obtain necessary conditions that are similar for both situations:

Proposition 3.9 Assume existence of a Nash equilibrium ĉ = (â, α̂, β̂, γ̂, ê, m̂) such that the value for firm I is greater

than −p and let v̂ := sup{v > 0 : J(v, ĉ) ≤ 1} with J(v, ĉ) defined in Situations 1 and 2 respectively as

J(v, a, α, β, γ, e,m) := E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ )(D+a)

)
η(ds),

J(v, a, α, β, γ, e,m) := E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m

)
η(ds).

Then v̂ > 0, ê = (ϕ′)−1
(

1

(1−β̂)+

)
, γ̂ = 1

g′(m̂) and, in Situation 1, â = (ψ′)−1
(

1+rJ
(δ(1−β̂))+

)
.

If v̂ < +∞, then ĉ is a Nash equilibrium for the problem with complete information and risk aversion v̂ for firm J and

for each v < v̂, P(V ≤ v) < P(V ≤ v̂).

If v̂ = +∞, then for each v ∈ (0,+∞), P(V ≤ v) < 1.

Remark 3.3 If there is a vector (v1, . . . , vn) of elements of (0,+∞) such that∑n
k=1 P(V = vk) = 1, one deduces that if there exists a Nash equilibrium for the problem with incomplete information,

then ∃i such that v̂ = vi.
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4 Proofs in Situation 1

4.1 Best responses and Nash equilibrium in Situation 1

4.1.1 Firm I

Let a, e and m be given and constant. Then we get the following optimization problem for firm I:

sup
α,β,γ

E

[
ba(a)−

∫ T

0

e−ρse
−u

(
(
bm(m)+be(es)−α−β(µs−ϕ(es)−δψ(a))−γg(m)

)
)

ds
]

such that α ≥ 0, γ ≥ 0, and

(4.1) E

∫ T

0

e
−v

(
(
α+(β−1)(µs−ϕ(es)−δψ(a))−es+γg(m)−m−(1+rJ)(D+a)

)
)

η(ds) ≤ 1.

Proposition 4.1 Let a ≥ 0, e ≥ 0 and m ≥ 0 be given and constant, and let β∗ := v
u+v . Then there exist optimal triplets

(α, β, γ) for the above problem. Moreover (α, β, γ) is optimal if and only if it satisfies: β = β∗ := v
u+v ∈ (0, 1) and

α+ γg(m) = Ce(β
∗)− u

u+v δψ(a) + e+m+ (1 + rJ )(D + a) with α ≥ 0 and γ ≥ 0, where

(4.2) Ce(β
∗) =

1

v
lnE

∫ T

0

ev(1−β
∗)(µs−ϕ(e))η(ds) > δ+

u

u+ v
ψ(a).

To prove the proposition, we need the following lemma :

Lemma 4.1 The function h(λ) =
E
∫

T

0
e−ρsµse

λµsds

E
∫

T

0
e−ρseλµsds

is increasing, thus the equation h(uβ) = h(v(1−β)) admits the unique

solution β∗.

Proof of Lemma 4.1

We compute:

(
E

∫ T

0

e−ρseλµsds
)2
h′(λ) = E

∫ T

0

e−ρsµ2
se
λµsdsE

∫ T

0

e−ρseλµsds−
(
E

∫ T

0

e−ρsµse
λµsds

)2
> 0,

using Cauchy-Schwarz inequality. The inequality is strict since µ is not constant dt × dP a.e.. Therefore β satisfies

h(uβ) = h(v(1 − β)) if and only if uβ = −v(β − 1), so that the only solution is β∗ := v
u+v ∈ (0, 1).

2

Proof of Proposition 4.1

Let a, e and m be given, we introduce:

K(α, β, γ) := −E

∫ T

0

e−ρse−u
(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

)
ds

E :=
{
(α, β, γ) ∈ R

3; E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ )(D+a)

)
η(ds) ≤ 1

}
.

We will first solve the problem of maximization of K on E, forgetting about the constraints α ≥ 0 and γ ≥ 0, and we

will then see that it allows to solve the original constrained problem. Let us therefore consider the following problem:

sup(α,β,γ)∈EK(α, β, γ). Since K is concave and E is a closed convex set, the first order conditions for the Lagrangian

associated to this problem are also sufficient conditions. The Lagrangian is given by:

L(α, β, γ, λ) :=− E

∫ T

0

e−ρse−u
(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

)
ds

−λ
(
E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ )(D+a)

)
η(ds)− 1

)
.

Hypothesis (2.2) implies that L is differentiable and

∂L

∂α
= −E

∫ T

0

ue−ρse−u()ds+ λE

∫ T

0

ve−v()η(ds) = 0,(4.3)

∂L

∂β
= −E

∫ T

0

ue−ρse−u()(µs − ϕ(e)− δψ(a))ds + λE

∫ T

0

ve−v()(µs − ϕ(e)− δψ(a))η(ds) = 0,(4.4)

∂L

∂γ
= −E

∫ T

0

ue−ρse−u()g(m)ds+ λE

∫ T

0

ve−v()g(m)η(ds) = 0.(4.5)
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Since g(m) is a constant, equation (4.3) implies equation (4.5). Furthermore, since

(µs − ϕ(e) − δψ(a)) > 0, then λ > 0 and the constraint is always saturated. This is natural since K is decreasing w.r.t.

α, β and γ, while

(α, β, γ) 7→ −E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ )(D+a)

)
η(ds)

is increasing w.r.t. α, β and γ. Therefore, at an interior point of E denoted (α, β, γ), for sufficiently small ε > 0, for

example (α, β−ε, γ) is still in E, while K(α, β−ε, γ) > K(α, β, γ), so that (α, β, γ) cannot be a maximum ofK. Therefore

we also have:

E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ)(D+a)

)
η(ds) = 1.(4.6)

Combining (4.3) and (4.4), we get:

E

∫ T

0

e−ρsµse
uβµsdsE

∫ T

0

e−ρse−v(β−1)µsds = E

∫ T

0

e−ρseuβµsdsE

∫ T

0

e−ρsµse
−v(β−1)µsds.

This equation is equivalent to h(uβ) − h(v(1 − β) = 0 which admits the unique solution β∗ = v
u+v ∈ (0, 1) (cf. Lemma

4.1). Using then (4.6), we compute:

e−v(α+γg(m)) =
e−v(e+m+(1+rJ )(D+a))

E
∫ T
0 ev(1−β∗)(µs−ϕ(e)−δψ(a))η(ds)

.

We have E
∫ T
0 ev(1−β

∗)(µs−ϕ(e)−δψ(a))η(ds) = ev(Ce(β
∗)− u

u+v
δψ(a)), so since

β∗ ∈ (0, 1) and µt − ϕ(e)− δψ(a) > 0 dt× dP-a.e, ev(Ce(β
∗)− u

u+v
δψ(a)) > 1 and Ce(β

∗)− u
u+v δψ(a) > 0, and we have the

necessary and sufficient condition for optimality:

(4.7) α+ γg(m) = Ce(β
∗)−

u

u+ v
δψ(a) + e+m+ (1 + rJ )(D + a).

Since Ce(β
∗)− u

u+v δψ(a) + e+m+ (1 + rJ )(D + a) > 0, the set

{(α, γ) ∈ [0,+∞)2, α+ γg(m) = Ce(β
∗)− u

u+v δψ(a) + e+m+ (1 + rJ )(D+ a)} 6= ∅, and therefore the optimal (α, β, γ)

for the problem:

sup
(α,β,γ)∈E∩(R+×R×R+)

K(α, β, γ),

are exactly the elements of

{
(α, β, γ) ∈ R+ × R× R+; β =

v

u+ v
, α+ γg(m) = Ce(β)−

u

u+ v
δψ(a) + e+m+ (1 + rJ )(D + a)

}
.

2

4.1.2 Nash equilibrium

Proof of Lemma 3.1

The function g is assumed to be increasing, strictly concave and such that g′(0) = ∞, g′(∞) = 0 and (2.6) holds. Since

g is increasing and concave, we compute for any x ∈ [0,m]:

g(m)− g(x) =

∫ m

x

g′(u)du ≥ (m− x)g′(m).

Since g is strictly concave and g′(∞) = 0, g′(m) > 0 and we have for m ≥ x:

g(m)

g′(m)
−m ≥

g(x)

g′(m)
− x.

By (2.6) and monotonicity of g, for x > m0, g(x) > 0 and limm→+∞
g(x)
g′(m) −x = +∞ so that limm→+∞

g(m)
g′(m) −m = +∞.

Since G′(m) = − gg′′(m)
(g′(m))2 has the same sign as g(m) by strict concavity of g, one easily concludes.

