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Abstract

Using Kelsey, Gellatly, and Clark (1958) unit load method, upper and lower bounds for the effective trans-

verse shear moduli of a chevron folded core used in sandwich construction are analytically derived and

compared to finite element computations. We found that these bounds are generally loose and that in some

cases chevron folded cores are 40% stiffer than honeycomb-like cores.
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1. Introduction

Sandwich panels made of two thin skins separated by a thick periodic core structure are commonly used

in many engineering applications. They offer a good compromise between strength and weight which is

especially important in aeronautics.

When bending the sandwich panel, the skins are subjected to in-plane traction and compression whereas

the core is subjected to transverse shear. Many constituents can be used as core materials. Balsa glued

between stiffer pieces of wood was one of the first attempts to make a sandwich panel. Nowadays, organic

compound foams (such as polyurethane foam) used with metallic skins are widespread in buildings as

insulating panels. Phenolic paper honeycomb is extensively used in aeronautic structures.

Recently, new types of promising cores have emerged. Truss core panels using new welding techniques

are raising interest because of their strength (Wicks and Hutchinson, 2001; Wadley, 2002; Cote et al., 2007).

Folded cores are promising because of new production means (Basily and Elsayed, 2004b; Nguyen et al.,

2005a; Heimbs et al., 2006; Kintscher et al., 2007). Among them, the chevron folded core was probably the

first to be manufactured (Fig. 1).

It seems that chevron folded core manufacturing was first considered at the beginning of the 20th cen-

tury. Later, the pattern was under investigation in Kazan University. More recently, continuous pro-

duction and several new techniques have emerged (Kling, 2005; Basily and Elsayed, 2006, 2004a; Kehrle,
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2004).The strength of chevron folded cores has been experimentally investigated by Basily and Elsayed

(2004b), Kintscher et al. (2007) and Nguyen et al. (2005a) and it has been numerically simulated by Nguyen

et al. (2005a), Heimbs et al. (2006) and Heimbs (2009). Moreover, their transverse shear stiffness has been

experimentally investigated by Kintscher et al. (2007) but, to the authors knowledge, no theoretical work

has been done yet.

The aim of this paper is to derive bounds for the transverse shear stiffness of chevron folded cores. Kelsey

et al. (1958) first suggested a method for deriving such bounds for honeycomb-like cores. One may refer

also to Gibson and Ashby (1988) for a detailed description of this method. Since then, many honeycomb

geometries have been assessed (Hohe and Becker, 2002; Xu et al., 2001). New homogenization methods

have been suggested. For instance, Hohe (2003) suggested the application of ad hoc boundary conditions

reproducing transverse strain loading εα3 to a unit cell of the sandwich panel, including the skins, so that

the interaction between the core and the skins was taken into account. Chen and Davalos (2005) suggested

a semi-analytical approach in order to refine Kelsey et al. (1958) analysis close to the skins.

Yet, as a first attempt to determine the transverse shear stiffness of folded chevron, it seems relevant to

use Kelsey et al. (1958) approach. Even if only bounds will be derived, it offers a quick and comprehensive

view of chevron pattern stiffness, enables us to look for most efficient configurations and leads to exact

solutions when bounds are equal.

The paper is organized as follows: Section 2 is devoted to the geometric description of the chevron

pattern and the suggested analytical bounds are derived in Section 3. In order to assess the validity of these

bounds, a finite element analysis on a representative unit cell is performed in Section 4. The final section

gives an insight into future works.

2. The chevron pattern homogenized as Mindlin-Reissner plate model

Like honeycomb, the chevron pattern is periodic in the in-plane directions. Four identical parallelogram -

shape faces are necessary to generate the whole pattern by periodicity along the e1 vector (period 2a) and

the e2 vector (period 2s) where M = (A, e1, e2, e3) is the main coordinate system. Fig. 2-a shows these

faces: Face 1= ABCD, Face 2= D′CBA′, Face 3= A′′′B′′CD′ and Face 4 = DCB′′A′′.

