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Abstract

Using Kelsey, Gellatly, and Clark (1958) unit load method, upper and lower bounds for the e ective trans-
verse shear moduli of a chevron folded core used in sandwictorestruction are analytically derived and
compared to nite element computations. We found that these bounds are generally loose and that in some
cases chevron folded cores are 40% sti er than honeycombké cores.

Key words: Sandwich panels, Folded cores, E ective transverse shear adulus, Chevron pattern.

1. Introduction

Sandwich panels made of two thin skins separated by a thick p#odic core structure are commonly used
in many engineering applications. They o er a good compromse between strength and weight which is
especially important in aeronautics.

When bending the sandwich panel, the skins are subjected tmiplane traction and compression whereas
the core is subjected to transverse shear. Many constituest can be used as core materials. Balsa glued
between sti er pieces of wood was one of the rst attempts to nake a sandwich panel. Nowadays, organic
compound foams (such as polyurethane foam) used with metal skins are widespread in buildings as
insulating panels. Phenolic paper honeycomb is extensivglused in aeronautic structures.

Recently, new types of promising cores have emerged. Trus®ie panels using new welding techniques
are raising interest because of their strength (Wicks and Htchinson, 2001; Wadley, 2002; Cote et al., 2007).
Folded cores are promising because of new production meanBdsily and Elsayed, 2004b; Nguyen et al.,
2005a; Heimbs et al., 2006; Kintscher et al., 2007). Among tbm, the chevron folded core was probably the
rst to be manufactured (Fig. 1).

It seems that chevron folded core manufacturing was rst corsidered at the beginning of the 28' cen-
tury. Later, the pattern was under investigation in Kazan University. More recently, continuous pro-

duction and several new techniques have emerged (Kling, 280 Basily and Elsayed, 2006, 2004a; Kehrle,
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2004).The strength of chevron folded cores has been experantally investigated by Basily and Elsayed

(2004b), Kintscher et al. (2007) and Nguyen et al. (2005a) ad it has been numerically simulated by Nguyen

et al. (2005a), Heimbs et al. (2006) and Heimbs (2009). Moreaer, their transverse shear sti ness has been
experimentally investigated by Kintscher et al. (2007) but, to the authors knowledge, no theoretical work

has been done yet.

The aim of this paper is to derive bounds for the transverse sbar sti ness of chevron folded cores. Kelsey
et al. (1958) rst suggested a method for deriving such bound for honeycomb-like cores. One may refer
also to Gibson and Ashby (1988) for a detailed description othis method. Since then, many honeycomb
geometries have been assessed (Hohe and Becker, 2002; Xu kt 2001). New homogenization methods
have been suggested. For instance, Hohe (2003) suggesteck thpplication of ad hoc boundary conditions
reproducing transverse strain loading” 3 to a unit cell of the sandwich panel, including the skins, so hat
the interaction between the core and the skins was taken intaaccount. Chen and Davalos (2005) suggested
a semi-analytical approach in order to re ne Kelsey et al. (1958) analysis close to the skins.

Yet, as a rst attempt to determine the transverse shear sti ness of folded chevron, it seems relevant to
use Kelsey et al. (1958) approach. Even if only bounds will belerived, it o ers a quick and comprehensive
view of chevron pattern sti ness, enables us to look for moste cient con gurations and leads to exact
solutions when bounds are equal.

The paper is organized as follows: Section 2 is devoted to thgeometric description of the chevron
pattern and the suggested analytical bounds are derived in &ction 3. In order to assess the validity of these
bounds, a nite element analysis on a representative unit c# is performed in Section 4. The nal section

gives an insight into future works.

2. The chevron pattern homogenized as Mindlin-Reissner pla te model

Like honeycomb, the chevron pattern is periodic in the in-pane directions. Four identical parallelogram -
shape faces are necessary to generate the whole pattern byrjwalicity along the e; vector (period 2a) and
the e, vector (period 2s) where M = (A;e;;&,;€;) is the main coordinate system. Fig. 2-a shows these
faces: Face 1=ABCD , Face 2= DCBA?, Face 3= A®BoCD%and Face 4 =DCB A%

Table 1 gives the vertices' coordinates in terms of four geoetric parameters: a, s, v and h wherev is a
horizontal o set parameter (v = 0 when B is aligned with A and A% and h is the pattern height.