2
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Proof of Proposition 3.1

The characterization conditions for a Nash equilibrium follows from optimal expressions (3.1) and Proposition 4.1. Thus,

the only thing to check is that there exists an infinite number of solutions. On the one hand, (µs − ϕ(ê) − δψ(â)) > 0

and (1 + rJ )(D + â) + ê > 0, thus

C(β̂) + (1 + rJ )(D + â) + ê− u
u+v δψ(â) =

(1 + rJ)(D + â) + ê+ 1
v
ln
[
E
∫ T
0 exp( uv

u+v (µs − ϕ(ê)− δψ(â)))η(ds)
]
> 0.

Therefore there exists infinitely many couples (α,m) ∈ R
2
+ such that

α+
g(m)

g′(m)
−m = C(β̂) + (1 + rJ )(D + â) + ê −

u

u+ v
δψ(â)

namely the couples (C(β̂) + (1 + rJ )(D + â) + ê− u
u+v δψ(â)−G(x), x) where x ∈ [0, G−1(C(β̂) + (1 + rJ )(D + â) + ê−

u
u+v δψ(â))]. 2

4.2 Stackelberg equilibrium in Situation 1, firm I is leader

We give in this subsection the proof of Proposition 3.6.

Firm I has to find (α, β, γ) maximising

ba(a∗(β)) − E

∫ T

0

e−ρse−u
(
bm(m∗(γ))+be(e∗(β))−α−β(µs−ϕ(e

∗(β))−δψ(a∗(β)))−γg′(m∗(γ))
)
ds.

Since the inverse function of m∗(γ) = (g′)−1(1/γ) is the increasing bijection γ∗(m) = 1
g′(m) from R

+ onto itself, the

maximisers are the triplets (α, β, γ∗(m)) with (α, β,m) maximising

I1(α, β,m) := ba(a∗(β))− E

∫ T

0

e−ρse
−u
(
bm(m)+be(e∗(β))−α−β(µs−ϕ(e

∗(β))−δψ(a∗(β)))− g

g′
(m)
)
ds

under the constraint

J1(α, β,m) = E

∫
e
−v(α+(β−1)(µs−ϕ(e

∗(β))−δψ(a∗(β)))−e∗(β)+ g

g′
(m)−m−(1+rJ)(D+a∗(β))

η(ds) ≤ 1,

where, by a slight abuse of notations, we still denote by I1 and J1 the functions obtained by the change of variable

(α, β, γ) → (α, β,m). We also recall the application C : R → R defined in (3.5)

C(β) =
1

v
lnE

∫ T

0

ev(1−β)(µs−ϕ◦e
∗(β))η(ds).

Setting

A :=
{
(α, β,m) ∈ R+ × R× R+; J

1(α, β,m) ≤ 1},(4.8)

the optimization problem for firm I then writes:

sup
(α,β,m)∈A

I1(α, β,m).

We will prove the existence of a maximizer for this problem, and therefore of a Stackelberg equilibrium, by checking that

we can restrict the set A to a compact subset. Notice first that A 6= ∅. In fact, one can easily check that for any β ∈ R

and m ≥ 0, one can choose α large enough so that (α, β,m) ∈ A.

Lemma 4.2 We have sup(α,m)∈R
2
+
I1(α, β,m) → −∞ when β → ∞. Moreover, there exists β̄ ∈ R, not depending on

v > 0, such that the supremum over A is attained if and only if the supremum over A ∩ {β ∈ (−∞, β̄]} is attained, and

both supremum are equal.

To prove this lemma, we need the following result which applies to functions ϕ and ψ :

Lemma 4.3 For any increasing, strictly concave C1 and bounded function φ, φ′(x) = ◦(1/x) when x → ∞ and

y(φ′)−1(y) → 0 when y → 0.
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Proof. Integrating by parts, we get for x ≥ 1,

(4.9)

∫ x

1

uφ′′(du) = xφ′(x) − φ′(1)− φ(x) + φ(1)

where φ′′(du) denotes the negative measure equal to the second order distribution derivative of φ. Since φ is increasing

and concave, the terms −xφ′(x) and
∫ x
1
uφ′′(du) are non-positive on [1,+∞). The boundedness of φ then implies their

boundedness on [1,+∞). Since
∫ x
1
uφ′′(du) and φ(x) are monotonic and bounded, they admit finite limits when x→ ∞.

By (4.9), xφ′(x) admits a finite limit as well, denoted ℓ. Since φ is bounded, φ′ is integrable on [1,+∞), which implies

ℓ = 0 and gives the result. Let x = (φ′)−1(y). When y → 0, x goes to ∞ and y(φ′)−1(y) = φ′(x)x goes to 0.

2

Proof of Lemma 4.2

Since bm is such that bm′(∞) = 0, limm→+∞m− bm(m) = +∞ thus, using the first assertion in Lemma 3.1,

(4.10) lim
m→+∞

g

g′
(m)− bm(m) = +∞.

Hence e
u

(
g

g′
(m)−bm(m)

)
goes to infinity when m→ ∞ and there exists a constant c > 0 not depending on v > 0 such that

for any m ≥ 0, e
u

(
g

g′
(m)−bm(m)

)
≥ c.

For any β ≥ 1, e∗(β) = 0 and since I1 is decreasing w.r.t. α, we have for (α,m) ∈ R
2
+,

I1(α, β,m) ≤ I1(0, β,m)

≤ ba(a∗(β))− ce−ub
e(0)

E

∫ T

0

e−ρseuβ(µs−ϕ(0)−δψ(a
∗(β)))ds

→ −∞ when β → ∞.(4.11)

Indeed, if δ > 0, then a∗(β) = (ψ′)−1
(

1+rJ
(δ(1−β))+

)
= 0 for β ≥ 1 and the result is obvious.

Otherwise for δ ≤ 0, ba(a∗(β)) = o(β) when β → ∞ (indeed ba(x) = o(x) when x → ∞ and a∗(β) = o(β) when β → ∞,

see Lemma 4.3), µs − ϕ(0) − δψ(a∗(β)) > µs − ϕ(+∞) − δ+ψ(+∞) > 0. Therefore euβ(µs−ϕ(0)−δψ(a
∗(β))) goes to −∞

faster than ba(a∗(β)) goes to +∞ and, by Fatou Lemma,

lim inf
β→∞

E

∫ T

0

e−ρseuβ(µs−ϕ(0)−δψ(a
∗(β)))−ln(ba(a∗(β)))ds = ∞

so that (4.11) holds. As a consequence, there exists β̄ ∈ R such that

sup
(α,β,m)∈R+×(β̄,+∞)×R+

I1(α, β,m) < sup
(α,β,m)∈A

I1(α, β,m)

and the supremum over A is attained if and only if the supremum over A ∩ {β ∈ (−∞, β̄]} is attained. Moreover, if the

supremum are attained, they are equal. 2

We now decompose the optimisation on A∩ {β ∈ (−∞, β̄]} according to the positivity of α.

Lemma 4.4 Let

B :=
{
(α, β,m) ∈ R+ × (−∞, β̄]× R+; J

1(α, β,m) = 1
}
,(4.12)

C :=
{
(0, β,m); β ∈ (−∞, β̄], m ≥ 0, J1(0, β,m) ≤ 1

}
.(4.13)

The supremum over A is attained if and only if the supremum over B ∪ C is attained.

Proof. Since I1 is decreasing w.r.t. α and J1 is continuous, if α > 0 and J1(α, β,m) < 1, then there exists ε > 0 such

that I1(α − ε, β,m) > I1(α, β,m), while J1(α − ε, β,m) ≤ 1. Therefore the supremum over A ∩ {α > 0} is the same as

the supremum over

B̃ :=
{
(α, β,m) ∈ (0,+∞)× (−∞, β̄]× R+; J

1(α, β,m) = 1
}
.

Noticing then that A is closed and that B := Cl(B̃), we easily conclude. 2

Lemmas 4.5 and 4.6 are devoted to the supremum over B. In Lemma 4.5, we check that the supremum is attained on a

compact subset K not depending on v > 0. In Lemma 4.6, we derive optimality conditions satisfied by a maximizer with

positive α.
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Lemma 4.5 The function k(β) defined in (3.18), which depends on v > 0 through the function C(β) defined in (3.5),

satisfies k(β) → ∞ uniformly in v > 0 when β → −∞. There exists β̄ such that k(β) is bounded from below by a positive

constant uniformly in v > 0 for β ∈ (−∞, β̄]. Moreover, in set B, α is a continuous function of (β,m) and there exists a

compact K ⊂ B not depending on v > 0 such that supB I
1 = supK I

1. In particular the supremum on B is attained.

Proof. Let us consider supB I
1. Recall the definition of C(β) given by (3.5). Since J1(α, β,m) = 1 on B, we know that

α = α(β,m) := C(β) − (1− β)δψ(a∗(β)) + e∗(β) +m−
g

g′
(m) + (1 + rJ )(D + a∗(β)),

so that

(4.14) I1(α(β,m), β,m) = ba(a∗(β)) − eu(Id−b
m)(m)k(β).