Table 1 gives the vertices’ coordinates in terms of four geometric parameters: a, s, v and h where v is a

horizontal offset parameter (v = 0 when B is aligned with A and A′) and h is the pattern height.

Actually, several parameter sets have been suggested for the geometric description of the chevron pattern

(Basily and Elsayed, 2004a; Zakirov et al., 2008). Among them, the set a0, b0, δ, ζ fully determines the

geometry and the position of Face 1. Face 1 is a parallelogram (a0 and b0 are the side lengths) which is

tilted by angles δ and ζ with respect to the main coordinate system, as shown in Figure 2-b.
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Vertex A B C D A′ D′ A′′ B′′ A′′′

x1 0 v a + v a 0 a 2a 2a + v 2a

x2 0 s s 0 2s 2s 0 s 2s

x3 0 0 h h 0 h 0 0 0

Table 1: Vertices’ coordinates� δ is the member angle by analogy with truss beams: cutting the chevron pattern by the (A, e1, e3)

plane gives a zigzag shape similar to that of a Warren-type truss beam.� ζ is the closure angle equal to the half angle between Face 1 and Face 2 along the BC edge. For ζ = 0,

the pattern is completely folded and for ζ = π/2, the pattern is prismatic.� β0 = arctan
(

tan δ
cos ζ

)

is D̂AB angle� α = arctan
(

1
tan ζ sin δ

)

is Â′AB angle

We have:

a = a0 cos δ,

s = b0 cosα,

v = b0 sin α,

h = a0 sin δ.

The chevron pattern has actually three major symmetries. When used as a core between two isotropic

skins, these symmetries lead to several simplifications in the Reissner-Mindlin plate constitutive law (Reiss-

ner, 1985). The fully coupled constitutive law can be summerized as follows:
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(1)

where Nαβ are the membrane generalized stress components, Mαβ are the bending moment components,

Qα are the shear forces, eαβ are the in-plane strains, χαβ are the curvatures and γα are the out-of-plane
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shear strains. Generalized strains are illustrated on Fig. 3. Aij , Bij and Dij are the usual Love-Kirchhoff

plate stiffnesses. Fαβ is the usual Reissner shear stiffness. Kαi and Lαi are a possible couplings between

(Nαβ , Mαβ) and Qα.

Due to the rotational symmetry S of axis (S, e3), shown in Fig. 4-a, we have Kαi = Lαi = 0. Fig. 4-b

shows the central symmetry R with respect to the center point of Face 1, R. This symmetry uncouples

membrane stresses and flexural stresses: Bij = 0 (similar to mirror symmetry for laminates). Fig. 4-c shows

the symmetry N with respect to the (B, e1, e3) plane. This symmetry sets A13 = A23 = D13 = D23 = F12 =

0. Thus, it uncouples transverse shear stresses. Taking into account all uncouplings leads to the following

constitutive law:
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The symmetries described above are respectively associated with the following matrices in the reference

frame (e1, e2, e3):
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It is useful to introduce a local basis Lk = (ek
u, ek

v , ek
w) associated to Face k (k = 1, 2, 3, 4) as shown in Figure

2. For Face 1, vector e1
u is along the AD edge, e1

w is normal to the face with e1
w · e3 > 0 and e1

v is such that

L1 is direct. Thus, the components of (e1
u, e1

v, e
1
w) in the (e1, e2, e3) basis are given by:

(e1
u, e1

v, e1
w) =






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cos δ sin ζ cos δ − sin δ sin ζ

0 sin ζ cos ζ
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(e
1
,e

2
,e

3
)

. (4)

Moreover, the symmetry matrices enables the determination of the components of the other local basis L2,

L3 and L4 as detailed in the appendix.