Actually, several parameter sets have been suggested foréhgeometric description of the chevron pattern
(Basily and Elsayed, 2004a; Zakirov et al., 2008). Among thm, the set ag;by; ; fully determines the
geometry and the position of Face 1. Face 1 is a parallelogrartay, and by are the side lengths) which is

tilted by angles and with respect to the main coordinate system, as shown in Figue 2-b.



Vertex | A B C D A0 DO A00 pBoO  A000
X1 0O v a+v a O a 2a 2a+v 2a
X2 0 s S 0 2 2s 0 S 2s
X3 0 O h h 0 h O 0 0

Table 1: Vertices' coordinates

is the member angleby analogy with truss beams: cutting the chevron pattern by the (A;e;;e;)

plane gives a zigzag shape similar to that of a Warren-type tuss beam.

is the closure angleequal to the half angle between Face 1 and Face 2 along tH&C edge. For =0,

the pattern is completely folded and for = =2, the pattern is prismatic.

- tan H
o=arctan S is baB angle

— 1 H 0,
=arctan ——— isA%B angle

We have:

a = apcos;
s = Iycos;
vV = Iysin;
h = agsin:

The chevron pattern has actually three major symmetries. Wten used as a core between two isotropic
skins, these symmetries lead to several simpli cations in he Reissner-Mindlin plate constitutive law (Reiss-

ner, 1985). The fully coupled constitutive law can be summeized as follows:

0 1 0 10 1
N1 A Az Az |Bun Ba Bar |[Ku Ky
N2z A1z Az Az | Bz B2 Bap | K Kz
N1z A1z Azz Ass | Biz B2z Baz | Kai Ka 2e1,
M1 _ Bix Biz Biz [Dun Diz Dig|Lar La
M2 B21 B2z B2z |Di2 D22 Doz | Lsi Ls
M1z Ba1 Bs2z Bsz | Diz D2z Dss | Ler Le2
Q1 Kin Ka1 Kz |Laa Lsa Ler | Fun Fr2 § §
Q2 Kiz Kz Kz | Laz Ls2 Le2 | Fiz F2

where N are the membrane generalized stress componentd]  are the bending moment components,

Q are the shear forcesg are the in-plane strains, are the curvatures and  are the out-of-plane
3



shear strains. Generalized strains are illustrated on Fig.3. A; , Bj and Dj are the usual Love-Kirchho
plate stinesses. F is the usual Reissner shear stiness.K; and L; are a possible couplings between
(N ,M )and Q .

Due to the rotational symmetry S of axis (S;e;), shown in Fig. 4-a, we haveK ; = L; =0. Fig. 4-b
shows the central symmetry R with respect to the center point of Face 1,R. This symmetry uncouples
membrane stresses and exural stressed3; = 0 (similar to mirror symmetry for laminates). Fig. 4-c show s
the symmetry N with respect to the (B;e;;e;) plane. This symmetry setsA13 = Ay3 = D13 = Doz = Fip =
0. Thus, it uncouples transverse shear stresses. Taking iataccount all uncouplings leads to the following

constitutive IaV\(/):

1 0 10 1

N11 Ai; A O 0 0 0 0 0 el

N2> A Axp O 0 0 0 €2

N12 0 0 Az | O 0 0 0 0 2e1r

M1 _ 0 0 0 |D;y D1z O 0 0 11 @
M 2 0 0 0 |Diz Dy, O 0 0 22

M1 0 0 0 0 0 D3| O 0 2 12

Q1 0 0 0 0 0 O |Fiz O 1

Q> 0 0 0 0 0 0 0 Fx 2

The symmetries described above are respectively associdtavith the following matrices in the reference

frame (e;;&,;€3):

0 1 0 1 0 1
1 0 0 1 0 0 1 0 0
§=%o 1 0§;g=%o 10§;§=%0 10%: (3)
0 0 1 0 0 1 0 0 1

It is useful to introduce a local basisL¥ = (€K;€X; ek ) associated to Facek (k = 1;2; 3;4) as shown in Figure
2. For Face 1, vectore! is along the AD edge,€l, is normal to the face with g}, e; > 0 and €l is such that

L1 is direct. Thus, the components of €};el; el) in the (g;;e,; &;) basis are given by:
0 1

cos sin cos sin sin
(Eﬁigvlig}v):% 0 sin cos E : (4)

sin COS COS cos sin
(e1:85:€3)

Moreover, the symmetry matrices enables the determinatiorof the components of the other local basid 2,
L3 and L* as detailed in the appendix.