In I1(α(β,m), β,m), we have ba(a∗(β)) minus the product of two positive functions, the first one depending only on

m, the second one, k, only on β. Since (bm)′(∞) = 0, eu(Id−b
m)(m) → ∞ when m → ∞, therefore the first function is

bounded from below by a positive constant c and goes to infinity when m goes to infinity. Let us now examine k.

Using Jensen’s inequality in (3.5) we get

(4.15) C(β) ≥ (1− β)
( ∫ T

0

Eµs − ϕ ◦ (ϕ′)−1(
1

(1− β)+
)η(ds)

)

and using again Jensen’s inequality and eu(1+rJ )(D+a∗(β)) ≥ 1, we see that

k(β) ≥ eu(Id−b
e)(e∗(β))e

u

(
∫

T

0
Eµs−ϕ(e

∗(β))−δψ(a∗(β))η(ds)

) ∫ T

0

e−ρsds.

Using Eµs ≥ ϕ(x) + δ+ψ(y) for any x, y, we deduce that

k(β) ≥ e
u(Id−be)◦(ϕ′)−1( 1

(1−β)+
) ∫ T

0
e−ρsds where the right-hand-side does not depend on v > 0 and goes to infinity when

β 7→ −∞ since be(x) = o(x) when x→ ∞ (recall that (be)′(∞) = 0). Finally using ba(x) = o(x) and (ϕ′)−1(x) ∼ (ψ′)−1(x)

for x→ 0, we conclude

I1(α, β,m) ≤ ba ◦ (ψ′)−1(
1 + rJ

δ+(1− β)
)− ceu(Id−b

e)◦(ϕ′)−1( 1
1−β

)

∫ T

0

e−ρsds→ −∞ when β → −∞.

2

Lemma 4.6 Let (α̂, β̂, m̂) with α̂ > 0 be such that the maximum on B is attained at (α̂, β̂, m̂). Then necessarily

(4.16) m̂ = [(bm)′]−1(1) > 0,

and there are two different cases, depending on the sign of δ :

• If δ > 0,

h(uβ̂)− h(v(1 − β̂)) = S(β̂) + S̃(β̂), and β̂ < 1. (3.20)

• If δ < 0,

h(uβ̂)− h(v(1 − β̂)) = S(β̂), and β̂ < 1, (3.19)

or

h(uβ̂)− h(v(1 − β̂)) = S̃(β̂), and β̂ ≥ 1. (3.21)

with S and S̃ defined in (3.16) and (3.17).

Proof. Let (α̂, β̂, m̂) be such that the maximum on B is attained at (α̂, β̂, m̂). Since (bm)′(0) = +∞, m 7→ m − bm(m)

is decreasing in a neighborhood of 0, so that from (4.14), m̂ > 0. Assume moreover that α̂ > 0. Then the mapping

(β,m) 7→ I1(α(β,m), β,m) admits a local maximum at (β̂, m̂) and therefore the first order conditions are satisfied, ie
∂
∂β
I1(α(β̂, m̂), β̂, m̂) = ∂

∂m
I1(α(β̂, m̂), β̂, m̂) = 0. The second one gives

(4.17) m̂ = [(bm)′]−1(1) > 0.

The computation of β̂ is more tricky and depends on the externality δ.

14



1) δ > 0: ∂
∂β
I1(α(β̂, m̂), β̂, m̂) =





−eu(Id−b
m)(m̂)

E
∫ T
0 u
(
µs −

E
∫

µse
v(1−β)µs η(ds)

E
∫

ev(1−β)µsη(ds)

)
e−ρseu

(
βµs+C(β)

)
ds if β ≥ 1

(ba)′ ◦ a∗(β) 1+rJ
δ(1−β)2ψ′′◦a∗(β)

−E
∫ T
0 u
(
β(1+rJ )
β−1 (a∗)′(β)− β

1−β (e
∗)′(β) − (be)′ ◦ e∗(β)(e∗)′(β) + µs −

E
∫

T

0
e−ρsµse

v(1−β)µsds

E
∫

T

0
e−ρsev(1−β)µsds

)

eu(Id−b
m)(m̂)e−ρseu

(
(Id−be)◦e∗(β)−δψ◦a∗(β))+β(µs−ϕ◦e

∗(β))+(1+rJ )(D+a∗(β))+C(β)
)
ds if β < 1.

Thus using the function h defined in (3.15)

∂

∂β
I1(α(β̂, m̂), β̂, m̂) = 0 iff

{
h(uβ)− h(v(1 − β)) = 0 if β ≥ 1

h(uβ)− h(v(1 − β)) = S(β) + S̃(β) if β < 1.

with

S(β) :=

β
1−β + (be)′ ◦ (ϕ′)−1

(
1

1−β

)

(1− β)2ϕ′′ ◦ (ϕ′)−1
(

1
1−β

) .

S̃(β) :=
1 + rJ

δ(1− β)2(ψ′′)(a(β))

(
(1 + rJ )

β

1− β
+

(ba)′(a(β))

ueu(Id−bm)(m̂)k(β)

)

As seen in Lemma 4.1, for β ≥ 1, h(uβ)− h(v(1 − β)) > 0, thus β̂ < 1 and we study the equation (3.20)

h(uβ)− h(v(1− β)) = S(β) + S̃(β), for β < 1.

The left hand side is positive for β > v
u+v . S and S̃ are negative for β ∈ [0, 1] thus β̂ < v

u+v .

2) δ < 0: ∂
∂β
I1(α(β̂, m̂), β̂, m̂) =





(ba)′ ◦ a∗(β) 1+rJ
δ(1−β)2ψ′′◦a∗(β)

−E
∫ T
0
u
(
β(1+rJ)
β−1 (a∗)′(β) + µs −

E
∫

T

0
e−ρsµse

v(1−β)µs ds

E
∫

T

0
e−ρsev(1−β)µs ds

)

eu(Id−b
m)(m̂)e−ρseu

(
−be(0)−δψ◦a∗(β))+β(µs−ϕ(0))+(1+rJ)(D+a∗(β))+C(β)

)
ds if β ≥ 1

−E
∫ T
0
u
(
− β

1−β (e
∗)′(β) − (be)′ ◦ e∗(β)(e∗)′(β) + µs −

E
∫

T

0
e−ρsµse

v(1−β)µs ds

E
∫

T

0
e−ρsev(1−β)µsds

)

eu(Id−b
m)(m̂)e−ρseu

(
(Id−be)◦e∗(β)−δψ(0)+β(µs−ϕ◦e

∗(β))+(1+rJ)D+C(β)
)
ds if β < 1.

Thus,

∂

∂β
I1(α(β̂, m̂), β̂, m̂) = 0 iff

{
h(uβ)− h(v(1− β)) = S̃(β) if β ≥ 1

h(uβ)− h(v(1− β)) = S(β) if β < 1.

Thus the optimal β on B is either the solution of equation (3.19) (which is less than v
u+v ) or the solution of

h(uβ)− h(v(1 − β)) = S̃(β), for β ≥ 1.

2

The next lemma is devoted to the optimisation over C.

Lemma 4.7 The supremum of (α, β,m) 7→ I1(α, β,m) is attained on C defined in (4.13).

Proof. Let us then consider supC I
1. We have α = 0 on C. Since g is concave and positive for sufficiently large m, and

(bm)′(∞) = 0, the mapping m 7→ bm − g(m)
g′(m) is decreasing for sufficiently large m. Thus there is a constant m̄ ∈ R not

depending on v > 0 such that for any β ∈ R, m 7→ I1(0, β,m) is decreasing for m ≥ m̄. Therefore, writing

C1 := C ∩ {m ∈ [0, m̄]} and C2 := C ∩ {m ≥ m̄ and J1(0, β,m) = 1},

the supremum of I1 over C is attained iff the supremum of I1 over C1 ∪ C2 is attained.
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(i) We prove that C1 is compact. The condition J1(0, β,m) ≤ 1 is equivalent to

C(β)− (1 − β)δψ(a∗(β)) + e∗(β) +m−
g

g′
(m) + (1 + rJ )(D + a∗(β)) ≤ 0.

Since C(β)−(1−β)δψ(a∗(β)) ≥ 0 (cf. (4.15) and ϕ◦e∗ ≤ k−δ+ψ◦a∗), it implies e∗(β)+m− g
g′
(m)+(1+rJ )(D+a∗(β)) ≤ 0.

Since limβ→−∞ e∗(β) = +∞ and a∗(β) ≥ 0, while m ∈ [0, m̄], this implies that there exists β ∈ R not depending on

v > 0, such that C1 ⊂ {0} × [β, β̄]× [0, m̄], β̄ being defined in Lemma 4.2. Since C1 is closed, it is compact and therefore

the supremum over C1 is attained.