In sandwich panels, the membrane and flexural moduli are usually derived assuming that the core

structure does not contribute to the overall stiffness. It is also assumed for transverse shear stiffness that

Fαα = hGα3 where G is the effective shear stiffness of the core. Finally, regarding shear behavior, there are

only two transverse shear moduli to determine: G13 and G23.
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3. Analytical bounds

According to the approach of Kelsey et al. (1958), the minimum potential energy theorem is used to derive

upper bounds for the effective transverse shear modulus in the α− direction, Gα3. A uniform horizontal

displacement hγα3 in the α−direction is imposed on the top face of the core material while its lower face is

fixed. Here, α = 1, 2 are the in-plane directions, γα3 is the out-of-plane shear strain in the α−direction and

h is the height of the core. Then, the normalized strain energy of any trial strain field which is piecewise

uniform in the core walls and compatible with the kinematic boundary conditions provides an upper bound

for Gα3, noted G+
α3. Similarly, the minimum complementary energy theorem is used for deriving lower

bounds for Gα3. A uniform horizontal stress load τα3 (respectively, −τα3) is applied in the α−direction to

the upper (respectively, lower) face of the core material. Then, the normalized stress energy of any piecewise

uniform trial stress field which is statically compatible with the boundary conditions provides a lower bound

for Gα3, noted G−

α3.

3.1. Lower bounds

A uniformly distributed horizontal force per unit length, f±, is applied to the upper (−) and lower edges

(+) of the pattern. Fig. 5-a shows f± for transverse shear loading in direction 1, τ1:

f± = ±2
a s

b0
τ1e1 , (5)

and Fig. 5-b shows f± for transverse shear loading in direction 2, τ2:

f± = ±2
a s

b0
τ2e2. (6)

Piecewise uniform plane stress is assumed for each face. Hence, the stress of Face 1 writes:

σ1 = σ1
uue1

u ⊗ e1
u + σ1

vve1
v ⊗ e1

v + σ1
uv

(

e1
u ⊗ e1

v + e1
v ⊗ e1

u

)

(7)

where ⊗ is the dyadic product of two vectors and σ1
uu, σ1

vv, σ1
uv are three unknowns to be determined.

Thanks to N and S symmetries of the pattern and the considered loadings, it is possible to express the

stress σk of Face k, k = 2, 3, 4, in terms of σ1. Indeed, the following relations are easily derived:

σ2 = ǫN σ1N , σ4 = −S σ1S, σ3 = ǫN σ4N , (8)

where ǫ = 1 for loading in direction 1 and ǫ = −1 for loading in direction 2.

The equilibrium condition at edge AD (or edge BC) is written as:

σ1 · e1
v + σ2 ·

(

−e2
v

)

= 0 (9)

Similarly, the equilibrium condition at edge CD (or edge AB) writes:

−t
(

σ1 · n1 + σ4 · n4
)

+ f+ = 0 (10)
5



where t is the faces’ thickness and nk is the outer normal of Face k = 1, 4 along CD (nk belongs to Face k

plane):

n1 = − sinβ0e
1
u + cosβ0e

1
v n4 = sin β0e

4
u − cosβ0e

4
v (11)

The six (non independent) linear equations (9-10) uniquely determine the three unknowns σ1
uu, σ1

vv, σ1
uv.

The solution is:

loading in direction 1: loading in direction 2:

σ1
uu = −a0τ1

t
sin ζ σ1

uu = −a0τ2

t

(

1
tan δ

− tan δ
)

cos ζ cos δ

σ1
vv = 0 σ1

vv = 0

σ1
uv = 0 σ1

uv = −a0τ2

t
cos δ

The faces’ constitutive material is assumed to be isotropic1. Hence, the total stress energy of the unit

cell is given by:

W ∗

int = 2 sinβ0b0a0t

(

2(1 + νs)

Es

(σ1
uv)2 +

1

Es

(σ1
uu)2

)

(12)

where Es and νs are the solid Young modulus and Poisson’s ratio. The stress energy of the effective core

material subjected to the transverse shear stress τα in the direction α is:

W ∗

ext = 2ahs
τ2
α

Gα3
. (13)

The theorem of the complementary energy states that W ∗
ext ≤ W ∗

int. Inserting the expressions of σ1
uu and

σ1
uv into (12) gives the lower bounds:

G13 ≥ G−

13 = t
a0

Es
sin δ cos δ

sin ζ
,

G23 ≥ G−

23 = t
a0

Es
sin δ
cos δ

sin ζ

2(1+νs)+( 1

tan δ
−tan δ)

2

cos2 ζ
.