In sandwich panels, the membrane and exural moduli are usully derived assuming that the core
structure does not contribute to the overall stiness. It is also assumed for transverse shear sti ness that
F = hG 3 whereG is the e ective shear sti ness of the core. Finally, regarding shear behavior, there are

only two transverse shear moduli to determine: G313 and Gas.
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3. Analytical bounds

According to the approach of Kelsey et al. (1958), the minimum potential energy theorem is used to derive
upper bounds for the e ective transverse shear modulus in tle direction, G 3. A uniform horizontal
displacementh 3 in the direction is imposed on the top face of the core material whi its lower face is
xed. Here, =1;2 are the in-plane directions, 3 is the out-of-plane shear strain in the  direction and
h is the height of the core. Then, the normalized strain energyof any trial strain eld which is piecewise
uniform in the core walls and compatible with the kinematic boundary conditions provides an upper bound
for G 3, noted G*5. Similarly, the minimum complementary energy theorem is u®d for deriving lower
bounds for G 3. A uniform horizontal stress load 3 (respectively, 3) is applied in the  direction to
the upper (respectively, lower) face of the core material. hen, the normalized stress energy of any piecewise
uniform trial stress eld which is statically compatible wi th the boundary conditions provides a lower bound

for G 3, noted G 5.

3.1. Lower bounds

A uniformly distributed horizontal force per unit length, f , is applied to the upper ( ) and lower edges

(+) of the pattern. Fig. 5-a shows f for transverse shear loading in direction 1, ;:

as
f o= ZE 181 5 (5)
and Fig. 5-b showsf for transverse shear loading in direction 2, ,:
as
Po= 2o (6)
Piecewise uniform plane stress is assumed for each face. Kenthe stress of Face 1 writes:
= el et we &t oL & &te (7)
1 101

where is the dyadic product of two vectors and ;,, ., 4 are three unknowns to be determined.
Thanks to N and S symmetries of the pattern and the considered loadings, it ispossible to express the

stress:k of Facek, k =2;3;4, in terms of :1. Indeed, the following relations are easily derived:

2 — l liu _4: S l§'

= N _N; ®)

where =1 for loading in direction 1 and = 1 for loading in direction 2.

The equilibrium condition at edge AD (or edgeBC) is written as:
e+ ? &g =0 ©)
Similarly, the equilibrium condition at edge CD (or edge AB) writes:

t Y nt+ *n*+f*=0 (10)



wheret is the faces' thickness anch¥ is the outer normal of Facek = 1;4 along CD (n¥ belongs to Facek
plane):
n'=sin o€l +cos (€l n*=sin og! cos o€l (11)

The six (non independent) linear equations (9-10) uniquelydetermine the three unknowns ,, L, 1, .

The solution is:

loading in direction 1: loading in direction 2:

1 — a1 gj 1 — a2 1

= - sin = @ tan cos cos
1 = 1 =

w 0 w 0

1 - 1 = a,

w =0 w = gt cos

The faces' constitutive material is assumed to be isotropié. Hence, the total stress energy of the unit

cell is given by:

. 2(1+ 1
W, =2sin obpaot 202D a2 24,2 12
S S

where Es and ¢ are the solid Young modulus and Poisson's ratio. The stressrergy of the e ective core
material subjected to the transverse shear stress in the direction is:

2
W, = 2ahsG—: (13)

ext
3

The theorem of the complementary energy states thatW,,;, W, . Inserting the expressions of }, and

L into (12) gives the lower bounds:

— t sin__cos
GlS G13 - %ES “sin__’

G G.,,= LE. sin sin
23 237 @ ~°C0S 31+ o)+ (gi— tan )’ cos?