(ii) On C2, we have C(β)− (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ )(D+ a∗(β)) = g(m)
g′(m) −m = G(m). We use Lemma 3.1

and the inverse G−1. Since
C(β) − (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ )(D + a∗(β)) > 0, for any β ∈ R,
H(β) := G−1

(
C(β) − (1 − β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β))

)
> 0 is well-defined. Thus we have supC2

I1 =
supβ∈(−∞,β̄] I

1
(
0, β,H(β)

)
.

We now prove that I1(0, β,H(β)) → −∞ uniformly in v > 0 when β → −∞. When β → −∞, e∗(β) → ∞, while
a∗(β) ≥ 0, C(β) − (1− β)δψ(a∗(β)) ≥ 0, so that
C(β) − (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β)) → ∞ uniformly in v > 0, and therefore m = H(β) → ∞, and is
the only solution to C(β) − (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ )(D + a∗(β)) = G(m) for −β sufficiently large.

We recall that bm(m) = ◦(m), e∗(β) = ◦(−β) and be ◦ e∗(β) = ◦(−β), a∗(β) = ◦(−β) when β → −∞, g◦H(β)
g′◦H(β) −H(β) =

C(β) − (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ )(D + a∗(β)), therefore, using (4.15) in a second time, we get for all v > 0 :

−u

(

b
m

◦H(β) + b
e(e∗(β))− β(µs − ϕ(e∗(β))− δψ(a∗(β)))−

g ◦H(β)

g′ ◦H(β)

)

= −u
(

b
m

◦H(β)−H(β) + (be − Id)(e∗(β))− β(µs − ϕ(e∗(β))− δψ(a∗(β)))− C(β) + (1− β)δψ(a∗(β))
)

(4.18) ≥ −uβ

(∫ T

0

Eµsη(ds)− µs

)
+ o(−β), for − β → ∞,

where the o(−β) is uniform in v > 0. Since µ is not dt× dP constant,

(4.19) ∃ε > 0 and D ⊂ [0, T ]× Ω s.t. (dt× dP)(D) ≥ ε, s.t. µs + ε ≤

∫ T

0

Eµsη(ds) on D.

Using (4.18), we compute for −β sufficiently large not depending on v > 0 :

I1(0, β,H(β)) ≤ ba(a∗(β)) − E

∫ T

0

1De
−ρse−

uβ
2 (

∫

T

0
e−ρs

Eµsη(ds)−µs)ds

≤ ba(a∗(β)) − εe−ρT e−
uβε
2 .

Since ba(a∗(β)) = o(−β) when β → −∞, the right-hand-side goes to −∞ uniformly in v > 0 when β → −∞, so that the

supremum over C2 is attained. 2

In conclusion, the maximum of I1 over A is attained at (α̂, β̂, m̂) which belongs either to B or to C, and a Stackelberg

equilibrium exists. Moreover if α̂ > 0, then (α̂, β̂, m̂) ∈ B and the maximum of I1 over B is attained at (α̂, β̂, m̂). The

equilibrium characterization given in the statement of the Proposition 3.6 then follows from Lemma 4.6.

Proof of Lemma 3.2

Let us recall (3.19) : h(uβ)− h(v(1 − β)) = S(β). By Lemma 4.1, as β goes from −∞ to +∞, the left-hand-side of this

equation is increasing from h(−∞)− h(+∞) < 0 to h(+∞)− h(−∞) > 0 and is null for β = v
u+v .

For β < 1, we have

S(β) = (ϕ′(e∗) + (be)′(e∗)− 1)
(ϕ′(e∗))2

ϕ′′(e∗)

so that, by concavity of ϕ, the sign of S(β) is equal to the one of 1 − ϕ′(e∗) − (be)′(e∗). Remember that when β goes

from −∞ to 1, e∗(β) is decreasing from +∞ to 0, ϕ and be are concave, so β 7→ 1−ϕ′(e∗(β))− (be)′(e∗(β)) is decreasing,

from 1 (ϕ′(+∞) = (be)′(+∞) = 0) to −∞ (ϕ′(0) = (be)′(0) = +∞). Since ϕ′ + (be)′ is monotonic, there exists a unique

β0 such that ϕ′(β0)+ (be)′(β0) = 1, so β < β0 ⇒ S(β) > 0, β > β0 ⇒ S(β) < 0. As a consequence, there exists a solution

β̂ to (3.19). For β ≥ 0, S(β) is negative since in (3.16), the numerator is positive whereas the denominator is negative by

concavity of ϕ. Hence β0 < 0. Moreover S( v
u+v ) < 0, so any solution β̂ belongs to (β0,

v
u+v ). 2
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5 Proofs in Situation 2

5.1 Best responses and Nash equilibrium in Situation 2

5.2 Firm I

Since we are interested in equilibrium, let now e ≥ 0 and m ≥ 0 be given and constant. We recall that F (a) =

ba(a) − f((1 + rI)(D + a)T ) is assumed to be strictly concave, F ′(0) > 0, possibly infinite, and F ′(∞) = −∞. Then we

get the following optimization problem:

sup
a,α,β,γ

F (a)− E
∫ T
0 e−ρse−u

(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

)
ds

such that a ≥ 0, α ≥ 0, γ ≥ 0,(5.1)

and E
∫ T
0 e−v

(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m

)
η(ds) ≤ 1.

We have the following result:

Proposition 5.1 Let e ≥ 0 and m ≥ 0 be given and constant, and let β∗ := v
u+v . Then, for Be defined in (3.7),

argmaxa≥0

[
F (a)− e−uδψ(a)Be(β

∗,m)
]
6= ∅. Moreover, there exists optimal controls and (a, α, β, γ) is optimal if and

only if it satisfies: β = β∗, a ∈ argmaxa≥0

[
F (a)− e−uδψ(a)Be(β

∗,m)
]
and

α+ γg(m) = Ce(β
∗)−

u

u+ v
δψ(a) + e +m

with α ≥ 0 and γ ≥ 0, where Ce has been defined in (3.3). Last, if δ ≥ 0, then a∗ > 0 and is unique.

Remark 5.1 Notice that we have β∗ ∈ (0, 1) and α∗ + γ∗ > 0.

Proof. Let a ≥ 0 be given for the moment, we introduce:

K(α, β, γ) = Ka(α, β, γ) := −E

∫ T

0

e−ρse−u
(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

)
ds

Ea :=
{
(α, β, γ) ∈ R

3; E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m

)
η(ds) ≤ 1

}
.

Remark that K is the same function as the one defined in the beginning of the proof of Proposition 4.1, while for Ea the

term (1 + rJ )(D + a) does not appear in the constraint (compared to the function E of the proof of Proposition 4.1).

We will first solve, for fixed a, the problem of maximization of K on Ea, following the same steps as in Section 4.1 : the

optimal (α, β, γ) for the problem

sup
(α,β,γ)∈Ea∩(R+×R×R+)

K(α, β, γ),

are exactly the elements of

{
(α, β, γ) ∈ R+ × R× R+; β =

v

u+ v
, α+ γg(m) = Ce(β)−

u

u+ v
δψ(a) + e+m

}

and the constraint is always saturated :

E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg(m)−m

)
η(ds) = 1.(5.2)

Then, from (5.2), using β∗ = v
u+v , we get:

ev(α
∗+γ∗g(m)) = ev(e+m+Ce(β

∗)− u
u+v

δψ(a)),

eu(α
∗+γ∗g(m)) = eu(e+m+Ce(β

∗)− u
u+v

δψ(a)),

and

Ka(α
∗, β∗, γ∗) = −e−u(b

m(m)+be(e)−e−m) 1− e−ρT

ρ
e(u+v)Ce(β

∗)e−uδψ(a).

Recalling (cf. (3.7)) that Be(β
∗,m) = e−u(b

m(m)−m+be(e)−e)e(u+v)Ce(β
∗) 1−e−ρT

ρ
, we have for any a ≥ 0, supα,β,γKa =

−e−uδψ(a)Be(β∗,m). Let us then consider supa≥0 F (a)−e
−uδψ(a)Be(β

∗,m). SinceBe(β
∗,m) > 0, F (a)−e−uδψ(a)Be(β∗,m) ≤
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F (a), and limx→∞ F (x) = −∞ implies that a 7→ F (a)− e−uδψ(a)Be(β
∗,m) attains its maximum on R+, either at a

∗ = 0

or at a point where the first order condition is satisfied. More precisely, if δ ≥ 0, then it is a strictly concave function,

increasing for small a, so that there exists a unique maximum a∗ > 0 that is the unique solution of:

F ′(a) + uδBe(β
∗,m)ψ′(a)e−uδψ(a) = 0.