It is more convenient to use the following normalization:

Eα =
Gα3

ρGs

(14)

where ρ is the core relative density, Gs is the solid shear modulus and Eα is the normalized transverse shear

modulus in direction α. For chevron cores, ρ is given by:

ρ =
t

a0 sin ζ sin δ cos δ
. (15)

Hence, we have:

E1 ≥ E−

1 = 2(1 + νs) sin2 δ cos2 δ,

E2 ≥ E−

2 = 2(1 + νs)
sin2 δ sin2 ζ

2(1+νs)+( 1

tan δ
−tan δ)2

cos2 ζ
.

1This is the case for metallic cores and for Nomex paper core. For CFRP cores, anisotropy has to be introduced.
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3.2. Upper bounds

In order to derive an upper bound for the transverse shear modulus Gα3, a relative horizontal displace-

ment, γαh, between the top and the bottom of the chevron pattern is prescribed in the direction α as shown

in Fig. 5-(c,d). The corresponding overall transformation is:

F = I + γαeα ⊗ e3 (16)

where I is the unit second order tensor.

The in-plane components of the uniform Green-Lagrange strain tensor of Face 1 with respect to the

(e1
u, e1

v) local basis are given by:

e1
λµ =

1

2

(

e1∗
λ · e1∗

µ − δλµ

)

λ, µ = u, v, (17)

where e1∗
λ = F · e1

λ, and δλµ is the Krönecker symbol. Neglecting the second order terms in γα leads to the

following linearized in-plane strain components:

loading in direction 1: loading in direction 2:

ε1
uu = γ1 sin δ cos δ ε1

uu = 0

ε1
vv = −γ1 sin δ cos δ cos2 ζ ε1

vv = −γ2 cos ζ sin ζ cos δ

ε1
uv = −γ1

2 cos 2δ cos ζ ε1
uv = γ2

2 sin ζ sin δ

Piecewise uniform plane stress is assumed in each face. Therefore, the strain energy density of Face 1 is

given by:

w =
1

2

(

Es

1 + νs

(

(ε1
uu)2 + (ε1

vv)2 + 2(ε1
uv)

2
)

+
νsEs

1 − ν2
s

(

ε1
uu + ε1

vv

)2
)

. (18)

The total strain energy stored in the unit cell is:

Wint = 2 sinβ0b0a0tw. (19)

The strain energy stored in the effective core material is:

Wext = 2ahsGα3γ
2
α. (20)

According to the potential energy theorem, we have Wext ≤ Wint. Hence, the following upper bounds for

the normalized transverse shear moduli are obtained:

E1 ≤ E+
1 = 2

1−νs
sin2 δ cos2 δ sin4 ζ + cos2 ζ

E2 ≤ E+
2 =

(

2
1−νs

cos2 δ cos2 ζ + sin2 δ
)

sin2 ζ

7



3.3. Results

As expected, for both directions, we have:

0 < E−

α ≤ E+
α < 1

where E = 1 corresponds to the Voigt upper bound and E = 0 coprresponds to the Reuss lower bound. It

should be emphasized that the derived bounds are independent of the shape ratio a0/b0. They are only

functions of νs and the angles ζ and δ.

Fig. 6-(a,b) shows the normalized lower and upper bounds in direction 1 as functions of δ and ζ for

νs = 0.4. It is possible to give a simple interpretation for the lower bound E−

1 . The corresponding trial stress

has only one non-zero component: σuu. All the faces are subjected to uniaxial traction and compression in

the eu direction. This structural behavior can be compared to Warren truss beams (Fig. 7) where members

are under alternative traction and compression. Hence, it is not surprising that the lower bound depends

only on the member angle δ and is maximum for δ = π/4 as for Warren truss beams. For most values of ζ and

δ, E−

1 and E+
1 are not equal. However, for δ = π/4 and cos2 ζ = νs, they are coincident (E−

1 = E+
1 = 1+νs

2 ).