It is more convenient to use the following normalization:

_G3

E = G, (14)

where is the core relative density, G is the solid shear modulus ancE is the normalized transverse shear

modulus in direction . For chevron cores, is given by:

" agsin sin cos

Hence, we have:

EL E, =2(1+ ) sin® cog ,

E2 E ) :2(1+ S) sinz sinz

21+ o+ (g tan )Z cos?

1This is the case for metallic cores and for Nomex paper core. F or CFRP cores, anisotropy has to be introduced.
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3.2. Upper bounds

In order to derive an upper bound for the transverse shear modlus G 3, a relative horizontal displace-
ment, h, between the top and the bottom of the chevron pattern is presribed in the direction as shown

in Fig. 5-(c,d). The corresponding overall transformation is:

M

=1+ e g (16)

where] is the unit second order tensor.
The in-plane components of the uniform Green-Lagrange strim tensor of Face 1 with respect to the

(el;el) local basis are given by:

e € TRV (17)

NI =

wheree! = E et, and is the Krenecker symbol. Neglecting the second order termsn leads to the

following linearized in-plane strain components:

loading in direction 1: loading in direction 2:
"l = 1sin cos "l,=0

"l = ysin cos co€ "l = ,cos sin cos
"L, = S cos2cos ", = £sin sin

Piecewise uniform plane stress is assumed in each face. Théare, the strain energy density of Face 1 is

given by:

" " B Es Wl 2
WP W2 = Tt : (18)

2 uu v
1 s

The total strain energy stored in the unit cell is:
Wint = 2sin  ghgagtw: (29)
The strain energy stored in the e ective core material is:
Wey = 2ahsG 3 2: (20)

According to the potential energy theorem, we haveWey Wi . Hence, the following upper bounds for

the normalized transverse shear moduli are obtained:

E E{=%sin® cog sin' +cos?

s

E E; = t?-cod cos +sin?  sin?



3.3. Results

As expected, for both directions, we have:
0O<E E*<1

where E = 1 corresponds to the Voigt upper bound and E = 0 coprresponds to the Reuss lower bound. It
should be emphasized that the derived bounds are independemnf the shape ratio ap=ky. They are only
functions of ¢ and the angles and

Fig. 6-(a,b) shows the normalized lower and upper bounds in dection 1 as functions of and for

s = 0:4. Itis possible to give a simple interpretation for the lowea bound E; . The corresponding trial stress
has only one non-zero component: , . All the faces are subjected to uniaxial traction and compression in
the g, direction. This structural behavior can be compared to Warren truss beams (Fig. 7) where members
are under alternative traction and compression. Hence, it $ not surprising that the lower bound depends
only on the member angle and is maximum for = =4 as for Warren truss beams. For most values of and

,E, and E{ are not equal. However, for = =4 and co§ = g, they are coincident (E, = E/ = =)
This means that, for this geometric con guration, the piecewise uniform trial strain and stress elds are the
exact solutions for the transverse shear loading in directin 1.

Fig. 6-(c,d) show the normalized lower and upper bounds in diection 2. The trial stress eld associated
to E, is mainly in-plane shear of the core walls as is the case for aoheycomb-like core. For = =2, the
pattern is prismatic and both bounds are equal to sif which is an exact value forE,. Actually, prismatic
cores are not used much in sandwich panels because they aretmesistant enough. When decreasing from
=2, the prismatic pattern becomes wavy and this waviness inaases the faces' buckling strength under

transverse shear loading in direction 1.

4. Finite element bounds

The analytical bounds suggested in the previous section arbased on the piecewise uniform stress or
strain assumption. In order to assess the validity of this asumption, a Finite Element analysis is conducted.

The resulting numerical bounds will be compared to the analyical bounds.

4.1. The nite element model

The computation of the transverse shear moduli for both directions and both loading cases (stress and
displacement) has been performed within the linear elastity framework. The unit cell of Fig. 2 is chosen
as a representative volume element.