If δ < 0, then the function is decreasing for small a, since ψ′(0) = +∞, so that a = 0 is a local maximum. So the

maximum is attained either at a∗ = 0 or at a solution of F ′(a) + uδBe(β
∗,m)ψ′(a)e−uδψ(a) = 0. In any case, we have

characterized the optimal controls for the optimization problem of firm I. 2

5.2.1 Nash equilibrium

From the previous results, the proof of Proposition 3.2 follows easily.

Proof of Proposition 3.2

The first assertion is a consequence of Proposition 5.1. The characterization conditions (3.9) and (3.10) also follow from

the same proposition and the optimal expressions (3.2).

Thus, the only thing to check is that there exists an infinite number of solutions. Since µs − ϕ(e) − δψ(a) > 0 for any

(a, e), we have C(β̂) − u
u+v δψ(â) > 0. As a consequence C(β̂) + ê − u

u+v δψ(â)−G(m̂) ≥ 0 as soon as m̂ ≤ G−1(ê) with

ê = (ϕ′)−1(u+v
u

). The fact that argmaxa≥0

(
F (a)− e−uδψ(a)Be(β̂,m)

)
6= ∅ is an immediate consequence of Proposition

5.1. 2

5.3 Stackelberg equilibrium in Situation 2, firm I is leader

The best response for firm J is given by (3.2), but now the optimization problem for firm I has changed. We recall the

continuous mappings m∗ : R+ → R+, e
∗ : R → R+, C : R → R and B : R× R+ → R, (3.2), (3.5), (3.6):

e∗(β) = (ϕ′)−1

(
1

(1− β)+

)
, m∗(γ) = (g′)−1(1/γ).

C(β) =
1

v
lnE

∫ T

0

ev(1−β)(µs−ϕ◦e
∗(β))η(ds),

B(β,m) = eu(Id−b
m)(m)eu(Id−b

e)◦e∗(β)euC(β)
E

∫ T

0

e−ρseuβ(µs−ϕ◦e
∗(β))ds.

We are now ready to prove the existence of a Stackelberg equilibrium, as stated in Proposition 3.7.

Proof of Proposition 3.7.

Given β and γ, the optimal controls for firm J are given by e∗ and m∗. Once again, since γ = 1
g′(m) yields a bijection

between m̂ and γ̂ on R
+, we only deal with m.

Writing:

I2(a, α, β,m) := F (a)− E

∫ T

0

e−ρse
−u
(
bm(m)+be(e∗(β))−α−β(µs−ϕ(e

∗(β))−δψ(a))− g

g′
(m)
)
ds,(5.3)

J2(a, α, β,m) := E

∫ T

0

e
−v
(
α+(β−1)(µs−ϕ(e

∗(β))−δψ(a))−e∗(β)+ g

g′
(m)−m

)
η(ds),(5.4)

A :=
{
(a, α, β,m) ∈ R+ × R+ × R× R+; J

2(a, α, β,m) ≤ 1
}
,(5.5)

the optimization problem for firm I then writes:

sup
(a,α,β,m)∈A

I2(a, α, β,m).

We will prove the existence of a maximizer for this problem, and therefore of a Stackelberg equilibrium, by proving that

we can restrict the set A to a compact subset. Notice first that A 6= ∅. Indeed, since J2(a, α, 1, 0) = e−vα, for any a ≥ 0

and α > 0, (a, α, 1, 0) ∈ A. In fact, one can easily check that for any a ≥ 0, β ∈ R and m ≥ 0, one can choose α large

enough so that (a, α, β,m) ∈ A.

The proof will use the following lemmas very similar to Lemmas 4.2, 4.4, 4.5, 4.6 and 4.7. Nevertheless, we cannot deduce

the following from the previous ones because the involved functions are not defined on the same spaces.
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Lemma 5.1 There exists ā ∈ (0,+∞) and β̄ ∈ R not depending on v such that the supremum over A is attained if and

only if the supremum over {(a, α, β,m) ∈ A such that a ∈ [0, ā], β ∈ (−∞, β̄]} is attained.

Proof. We have I2(a, α, β,m) ≤ F (a). Since limx→∞ F (x) = −∞ (cf. beginning of Subsection 5.2) there exists ā > 0,

such that the supremum over A is the same as the supremum over A ∩ {a ∈ [0, ā]}. Notice that I2 is decreasing w.r.t.

α, so that I2(a, α, β,m) ≤ I2(a, 0, β,m). Using (4.10), we get e
u
(

g

g′
(m)−bm(m)

)
→ +∞ when m→ +∞. Therefore, there

exists a constant c > 0 such that for any m ≥ 0, e
u
(

g

g′
(m)−bm(m)

)
≥ c.

On the other hand, for any β ≥ 1, since e∗(β) = 0, we compute:

I2(a, α, β,m) ≤ I2(a, 0, β,m) ≤ F (a)− c E

∫ T

0

e−ρseuβ(µs−ϕ(0)−δψ(a))ds

which goes to −∞ when β → ∞, uniformly in a ∈ [0, ā].

2

Lemma 5.2 Let

B :=
{
(a, α, β,m) ∈ [0, ā]× R+ × (−∞, β̄]× R+; J

2(a, α, β,m) = 1
}
,(5.6)

C :=
{
(a, 0, β,m); a ∈ [0, ā], β ∈ (−∞, β̄], m ≥ 0, J2(a, 0, β,m) ≤ 1

}
.(5.7)

The supremum over A is attained if and only if the supremum over B ∪ C is attained.

Proof. Since I2 is decreasing w.r.t. α and J2 is continuous, if α > 0 and J2(a, α, β,m) < 1, then there exists ε > 0

such that I2(a, α− ε, β,m) > I2(a, α, β,m), while J2(a, α − ε, β,m) ≤ 1. Thus in case of optimum satisfying α > 0, the

constraint is saturated. 2

Lemma 5.3 In set B, α is a continuous function of (a, β, γ), so there exists a compact K ⊂ B not depending on v > 0

such that supB I
2 = supK I

2, and in particular the maximum on B is attained.

Proof. Let us consider supB I
2. Recall the definition of C given by (3.5). Since J2(a, α, β,m) = 1 on B, we have

α+
g

g′
(m) = α(a, β,m) = C(β)− (1 − β)δψ(a) + e∗(β) +m,

therefore we have:

sup
(a,α,β,m∗)∈B

I2(a, α, β,m∗)= sup{(a,β,m∗)∈[0,ā]×(−∞,β̄]×R+; α(a,β,m∗)≥0} F (a)− e−uδψ(a)B(β,m∗)(5.8)

= sup{(a,β,m∗)∈[0,ā]×(−∞,β̄]×R+; α(a,β,m∗)≥0} F (a)− eu(Id−b
m)(m∗)e−uδψ(a)k̃(β)

with

k̃(β) = eu(Id−b
e)◦e∗(β)euC(β)

E

∫ T

0

e−ρseuβ
(
µs−ϕ◦e

∗(β)
)
ds.

In (5.8), we have F (a) minus the product of three positive functions, the first one depending only on m, the second one

only on a and the third one, k, only on β. Using (4.10), eu(m−bm(m)) → ∞ when m → ∞, therefore the first function

is bounded from below by a positive constant and goes to infinity when m goes to infinity. Since a ∈ [0, ā] and ψ is

bounded, the second one is also bounded from below by a positive constant.

As in Lemma 4.5, we prove that k̃(β) 7→ ∞ uniformly in v > 0 when β 7→ −∞, which concludes the proof.

2

Lemma 5.4 Assume that there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂) with α̂ > 0. Then necessarily

γ̂ =
1

g′(m̂)
, where m̂ = [(bm)′]−1(1) > 0,(5.9)

β̂ <
v

u+ v
and β̂ is a solution of (3.19).(5.10)
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Proof. The maximum on B is attained at (â, α̂, β̂, m̂). Since (bm)′(0) = +∞, m 7→ m−bm(m) is decreasing in a neighbor-

hood of 0, so that from (5.8), m̂ > 0. Assume moreover that α̂ > 0. Then the mapping (β,m) 7→ I2(â, α(â, β,m), β,m)

admits a local maximum at (β̂, m̂) and therefore the first order conditions are satisfied, ie ∂/∂βI2(â, α(â, β̂, m̂), β̂, m̂) =

∂/∂mI2(â, α(â, β̂, m̂), β̂, m̂) = 0. This partial derivative with respect to m yields

m̂ = [(bm)′]−1(1) > 0 so γ̂ =
1

g′(m̂)
.

On the other hand, using ϕ′(e∗(β)) = 1
1−β , we compute:

C′(β) =




−

E
∫

T

0
e−ρsµse

v(1−β)µs ds

E
∫

T

0
e−ρsev(1−β)µsds

= −h(v(1− β)) if β ≥ 1

ϕ ◦ e∗(β)− (e∗)′(β)− h(v(1 − β)) if β < 1.