This means that, for this geometric configuration, the piecewise uniform trial strain and stress fields are the

exact solutions for the transverse shear loading in direction 1.

Fig. 6-(c,d) show the normalized lower and upper bounds in direction 2. The trial stress field associated

to E−

2 is mainly in-plane shear of the core walls as is the case for a honeycomb-like core. For ζ = π/2, the

pattern is prismatic and both bounds are equal to sin2 δ which is an exact value for E2. Actually, prismatic

cores are not used much in sandwich panels because they are not resistant enough. When decreasing ζ from

π/2, the prismatic pattern becomes wavy and this waviness increases the faces’ buckling strength under

transverse shear loading in direction 1.

4. Finite element bounds

The analytical bounds suggested in the previous section are based on the piecewise uniform stress or

strain assumption. In order to assess the validity of this assumption, a Finite Element analysis is conducted.

The resulting numerical bounds will be compared to the analytical bounds.

4.1. The finite element model

The computation of the transverse shear moduli for both directions and both loading cases (stress and

displacement) has been performed within the linear elasticity framework. The unit cell of Fig. 2 is chosen

as a representative volume element.

Since faces are very thin, Kirchhoff shell elements are used. Four elements of the ABAQUS software

(triangles P1 (STRI3), triangles P2 (STRI65), quadrangles P1 (S4R5) and quadrangles P2 (S8R5)) were

8



tested and compared through a convergence analysis (ABAQUS, 2007). Element S4R5 with a 441 node

mesh gives accurate results for a low computation cost.

Boundary conditions involve both nodal displacements U and rotations Φ. For instance, UABA′

and

ΦABA′

refer respectively to nodal displacements and rotations along the edges AB and BA′.

Periodicity conditions in direction 1 and 2 have to be applied: ABA′ matches A′′B′′A′′′ and ADA′′

matches A′D′A′′′. As mentioned before, thanks to the symmetries of the unit cell there is no in-plane overall

strain when applying tranverse shear loading. Hence, the following periodicity conditions are prescribed:

UABA′

= UA′′B′′A′′′

, ΦABA′

= ΦA′′B′′A′′′

,

UADA′′

= UA′D′A′′′

, ΦADA′′

= ΦA′D′A′′′

.

The reader is referred to Sab (1996); Pradel and Sab (1998); Laroussi et al. (2002); Lachihab and Sab

(2005); Florence and Sab (2006) for more details on periodic boundary conditions involving both nodal

displacements and nodal rotations.

For the upper (respectively, lower) bound, the prescribed displacements (respectively, forces per unit

length) are applied to the AB, BA′, DC, CD′, A′′B′′, B′′A′′′ edges. For the lower bound case, node A

displacements and rotations are set to zero to prevent rigid motion.

Few detailed chevron folded core geometries are available in the open literature. Similar to Nguyen

et al. (2005a), the following geometric parameters are investigated with Es = 3GPa and νs = 0.4: a0 =

30 mm, b0 ∈ [20 mm, 60 mm], t = 0.1mm, δ = 72°, ζ = 34°. The analytical normalized bounds for these

configurations are:

0.23 < E1 < 0.71,

0.09 < E2 < 0.35.

Fig. 8-(a,b,c) shows the stresses in the unit cell when submitted to the stress loading τ1 for the case

a0 = b0 = 30mm. At first sight, it is clear that the stresses are almost piecewise uniform in each face which

is consistent with the assumption made for the analytical derivation of the lower bounds. Also, the stress

distribution complies to the symmetries described in section 2. As expected, the main component is σuu as

predicted by the Warren truss beam analogy.