Since faces are very thin, Kirchho shell elements are used.Four elements of the ABAQUS software
(triangles P1 (STRI3), triangles P2 (STRI65), quadrangles P1 (S4R5) and quadrangles P2 (S8R5)) were

8



tested and compared through a convergence analysis (ABAQUS2007). Element S4R5 with a 441 node
mesh gives accurate results for a low computation cost.

Boundary conditions involve both nodal displacementsU and rotations _. For instance, UABA ° and
_ABA * refer respectively to nodal displacements and rotations ang the edgesAB and BA®.

Periodicity conditions in direction 1 and 2 have to be applied: ABA ° matches A°B°N°%0and ADA @
matchesA %A% As mentioned before, thanks to the symmetries of the unit c# there is no in-plane overall

strain when applying tranverse shear loading. Hence, the 1owing periodicity conditions are prescribed:

UABA 0 - UAOOB OOAOOO. ABA 0 — AOOB OOAOOO.

UADA 00 - UAODOAOOO. ADA 00 - AODOAOOO.

The reader is referred to Sab (1996); Pradel and Sab (1998);droussi et al. (2002); Lachihab and Sab
(2005); Florence and Sab (2006) for more details on periodiboundary conditions involving both nodal
displacements and nodal rotations.

For the upper (respectively, lower) bound, the prescribed dsplacements (respectively, forces per unit
length) are applied to the AB, BA? DC, CD% AB% BoN%Pdges. For the lower bound case, noda
displacements and rotations are set to zero to prevent rigidnotion.

Few detailed chevron folded core geometries are availablenithe open literature. Similar to Nguyen
et al. (2005a), the following geometric parameters are invgtigated with Eq = 3GPaand s =0:4: ag =
30mm, by 2 [20 mm; 60 mm], t = 0:dmm, =72, =34 . The analytical normalized bounds for these
con gurations are:

0:23< B < 0:71,
0:09< E, < 0:35.

Fig. 8-(a,b,c) shows the stresses in the unit cell when subrtied to the stress loading ; for the case
ap = by =30mm. At rst sight, it is clear that the stresses are almost piecewise uniform in each face which
is consistent with the assumption made for the analytical deivation of the lower bounds. Also, the stress
distribution complies to the symmetries described in secion 2. As expected, the main component is y, as
predicted by the Warren truss beam analogy.

Fig. 8-(d,e,f) shows the strains in the unit cell when submited to the strain loading ;. Again, strains

are approximately piecewise uniform in each face. Analytial estimations are “—; 0:29, "VZ 0:20,
"“_Z 0:40. FE elds seems consistent with this prediction.

Similar observations were made for the stress loading, and the strain loading » in direction 2.

4.2. Results
FE analysis has been performed also for several values of tlehape ratio ap=ky and for both loading

directions. Results are shown on Fig. 9-(a,b).



For all shape ratios, the expected hierarchy between bounds observed:
E <E FE <E"FE < E": (21)

For direction 1, on the one hand, the FE lower bound is really tose to the analytical lower bound whatever
the shape ratio is. This good agreement is consistent with tB good uniformity of the stresses shown in
Fig. 8-(a,b,c). On the other hand, the FE upper bound is depeident on the shape ratio. In fact, the
computed strain elds are not perfectly piecewise uniform n this case. Fig. 8-(d,e,f). Moreover, it should
be emphasized that the numerical FE bounds for direction 1 ceer all the range between the analytical
upper and lower bounds as the shape ratio varies. For directin 2, it is the lower bound which presents
less uniform FE elds and is more sensitive to shape ratio. Asexpected, when the actual elds are almost
piecewise uniform, then the analytical and numerical bound are consistent.

One important conclusion of this study is that both FE and analytical bounds are loose for practical
values of the shape ratio p=ky 2 [0:5;1:5]). This means that the e ective transverse shear moduli ofthe
considered chevron pattern ( = 72 , = 34 ) are sensitive to the the skin e ect. According to Kelsey
et al. (1958), this is due to the lack of consideration of the interaction between the skins and the core of the
sandwich panel. Moreover, they indicate that the upper bourd is relevant for sandwich panels with thick

skins while the lower bound is relevant for thin skins.