Then:

k̃′(β) =





E
∫ T
0 u
(
µs − h(v(1 − β))

)
eu
(
βµs+C(β)

)
e−ρsds if β ≥ 1

E
∫ T
0
u
(
− β

1−β (e
∗)′(β)− (be)′ ◦ e∗(β)(e∗)′(β) + µs − h(v(1− β))

)

eu
(
(Id−be)◦e∗(β)+β(µs−ϕ◦e

∗(β))+C(β)
)
e−ρsds if β < 1.

As seen in Lemma 4.1, for β ≥ 1, h(uβ)− h(v(1− β)) > 0, therefore k̃′(β) > 0 for β ≥ 1. As a consequence the equation

∂βI = k̃′(β) = 0 admits β̂ (Lemma 3.2) as a solution:

β̂ <
u

u+ v
and β̂ is a solution of (3.19).

2

Lemma 5.5 The supremum of (a, α, β,m) 7→ I2(a, α, β,m) is attained on C by (5.7).

Proof. We have α = 0 on C. Since g is concave and positive for sufficiently large m, and (bm)′(∞) = 0, the application

bm − g
g′

is decreasing for sufficiently large m. Thus there exists m̄ > 0 such that I2 is decreasing w.r.t. m on [m̄,+∞).

Thus in case m ≥ m̄, the optimum has to saturate the constraint. Therefore, writing

C1 := {(a, 0, β,m) ∈ C : m ∈ [0, m̄]} ; C2 := {(a, 0, β,m) ∈ C : m ≥ m̄ and J2(a, 0, β,m) = 1},

the supremum of I2 over C is attained iff the supremum of I2 over C1 ∪ C2 is attained.

(i) We prove that C1 is compact. The condition J2(a, 0, β,m) ≤ 1 is equivalent to

C(β)−(1−β)δψ(a)+e∗(β)+m− g
g′
(m) ≤ 0. Since C(β)−(1−β)δψ(a) ≥ 0 (consequence of (4.15) and µs−ϕ(x) ≥ δψ(y)),

it implies e∗(β) +m − g
g′
(m) ≤ 0. Since limβ→−∞ e∗(β) = +∞, while m ∈ [0, m̄], this implies that there exists β ∈ R,

such that C1 ⊂ [0, ā] × {0} × [β, β̄] × [0, m̄] where m̄ and β do not depend on v. Since C1 is closed, it is compact and

therefore the supremum over C1 is attained.

(ii) On C2, we have C(β)− (1− β)δψ(a) + e∗(β) = g(m)
g′(m) −m = G(m). We recall that the restriction of G to (m0,∞)

is an increasing bijection from (m0,∞) onto (G(m0),∞) ⊃ (0,∞) and denote by G−1 its inverse. Since C(β) − (1 −

β)δψ(a∗(β)) + e∗(β) > 0, for any β ∈ R, H(β) := G−1
(
C(β) − (1 − β)δψ(a) + e∗(β)

)
> 0 is well-defined. We thus have

supC2
I2 = sup(aβ)∈[0,ā]×(−∞,β̄] I

2
(
a, 0, β,H(β)

)
.

We now prove that when β → −∞, I2(a, 0, β,H(β)) → −∞ uniformly in (a, v) ∈ [0, ā]×Kv where Kv is a given compact

subset of (0,+∞). Using (4.18) and (4.19) and the continuity of C(β) in v, we obtain that for all v ∈ Kv, for −β

sufficiently large:

I2(a, 0, β,H(β)) ≤ ba(a)− E

∫ T

0

1De
−ρse−

uβ
2 (

∫

T

0
Eµsη(ds)−µs)ds ≤ ba(a)− ηe−ρT e−

uβε
2 .

Since ba(a) is bounded when a ∈ [0, ā], the last term goes to −∞ when β → −∞ uniformly in a ∈ [0, ā], so that the

supremum over C2 is attained. 2

End of the proof of Proposition 3.7. In conclusion, the maximum over A is attained, either on B or C, and a

Stackelberg equilibrium exists. Moreover if α > 0, then we have the characterization given in the statement of Proposition.

2
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Remark 5.2 Notice that I2 is not in general concave w.r.t β or γ. Consider for example bm(x) = x0.8/0.8 and g(x) =

x0.5/0.5.

Corollary 5.1 Assume that equation (3.19) admits a unique solution, namely β̂. Then any Stackelberg equilibrium

(ê, m̂, â, α̂, β̂, γ̂) with α̂ > 0 is defined as follows:

ê = (ϕ′)−1
(

1

1−β̂

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂), â ∈ argmaxa≥0 F (a) − e−uδψ(a)B(β̂, m̂) and α̂ = C(β̂) − (1 −

β̂)δψ(â) + ê+ m̂− γ̂g(m̂), where C and B are defined by (3.5)-(3.6).

Proof. Indeed, using Lemma 5.2, for any a ≥ 0, the mapping φa : (β, γ) 7→ I2(a, α(a, β, γ), β, γ) attains its maximum

on R× R+ (we allow here α(a, β, γ) to be negative).

The derivative of the applicationm 7→ m−bm(m), m 7→ 1−(bm)′(m) ∼ −∞ in a neighborhood of 0, so that this maximum

is attained only at points such that γ > 0. As a consequence, the first order conditions are satisfied and therefore using

Lemma 5.3, any global maximum (β, γ) satisfies (5.9)-(5.10), and in particular is unique since (3.19) admits a unique

solution. Thus, (β̂, γ̂) is the only global maximum of φa on R×R+ (for any a ≥ 0). Then, since I2 is decreasing w.r.t α

(Lemma 5.1) we have:

sup
(β,γ)∈R×R+

φa(β, γ) = sup
(α,β,γ)∈R×R×R+; J2(a,α,β,γ)≤1

I2(a, α, β, γ),

and any maximum of the second problem satisfies α = α(a, β, γ) ie I2(a, α, β, γ) = 1. Therefore, for any a ≥ 0, the second

problem also admits a unique maximizer which is (α(a, β̂, γ̂), β̂, γ̂). Let us write:

Ã :=
{
(a, α, β, γ) ∈ R+ × R× R× R+; J

2(a, α, β, γ) ≤ 1
}
.

It is immediate that A ⊂ Ã. Since α̂ = α(â, β̂, γ̂) > 0 it is then clear that the only Stackelberg equilibria are the one

stated at the beginning of this Corollary. In particular, if δ ≥ 0, they are unique. 2

6 Comparison and Incomplete information

6.1 Comparison between both Nash equilibria

We summarize Nash equilibria in both situations : in Situation 1, Nash equilibrium is defined as

β̂ =
v

u+ v
, ê = (ϕ′)−1(

u+ v

u
), â1 = (ψ′)−1

(
(u + v)(1 + rJ )

δ+u

)
, m̂ ≥ 0, γ̂ =

1

g′(m̂)
,

α̂1 +
g(m̂)

g′(m̂)
+

u

u+ v
δψ(â1) = (1 + rJ )(D + â1) + m̂+ ê+ C(β̂)

which leads to the optimal value for firm I:

Î1(m̂) = ba(â1)−B(β̂, m̂)eu[(1+rJ )(D+â1)−δψ(â1)],

where we recall

B(β̂, m̂) = e−u(b
m(m̂)−m̂+be(ê)−ê)e(u+v)C(β̂) 1− e−ρT

ρ

and evC(β̂) = E

[∫ T

0

exp(
uv

u + v
(µs − ϕ(ê)))η(ds)

]
.

In Situation 2, we can express the Nash equilibrium as

β̂ =
v

u+ v
, ê = (ϕ′)−1(

u+ v

u
), â2 ∈ argmax

a≥0

(
ba(a)− f [(1 + rI)(D + a)T ]− e−uδψ(a)B(β̂, m̂)

)
,

α̂2 +
g(m̂)

g′(m̂)
+

u

u+ v
δψ(â2) = m̂+ ê+ C(β̂), m̂ ≥ 0, γ̂ =

1

g′(m̂)
,

which leads to the optimal value for firm I:

Î2(m̂) = ba(â2)− f [(1 + rI)(D + â2)T ]−B(β̂, m̂)e−uδψ(â2).

We prove Proposition 3.3 about the respective dependence of the initial investments â1 and â2 in Situations 1 and 2 on

rJ and rI :
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Proof of Proposition 3.3

The monotonicity property of the function rJ 7→ â1(rJ ) is a trivial consequence of the definition of â1, since by hypothesis

the function ψ′ is non increasing. In case δ < 0, â1(rJ ) = 0.

The second assertion is a consequence of the characterization of â2(rI) as the unique solution of the equation (see the

end of the proof of Proposition 5.1) H(â2(rI), rI) = 0 where

(6.1) H(a, rI) = (ba)′(a) + uδψ′(a)B(β̂, m̂)e−uδψ(a) − (1 + rI)Tf
′[(1 + rI)(D + a)T ].