Fig. 8-(d,e,f) shows the strains in the unit cell when submitted to the strain loading γ1. Again, strains

are approximately piecewise uniform in each face. Analytical estimations are εuu

γ1

≈ 0.29, εvv

γ1

≈ 0.20,

εuv

γ1

≈ 0.40. FE fields seems consistent with this prediction.

Similar observations were made for the stress loading τ2 and the strain loading γ2 in direction 2.

4.2. Results

FE analysis has been performed also for several values of the shape ratio a0/b0 and for both loading

directions. Results are shown on Fig. 9-(a,b).
9



For all shape ratios, the expected hierarchy between bounds is observed:

E−

α < E−, FE
α < E+, FE

α < E+
α . (21)

For direction 1, on the one hand, the FE lower bound is really close to the analytical lower bound whatever

the shape ratio is. This good agreement is consistent with the good uniformity of the stresses shown in

Fig. 8-(a,b,c). On the other hand, the FE upper bound is dependent on the shape ratio. In fact, the

computed strain fields are not perfectly piecewise uniform in this case. Fig. 8-(d,e,f). Moreover, it should

be emphasized that the numerical FE bounds for direction 1 cover all the range between the analytical

upper and lower bounds as the shape ratio varies. For direction 2, it is the lower bound which presents

less uniform FE fields and is more sensitive to shape ratio. As expected, when the actual fields are almost

piecewise uniform, then the analytical and numerical bounds are consistent.

One important conclusion of this study is that both FE and analytical bounds are loose for practical

values of the shape ratio (a0/b0 ∈ [0.5, 1.5]). This means that the effective transverse shear moduli of the

considered chevron pattern (δ = 72◦, ζ = 34◦) are sensitive to the the skin effect. According to Kelsey

et al. (1958), this is due to the lack of consideration of the interaction between the skins and the core of the

sandwich panel. Moreover, they indicate that the upper bound is relevant for sandwich panels with thick

skins while the lower bound is relevant for thin skins.

4.3. Comparison with honeycomb

It is of interest to compare honeycomb geometries with chevron pattern.

For a regular honeycomb core with the same wall thickness, the use of piecewise uniform strain and stress

in the core walls gives equal lower and upper bounds:

E1 = E2 = 0.5.

The normalized upper bounds for hexagonal honeycomb with a double wall in the glueing area are (Kelsey

et al. (1958)):

E+
1 =

1 + cos2 θ

2
, E+

2 =
sin2 θ

2
, (22)

where the angle θ is a design parameter shown in Fig. 10. In order to compare chevron pattern to honeycomb,

the sum Σ = E1 + E2 can be considered. Its upper bound for all honeycomb geometries is Σ+ = 1 (Xu et al.,

2001). However, for chevron pattern, it is:

Σ+ =

(

2

1 − νs

cos2 δ sin2 ζ + 1

)

(

1 − cos2 δ sin2 ζ
)

(23)

which reaches the maximum value:
(3 − νs)

2

8(1 − νs)
(24)
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for

cos2 δ sin2 ζ =
1 + νs

4
. (25)

Fig. 11-(a) shows Σ+ as the function of ζ and δ for νs = 0.4, and the continuous set of (ζ, δ) for which Σ+

reaches its maximum value. On Fig. 12 the maximum value of Σ+ versus νs is plotted. Thus, considering

Σ+, the chevron pattern can potentially outperform honeycomb by ≃ 40% for usual values of νs.

In Fig. 11-(b) the FE computed sum of upper bounds Σ+,FE is plotted for a0/b0 = 1. As expected

FE upper bounds are lower than analytical upper bounds. The domain where chevron pattern outperforms

honeycomb geometries (Σ+,FE > 1) is smaller but still includes geometries that can be manufactured. Yet,

Σ+,FE ≃ 0.65 for the geometry considered in Nguyen et al. (2005a).