4.3. Comparison with honeycomb

It is of interest to compare honeycomb geometries with chewsn pattern.
For a regular honeycomb core with the same wall thickness, ta use of piecewise uniform strain and stress

in the core walls gives equal lower and upper bounds:
EE=E=0:5:

The normalized upper bounds for hexagonal honeycomb with a auble wall in the glueing area are (Kelsey

et al. (1958)): . 52 -
+co sin

EI=T; Ez+= 5 ; (22)

where the angle is a design parameter shown in Fig. 10. In order to compare clveon pattern to honeycomb,

the sum = E + E can be considered. Its upper bound for all honeycomb geomeésis * =1 (Xu et al.,

2001). However, for chevron pattern, it is:

= 12 cod sin> +1 1 cos sin’ (23)
S
which reaches the maximum value:
B )?
81 o) @)
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for
+
cod si? = y S (25)

as the function of and for ¢ =0:4, and the continuous set of (; ) for which

+ +

Fig. 11-(a) shows
reaches its maximum value. On Fig. 12 the maximum value of * versus s is plotted. Thus, considering
*, the chevron pattern can potentially outperform honeycombby * 40% for usual values of s.
In Fig. 11-(b) the FE computed sum of upper bounds *:FE is plotted for ap=hy = 1. As expected
FE upper bounds are lower than analytical upper bounds. The @main where chevron pattern outperforms
honeycomb geometries (*:FE > 1) is smaller but still includes geometries that can be manudctured. Yet,

*+FE ' 0:65 for the geometry considered in Nguyen et al. (2005a).

5. Discussion

The main reason for the gap observed between bounds, even WitFE computations, is the lack of
knowledge on the actual e ect of shear forces on plates. SiecReissner (1945) we know that local tranverse
shear is parabolic through the thickness in a homogeneous q@e. However, when considering anisotropic
laminated plates, it is di cult to approximate the actual tr ansverse shear stress distribution. To overcome
this di culty, Mindlin (1951) suggested to introduce shea r correction factors, which improved the accuracy
of the de ection prediction but did not provided the actual t ransverse shear stress distribution. Numerous
proposals have been made to improve stress estimation and wereviewed by Reddy (1989) and Carrera
(2002). This issue becomes critical when considering hetegeneous periodic plates such as honeycomb and
chevron pattern sandwich panels.

Most of the approaches suggested for sandwich panels rely ¢me following steps. First, the heterogeneous
core is homogenized, and replaced with an equivalent homogeous layer. Second, the First Order Shear
Deformation Theory (FOSDT) is applied to derive the transverse shear sti ness of the obtained laminated
plate. To do this, the transverse shear strain is assumed ufdrm through the thickness. Two di culties
arise from this two step method.

Firstly, the actual boundary conditions replacing the e ect of the skins on the core are unknown. Impos-
ing uniform displacements or uniform forces gives bounds fothe homogenized constitutive behavior of the
heterogeneous core. As it is illustrated in this paper, thes bounds may be loose. This is the main drawback
of the two step approach.

Secondly, as previously mentioned, the application of FOSD necessitates the computation of shear
correction factors. However shear correction factors dep® on the ply con guration. In the case of het-
erogeneous plates, the concept of shear corerection factia even more fuzzy. The work of Buannic et al.

(2003) points out limitations of the shear correction factor approach.
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One way has been suggested to overcome these di culties in th case of honeycomb sandwich panels.
It consists in re ning the analysis on the connection betwea the skins and the core, as suggested by Hohe
and Becker (2001) and Chen and Davalos (2005). In these papethe incompatibility between the skins and
the core average displacement is treated as an edge e ect alvely to the ratio between the cell width and
the core thickness. Following a completely di erent path, Lelee and Sab (2010) suggested a model which
enables the consideration of such incompatibilities and ege e ects in more general con gurations. Yet this
kind of approach is relevant only for honeycombs. Unlike horycombs, the chevron pattern has no scale
separation between the cell width and the core thickness.