Thus dâ2
drI

(rI) = −
∂rIH

∂aH
(â2(rI), rI). Notice that

∂rIH = −Tf ′[(1 + rI)(D + a)T ]− T 2(1 + rI)(D + a)f ′′[(1 + rI)(D + a)T ] < 0

since f is convex non decreasing. Therefore the sign of dâ2
drI

is the one of

(6.2) ∂aH = (ba)′′(a) + uδB(β̂, m̂)e−uδψ(a)[ψ′′(a)− uδ(ψ′(a))2]− (1 + rI)
2T 2f ′′[(1 + rI)(D + a)T ] < 0

since ba, ψ and f are increasing and convex. 2

We now prove a sufficient condition under which the best situation is the second one (debt issuance/MOP), as stated in

Proposition 3.4.

Proof of Proposition 3.4

The key of the proof is the remark that, since in Situation 2, a is a control of firm I, the optimal value Î2(m̂) obtained

by this firm in any Nash equilibrium (α̂, β̂, γ̂, ê, m̂, â2(rI)) is larger than I
2(α̂, β̂, γ̂, ê, m̂, â1(rJ )). Hence

Î1(m̂)− Î2(m̂) ≤ Î1(m̂)− I2(α̂, β̂, γ̂, ê, m̂, â1(rJ ))

= f((1 + rI)((D + â1(rJ ))T ))−B(β̂, m̂)e−uδψ(â1(rJ ))(eu(1+rJ )(D+â1(rJ )) − 1).

Condition (3.12) is equivalent to non-positivity of the right-hand-side. 2

In the case δ > 0, we now prove a sufficient condition under which the best situation is the first one (outsourcing/PPP),

as stated in Proposition 3.5.

Proof of Proposition 3.5

Let m̂ be the same parameter in both situations, as stated in Propositions 3.1 and 3.2. By a slight abuse of notations,

we introduce the function

I1 : a 7→ ba(a)−B(β̂, m̂)eu((1+rJ )(D+a)−δψ(a))

which is such that Î1(m̂) = I1(â1(rJ )). Let us check that (3.13) implies that I1(â2(rJ )) < I1(â1(rJ )). Since δ > 0, the

second condition in (3.13) implies that â1(rJ ) > â2(rI) by the definition of â1(rJ ) and the monotonicity of ψ′. In terms

of the function H defined by (6.1), the first condition in (3.13) writes H(â1(rJ ), rI) < 0 . Since H(â2(rI), rI) = 0 and

the function a 7→ H(a, rI) is decreasing by (6.2), this also implies that â1(rJ ) > â2(rI).

Since a 7→ eu((1+rJ )(D+a)−δψ(a)) is convex by composition of the convex function a 7→ u ((1 + rJ )(D + a)− δψ(a)) with

the increasing and convex exponential function, I1 is concave from the concavity of ba. Now

I1
′
(â1(rJ )) = ba

′

(
(ψ′)−1

(
(u+ v)(1 + rJ )

δu

))
+B(β̂, m̂)eu((1+rJ )(D+a)−δψ(a))v(1 + rJ ) > 0.

From the concavity of I1 and the inequality â1(rJ ) > â2(rI), we deduce that I1(â2(rJ )) < I1(â1(rJ )) = Î1(m̂). As a

consequence,

Î1(m̂)− Î2(m̂) > I1(â2(rJ ))− Î2(m̂)

= f((1 + rI)((D + â2(rI))T ))−B(β̂, m̂)e−uδψ(â2(rI))(eu(1+rJ )(D+â2(rI)) − 1).

Condition (3.14) is equivalent to the non-negativity of the right-hand-side, which concludes the proof. 2

6.2 Incomplete information

In the incomplete information framework, the firms do not have a perfect knowledge of the preferences of the other firm.

More precisely, we still assume that the firms’ utility functions are U(x) = −e−ux and V (x) = −e−vx respectively, but

firm I perceives v as a random variable V with a certain (known) distribution, which is independent of µ and takes values

in (0,+∞). The penalty that firm I gets if firm J does not accept the contract is denoted by p ∈ R ∪ {+∞}.
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6.2.1 Stackelberg equilibrium in incomplete information, firm I is leader

The optimization problem for firm I in Situation i is (cf (3.22) and (3.23))

uiI := −p ∨ sup
ci

{Ii(ci)P
(
Ai(ci)

)
− p(1− P

(
Ai(ci)

)
)},

where ci is the control of firm I in Situation i : c1 = (α, β, γ) and c2 = (a, α, β, γ) and Ai is the event ”firm J accepts

the contract”. Firm J accepts the contract if and only if J̃ i(V, ci) ≤ 1 (cf. Definitions (3.24) and (3.25)), therefore

Ai = {ω; J̃ i(V (ω), ci) ≤ 1}. The next lemma aims at expliciting this acceptance set. Since, from (3.24) and (3.25),

J̃ i(0, ci) = 1 and v 7→ J̃ i(v, ci) is strictly convex and continuous on R+, one has

Lemma 6.1 For c1 = (α, β, γ) ∈ R+ ×R×R+ (respectively for c2 = (a, α, β, γ) ∈ R+ ×R+ ×R×R+), v̄(c
i) := sup{v ≥

0 : J̃(v, ci) ≤ 1} belongs to [0,+∞]. If v̄(ci) ∈ [0,+∞), then {v ≥ 0 : J̃(v, ci) ≤ 1} = [0, v̄(ci)] and J̃ i(v̄(ci), ci) = 1. If

v̄(ci) = +∞, then {v ≥ 0 : J̃(v, ci) ≤ 1} = [0,+∞).

Recall that

ui(v) := sup
{ci:J̃i(v,ci)≤1}

Ii(ci)

is the value function of the problem with complete information that firm J ’s risk aversion is equal to v, and wiI =

−p ∨ supv>0{u
i(v)P(V ≤ v)− p

(
1− P(V ≤ v)

)
} as defined in Proposition 3.8. We are now able to prove Proposition 3.8

Proof of Proposition 3.8

We first prove that uiI ≥ wiI . We only need to do so when wiI > −p which implies that

wiI = sup
v>0:ui(v)P(V≤v)−pP(V >v)>−p

(
ui(v)P(V ≤ v)− pP(V > v)

)
.

Let v > 0 be such that ui(v)P(V ≤ v)−pP(V > v) > −p and ĉi(v) be an optimal control for ui(v), so that ui(v) = Ii(ĉi(v)).

Since J̃(v, ĉi(v)) ≤ 1, by Lemma 6.1 one has {V ≤ v} ⊂ Ai(ĉi(v)) and when p < +∞,

ui(v)P(V ≤ v)− pP(V > v) = (ui(v) + p)P(V ≤ v)− p

≤ (ui(v) + p)P
(
Ai(ĉi(v))

)
− p

= Ii(ĉi(v))P(Ai(ĉi(v))− p(1− P(Ai(ĉi(v)) ≤ uiI .

When p = +∞, the left-most side of the above inequalities is still not greater than the right-most side as 1 = P(V ≤ v) =

P(Ai(ĉi(v))).

Since v > 0 such that ui(v)P(V ≤ v)− pP(V > v) > −p is arbitrary, we get uiI ≥ wiI .

Finally we prove that wiI ≥ uiI in case uiI > −p. Let ε ∈ (0,
ui
I+p
2 ) and ci be an ε-optimal control for uiI . Since

Ii(ci)P
(
Ai(ci)

)
− p(1− P

(
Ai(ci)

)
) ≥ uiI − ε >

uiI − p

2
≥ −p,

one has P
(
Ai(ci)

)
> 0. Since V > 0 and Ai(ci) = {V ≤ v̄(ci)} for v̄(ci) = sup{v ≥ 0 : J̃ i(v, ci) ≤ 1}, one deduces that

v̄(ci) ∈ (0,∞) ∪ {∞}.

For any v ∈ (0,+∞) such that J̃ i(v, ci) ≤ 1, one has ui(v) ≥ Ii(ci).

• If v̄(ci) ∈ (0,+∞) then, by Lemma 6.1, J̃ i(v̄(ci), ci) = 1 so that

wiI ≥ ui(v̄(ci))P(V ≤ v̄(ci))− pP(V > v̄(ci)) ≥ Ii(ci)P(V ≤ v̄(ci))− pP(V > v̄(ci))

= Ii(ci)P(Ai(ci))− p(1− P(Ai(ci)) ≥ uiI − ε.

• If v̄(ci) = +∞, then P
(
Ai(ci)

)
= 1 and for all v > 0, wiI ≥ Ii(ci)P(V ≤ v) − pP(V > v) and the same conclusion as

before holds by taking the limit v → ∞ in this inequality under the assumption that either p < +∞ or P(V > v) = 0 for

v large enough. Since ε > 0 is arbitrarily small, we get wiI ≥ uiI , which ends the proof.