5. Discussion

The main reason for the gap observed between bounds, even with FE computations, is the lack of

knowledge on the actual effect of shear forces on plates. Since Reissner (1945) we know that local tranverse

shear is parabolic through the thickness in a homogeneous plate. However, when considering anisotropic

laminated plates, it is difficult to approximate the actual transverse shear stress distribution. To overcome

this diffficulty, Mindlin (1951) suggested to introduce shear correction factors, which improved the accuracy

of the deflection prediction but did not provided the actual transverse shear stress distribution. Numerous

proposals have been made to improve stress estimation and were reviewed by Reddy (1989) and Carrera

(2002). This issue becomes critical when considering heterogeneous periodic plates such as honeycomb and

chevron pattern sandwich panels.

Most of the approaches suggested for sandwich panels rely on the following steps. First, the heterogeneous

core is homogenized, and replaced with an equivalent homogeneous layer. Second, the First Order Shear

Deformation Theory (FOSDT) is applied to derive the transverse shear stiffness of the obtained laminated

plate. To do this, the transverse shear strain is assumed uniform through the thickness. Two difficulties

arise from this two step method.

Firstly, the actual boundary conditions replacing the effect of the skins on the core are unknown. Impos-

ing uniform displacements or uniform forces gives bounds for the homogenized constitutive behavior of the

heterogeneous core. As it is illustrated in this paper, these bounds may be loose. This is the main drawback

of the two step approach.

Secondly, as previously mentioned, the application of FOSDT necessitates the computation of shear

correction factors. However shear correction factors depend on the ply configuration. In the case of het-

erogeneous plates, the concept of shear corerection factor is even more fuzzy. The work of Buannic et al.

(2003) points out limitations of the shear correction factor approach.

11



One way has been suggested to overcome these difficulties in the case of honeycomb sandwich panels.

It consists in refining the analysis on the connection between the skins and the core, as suggested by Hohe

and Becker (2001) and Chen and Davalos (2005). In these papers the incompatibility between the skins and

the core average displacement is treated as an edge effect relatively to the ratio between the cell width and

the core thickness. Following a completely different path, Lebée and Sab (2010) suggested a model which

enables the consideration of such incompatibilities and edge effects in more general configurations. Yet this

kind of approach is relevant only for honeycombs. Unlike honeycombs, the chevron pattern has no scale

separation between the cell width and the core thickness.

A second way to improve the estimation of the transverse shear stiffness is to reconsider globally the

effect of shear forces on the sandwich panel. This was done by Hohe (2003) and Cecchi and Sab (2007)

among others. Hohe (2003), followed by Pahr and Rammerstorfer (2006), presented a direct homogenization

scheme assuming ad hoc boundary conditions on the representative volume element, including skins. When

including skins, Hohe (2003) overcomes the difficulty of choosing the actual boundary conditions that should

be used in the two step method. However, applying this method to a homogeneous plate leads to a uniform

stress distribution which contradicts Reissner (1945)’s prediction and overestimates transverse shear stiffness

(hG instead of 5/6hG). The reason why Hohe (2003) method is efficient for sandwich panels comes from

a constrast assumption. In sandwich panels, the core is allways much more compliant than the skins. In

this specific case it is possible to assume a uniform distribution of shear strains through the core thickness.

Yet, in practical applications, the contrast assumption is not always fullfilled which limits the validity of

this method. Another proposal, made by Cecchi and Sab (2007) (as well as, Cecchi and Sab (2004); Nguyen

et al. (2005b); Cecchi and Sab (2007); Nguyen et al. (2007, 2008)), is based on Whitney (1972) work on

the derivation of shear correction factors for laminates. This seminal work is extended to heterogeneous

plates thanks to an energetic equivalence. It consists in using the Reissner-Mindlin equilibrium equation

Mαβ,β = Qα in the cylindrical bending case in order to derive the actual 3D stress field generated by shear

forces. This method does not make an a priori assumption on transverse shear strain or stress. It is currently

under investigation for application to sandwich panels.