A second way to improve the estimation of the transverse sheaasti ness is to reconsider globally the
e ect of shear forces on the sandwich panel. This was done by ¢he (2003) and Cecchi and Sab (2007)
among others. Hohe (2003), followed by Pahr and Rammerstoefr (2006), presented a direct homogenization
scheme assumingd hoc boundary conditions on the representative volume elementincluding skins. When
including skins, Hohe (2003) overcomes the di culty of choosing the actual boundary conditions that should
be used in the two step method. However, applying this methodo a homogeneous plate leads to a uniform
stress distribution which contradicts Reissner (1945)'s pediction and overestimates transverse shear sti ness
(hG instead of 5=6hG). The reason why Hohe (2003) method is e cient for sandwich panels comes from
a constrast assumption. In sandwich panels, the core is allays much more compliant than the skins. In
this speci c case it is possible to assume a uniform distribtion of shear strains through the core thickness.
Yet, in practical applications, the contrast assumption is not always full lled which limits the validity of
this method. Another proposal, made by Cecchi and Sab (2007fas well as, Cecchi and Sab (2004); Nguyen
et al. (2005b); Cecchi and Sab (2007); Nguyen et al. (2007, 88)), is based on Whitney (1972) work on
the derivation of shear correction factors for laminates. This seminal work is extended to heterogeneous
plates thanks to an energetic equivalence. It consists in usg the Reissner-Mindlin equilibrium equation
M . = Q in the cylindrical bending case in order to derive the actual3D stress eld generated by shear
forces. This method does not make am priori assumption on transverse shear strain or stress. Itis curly

under investigation for application to sandwich panels.

6. Conclusion

For an out-of-plane loaded sandwich panel with sti skins (0.6 mm of CFRP for instance), small slender-
ness ratio (10 for example) and usual chevron folded core thkness (0.1 mm of impregnated aramid paper),
the de ection is almost proportional to the e ective transv erse shear moduli of the chevron folded core. In
this paper, Kelsey et al. (1958) approach has been used to dee analytical and numerical upper bounds
for these moduli. For some pattern geometries, the exact alls have been obtained. Moreover, it has been

shown that for some geometries, the chevron folded cores asti er than honeycomb-like cores (lower bounds

12



for the chevron core are higher than upper bounds for honeyagubs). Finally, this work sets the path for
the derivation of analytical bounds for other folded core g@metries such as the M-type core (Heimbs et al.,
2007).

However, the bounds obtained for the already existing patten geometries (Nguyen et al., 2005a), =72
=34 , are too loose (more than 100% discrepancy). Kelsey et al. §568) already discussed this di culty in
the context of honeycomb core structures, but it is even morgronounced in the case of chevron structures.

In the case of honeycomb-like cores, the discrepancy betwedounds has been identi ed as a skin e ect
(Hohe and Becker, 2001; Xu and Qiao, 2002; Chen and Davalosp@5) and correlated to the ratio between
the cell width and the core thickness. In the case of chevrondided core, the large discrepancy between
the bounds has still no explanation and necessitates more need models able to take into account the

interaction between the skins and the core.

Appendix

The components of the local basis are given by:

0 1
cos sin cos sin sin
CH-HIE ;=% 0 sin cos E (26)
sin COS CO0S cos sin
(e1:e,:83)
0
cos sin cos sin sin
(€f:65:€5) = g;g:% 0 sin cos § 27)
sin COS coS cos sin
(e;,:e,:5)
0 1
cos sin cos  sin sin
(el;e);e) = SNTINS= %} 0 sin cos E (28)
sin COS COS COS sin
(e;,:85:€3)

0
cos sin cos  sin sin

(ef;e);€y)=STS= % 0 sin cos § (29)
sin COS COS COS Sin

(e;:e,:e3)
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Figure 1: Chevron folded paper.

Figure 2: The four elementary faces of the pattern (a) and Fac e 1 orientation (b).
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Figure 3: Reissner-Mindlin generalized strains
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Figure 4: Rotational symmetry with respect to ( S;e;3) (a). Central symmetry with respect to point R (b). Symmetry with

respect to (B; ey ;e3) plane (c). axis
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Figure 5: Stress load in direction 1: (a) and in direction 2: ( b). Face 1 displacement in direction 1: (c) and in direction 2 : (d).
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