2

Lemma 6.2 The function v 7→ ui(v) is non-increasing and continuous on R+.
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Proof. We do the proof for Situation 2. The same holds (with the control (α, β, γ) instead of (a, α, β, γ)) for Situation

1. For v ≥ 0, let Av = {(a, α, β, γ) ∈ R+ × R+ × R× R+ : J̃2(v, a, α, β, γ) ≤ 1}. By Lemma 6.1, one has Av ⊂ Av′ when

v′ ≤ v. Therefore v 7→ u2(v) is non-increasing.

(i) Let us check the right-continuity of u2 i.e. that lim infv′→v+ u
2(v′) ≥ u2(v). According to Proposition 3.7, there exists

(a, α, β, γ) ∈ Av such that u2(v) = I2(a, α, β, γ).

Either J̃2(v, a, α, β, γ) < 1 and by continuity of v′ 7→ J̃2(v′, a, α, β, γ), (a, α, β, γ) ∈ Av′ for v
′ close enough to v so that

the conclusion holds.

Or J̃2(v, a, α, β, γ) = 1 so that for v′ > v, J̃2(v′, a, α, β, γ) > 1, and

αv′ = α+ 1
v′
ln(J̃2(v′, a, α, β, γ)) > 0 is such that J̃2(v′, a, αv′ , β, γ)) = 1 and

limv′→v+ I
2(a, αv′ , β, γ) = I2(a, α, β, γ).

(ii) For the left-continuity, we consider a sequence (vn)n of positive numbers increasing to a finite limit v∞. According to

Proposition 3.7, there exists (an, αn, βn, γn) ∈ Avn such that u2(vn) = I2(an, αn, βn, γn). By Lemma 5.3 and the proof

of Lemma 5.5, (an, αn, βn, γn) stays in a compact subset of R+ × R+ × R× R+ so one may extract a subsequence that

we still index by n for simplicity such that (an, αn, βn, γn) tends to (a∞, α∞, β∞, γ∞). By continuity of I2 and J̃2, one

has J̃2(v∞, a∞, α∞, β∞, γ∞) = limn→∞ J̃2(vn, an, αn, βn, γn) so that (a∞, α∞, β∞, γ∞) ∈ Av∞ and therefore

limn→∞ I2(an, αn, βn, γn) = I2(a∞, α∞, β∞, γ∞) ≤ u2(v∞). With the monotonicity of u2, we conclude that this function

is continuous.

2

We prove the existence of a Stackelberg equilibrium with incomplete information, firm I leader.

Proof of Theorem 3.1

Let v0 := inf{v > 0 : P(V ≤ v) > 0}. If limv→v+0
ui(v) ≤ −p, then viI = wiI = −p.

If not, limv→v+0
ui(v) > −p and we assume that v1 := sup{v > 0 : P(V > v) > 0} < +∞.

(i) If p = +∞, then the optimization problem (3.26) clearly admits the solution v⋆ = v1.

(ii) If p < +∞ then there exists v > v0 close enough to v0 such that

(ui(v) + p)P(V ≤ v) > 0. We deduce existence of a solution to the optimization problem (3.26): since u1 (resp. u2) is

bounded from above by supa∈R+
ba(a) < +∞ (resp. supa∈R+

F (a) < +∞) and V takes its values in (0,+∞), one has

limv→0(u
i(v) + p)P(V ≤ v) = 0. The function v 7→ (ui(v) + p)P(V ≤ v) being upper-semicontinuous on the closed set

{v ∈ [ε, v1] : ui(v) + p ≥ 0} for each ε > 0, we conclude that the optimization problem (3.26) has a solution v⋆ ∈ (0, v1] if

v0 = 0 and in [v0, v1] otherwise.

Moreover ui(v⋆) > −p. Let ĉi(v⋆) be an optimal control for ui(v⋆) such that ui(v⋆) = Ii(ĉi(v⋆)). Since J̃ i(v⋆, ĉi(v⋆)) ≤ 1,

by Lemma 6.1 one has {V ≤ v⋆} ⊂ Ai(ĉi(v⋆)) and

wiI = ui(v⋆)P(V ≤ v⋆)− pP(V > v⋆) = (ui(v⋆) + p)P(V ≤ v⋆)− p

≤ (ui(v⋆) + p)P
(
Ai(ĉi(v⋆))

)
− p

= Ii(ĉi(v⋆))P(Ai(ĉi(v⋆))) − p(1− P(Ai(ĉi(v⋆)))

≤ uiI .

With Proposition 3.8, we conclude that (ĉi(v⋆)) solves problem (3.22), (3.23). 2

6.2.2 Nash equilibrium in incomplete information

We consider both situations. The proofs are quite similar. Let

I(a, α, β, γ, e,m) := E

(
ba(a)−

∫ T

0

e−ρse−u
(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

))
ds

respectively

I(a, α, β, γ, e,m) := E

(
F (a)−

∫ T

0

e−ρse−u
(
bm(m)+be(e)−α−β(µs−ϕ(e)−δψ(a))−γg(m)

))
ds,

and

J(v, a, α, β, γ, e,m) := E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg

′(m)−m−(1+rJ )(D+a)
)
η(ds)

respectively

J(v, a, α, β, γ, e,m) := E

∫ T

0

e−v
(
α+(β−1)(µs−ϕ(e)−δψ(a))−e+γg

′(m)−m
)
η(ds).
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For firm I, given the controls (a, e,m) of firm J (respectively (e,m)), the problem is to find (α, β, γ) (respectively

(a, α, β, γ) ) maximizing

I(a, α, β, γ, e,m)P(J(V, a, α, β, γ, e,m) ≤ 1)− pP(J(V, a, α, β, γ, e,m) > 1).

As in Lemma 6.1, we have

Lemma 6.3 For c = (a, α, β, γ, e,m) ∈ R+ × R+ × R × R+ × R+ × R+, v̄(c) := sup{v ≥ 0 : J(v, c) ≤ 1} belongs to

[0,+∞]. If v̄(c) ∈ [0,+∞), then {v ≥ 0 : J(v, c) ≤ 1} = [0, v̄(c)] and J(v̄(c), c) = 1. If v̄(c) = +∞, then {v ≥ 0 : J(v, c) ≤

1} = [0,+∞).

Proof of Proposition 3.9 Assume the existence of a Nash equilibrium ĉ = (â, α̂, β̂, γ̂, ê, m̂) such that the value for firm

I is greater than −p. This implies that I(ĉ) > −p and 0 < P(J(V, ĉ) ≤ 1).

Since by Lemma 6.3, P(J(V, ĉ) ≤ 1) = P(V ≤ v̄(ĉ)), one has v̄(ĉ) > 0.

We detail below the proof in Situation 1. The one in Situation 2 follows the same scheme, replacing the sets of control

parameters (α, β, γ) and (a, e,m) respectively by (a, α, β, γ) and (e,m).

• Assume that v̄(ĉ) < +∞ and let v ∈ (0, v̄(ĉ)] be such that P(V ∈ (v, v̄(ĉ)]) = 0.

For (α, β, γ) such that J(v, â, α, β, γ, ê, m̂) ≤ 1:

either I(â, α, β, γ, ê, m̂) ≤ −p and therefore I(â, α, β, γ, ê, m̂) < I(ĉ),

or I(â, α, β, γ, ê, m̂) > −p and since P(J(V, â, α, β, γ, ê, m̂) ≤ 1) ≥ P(V ≤ v) =

P(V ≤ v̄(ĉ)) = P(J(V, ĉ) ≤ 1), then:

I(â, α, β, γ,ê, m̂)P(V ≤ v(ĉ))− pP(V > v(ĉ))

≤ I(â, α, β, γ, ê, m̂)P(J(V, â, α, β, γ, ê, m̂) ≤ 1)− pP(J(V, â, α, β, γ, ê, m̂) > 1)

≤ I(ĉ)P(J(V, ĉ) ≤ 1)− pP(J(V, ĉ) > 1) = I(ĉ)P(V ≤ v̄(ĉ))− pP(V > v̄(ĉ)),

where the last but one inequality follows from the fact that ĉ is a Nash equilibrium for the problem with incomplete

information. This implies that I(â, α, β, γ, ê, m̂) ≤ I(ĉ). Since by Lemma 6.3, J(v, ĉ) ≤ 1, we deduce that ĉ is a Nash

equilibrium for the problem with complete information and risk aversion v for firm J . By Proposition 3.2, we deduce

that β̂ = v
u+v so that the only v ∈ (0, v̄(ĉ)] such that P (V ∈ (v, v̄(ĉ)]) = 0 is v̄(ĉ) = v̂.

• The same line of reasoning permits to conclude that in case v̄(ĉ) = +∞, ∀v ∈ (0,+∞), P(V ∈ (v,+∞)) > 0. 2
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