6. Conclusion

For an out-of-plane loaded sandwich panel with stiff skins (0.6 mm of CFRP for instance), small slender-

ness ratio (10 for example) and usual chevron folded core thickness (0.1 mm of impregnated aramid paper),

the deflection is almost proportional to the effective transverse shear moduli of the chevron folded core. In

this paper, Kelsey et al. (1958) approach has been used to derive analytical and numerical upper bounds

for these moduli. For some pattern geometries, the exact fields have been obtained. Moreover, it has been

shown that for some geometries, the chevron folded cores are stiffer than honeycomb-like cores (lower bounds
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for the chevron core are higher than upper bounds for honeycombs). Finally, this work sets the path for

the derivation of analytical bounds for other folded core geometries such as the M-type core (Heimbs et al.,

2007).

However, the bounds obtained for the already existing pattern geometries (Nguyen et al., 2005a), δ = 72◦,

ζ = 34◦, are too loose (more than 100% discrepancy). Kelsey et al. (1958) already discussed this difficulty in

the context of honeycomb core structures, but it is even more pronounced in the case of chevron structures.

In the case of honeycomb-like cores, the discrepancy between bounds has been identified as a skin effect

(Hohe and Becker, 2001; Xu and Qiao, 2002; Chen and Davalos, 2005) and correlated to the ratio between

the cell width and the core thickness. In the case of chevron folded core, the large discrepancy between

the bounds has still no explanation and necessitates more refined models able to take into account the

interaction between the skins and the core.

Appendix

The components of the local basis are given by:

(e1
u, e1

v, e1
w) = T =











cos δ sin ζ cos δ − sin δ sin ζ

0 sin ζ cos ζ

sin δ − cos δ cos ζ cos δ sin ζ











(e
1
,e

2
,e

3
)

(26)

(e2
u, e2

v, e
2
w) = N T N =











cos δ − sin ζ cos δ − sin δ sin ζ

0 sin ζ − cos ζ

sin δ cos δ cos ζ cos δ sin ζ











(e
1
,e

2
,e

3
)

(27)

(e3
u, e3

v, e
3
w) = S N T N S =











cos δ − sin ζ cos δ sin δ sin ζ

0 sin ζ cos ζ

− sin δ − cos δ cos ζ cos δ sin ζ











(e
1
,e

2
,e

3
)

(28)

(e4
u, e4

v, e
4
w) = S T S =











cos δ sin ζ cos δ sin δ sin ζ

0 sin ζ − cos ζ

− sin δ cos δ cos ζ cos δ sin ζ




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Figure 1: Chevron folded paper.

Figure 2: The four elementary faces of the pattern (a) and Face 1 orientation (b).
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Figure 3: Reissner-Mindlin generalized strains
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R

Figure 4: Rotational symmetry with respect to (S, e3) (a). Central symmetry with respect to point R (b). Symmetry with

respect to (B, e1, e3) plane (c). axis
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Figure 5: Stress load in direction 1: (a) and in direction 2: (b). Face 1 displacement in direction 1: (c) and in direction 2: (d).

19



00

0

0.2

0.4

0.5

0.6

0.8

1

00

0

0.2

0.4

0.5

0.6

0.8

1

00

0

0.2

0.4

0.5

0.6

0.8

1

00

0

0.2

0.4

0.5

0.6

0.8

1

Figure 6: Analytical bounds E for both directions as the function of ζ and δ for νs = 0.4 and a0/b0 = 1.

Figure 7: Warren truss beam.
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Figure 8: Membrane stresses for τ1 load, δ = 72°, ζ = 34° ((a): σuu, (b): σvv , (c): σuv) and membrane strains for γ1 load,

δ = 72°, ζ = 34° ((d): εuu, (e): εvv, (f): εuv)
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Figure 9: Bounds versus a0/b0 for δ = 72°, ζ = 34° and νs = 0.4 in both directions.

Figure 10: Honeycomb angle.
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Figure 11: Σ+ and Σ+,F E as the function of ζ and δ for νs = 0.4 and a0/b0 = 1.
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