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Learning Heteroscedastic Models by Convex Programming under Group Sparsity

Popular sparse estimation methods based on ℓ 1 -relaxation, such as the Lasso and the Dantzig selector, require the knowledge of the variance of the noise in order to properly tune the regularization parameter. This constitutes a major obstacle in applying these methods in several frameworks-such as time series, random fields, inverse problems-for which the noise is rarely homoscedastic and its level is hard to know in advance. In this paper, we propose a new approach to the joint estimation of the conditional mean and the conditional variance in a highdimensional (auto-) regression setting. An attractive feature of the proposed estimator is that it is efficiently computable even for very large scale problems by solving a secondorder cone program (SOCP). We present theoretical analysis and numerical results assessing the performance of the proposed procedure.

Introduction

Over the last fifteen years, sparse estimation methods based on ℓ 1 -relaxation, among which the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and the Dantzig selector [START_REF] Candès | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] are the most famous examples, have become a popular tool for estimating high dimensional linear models. So far, their wider use in Appearing in Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. Copyright 2013 by the author(s)/owner(s).

several fields of applications (e.g., finance and econometrics) has been constrained by the difficulty of adapting to heteroscedasticity, i.e., when the noise level varies across the components of the signal.

Let T be a finite set of cardinality T . For every t ∈ T we observe a sequence (x t , y t ) ∈ R d × R obeying:

y t = b * (x t ) + s * (x t )ξ t , (1) 
where b * : R d → R and s * 2 : R d → R + are respectively the unknown conditional mean and conditional variance1 of y t given x t . Then, the errors ξ t satisfy E[ξ t |x t ] = 0 and Var[ξ t |x t ] = 1. Depending on the targeted applications, elements of T may be time instances (financial engineering), pixels or voxels (image and video processing) or spatial coordinates (astronomy, communication networks).

In this general formulation, the problem of estimating unknown functions b * and s * is ill-posed: the dimensionality of unknowns is too large as compared to the number of equations T , therefore, the model is unidentifiable. To cope with this issue, the parameters (b * , s * ) are often constrained to belong to low dimensional spaces. For instance, a common assumption is that for some given dictionary f 1 , . . . , f p of functions from R d to R and for an unknown vector (β * , σ * ) ∈ R p × R, the relations b * (x) = [f 1 (x), . . . , f p (x)]β * and s * (x) ≡ σ * hold for every x. Even for very large values of p, much larger than the sample size T , such a model can be efficiently learned in the sparsity scenario using recently intro-duced scaled versions of ℓ 1 -relaxations: the squareroot Lasso [START_REF] Antoniadis | Comments on: ℓ1-penalization for mixture regression models[END_REF][START_REF] Belloni | Square-root Lasso: Pivotal recovery of sparse signals via conic programming[END_REF][START_REF] Sun | Scaled sparse linear regression[END_REF][START_REF] Gautier | High-dimensional instrumental variables regression and confidence sets[END_REF], the scaled Lasso [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF] and the scaled Dantzig selector [START_REF] Dalalyan | Fused sparsity and robust estimation for linear models with unknown variance[END_REF]. These methods are tailored to the context of a fixed noise level across observations (homoscedasticity), which reduces their attractiveness for applications in the aforementioned fields. In the present work, we propose a new method of estimation for model (1) that has the appealing properties of requiring neither homoscedasticity nor any prior knowledge of the noise level. The only restriction we impose is that the variance function s * 2 is of reduced dimensionality, which in our terms means that its inverse 1/s * is of a linear parametric form.

Our contributions and related work

We propose a principled approach to the problem of joint estimation of the conditional mean function b * and the conditional variance s * 2 , which boils down to a second-order cone programming (SOCP) problem. We refer to our procedure as the Scaled Heteroscedastic Dantzig selector (ScHeDs) since it can be seen an extension of the Dantzig selector to the case of heteroscedastic noise and group sparsity. Note that so far, inference under group-sparsity pioneered by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Lin | Component selection and smoothing in multivariate nonparametric regression[END_REF], has only focused on the simple case of known and constant noise level both in the early references [START_REF] Nardi | On the asymptotic properties of the group Lasso estimator for linear models[END_REF][START_REF] Bach | Consistency of the Group Lasso and multiple kernel learning[END_REF][START_REF] Chesneau | Some theoretical results on the grouped variables Lasso[END_REF][START_REF] Meier | Highdimensional additive modeling[END_REF], and in the more recent ones [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF][START_REF] Huang | A selective review of group selection in high dimensional models[END_REF]. In this work we provide a theoretical analysis and some numerical experiments assessing the quality of the proposed ScHeDs procedure.

More recently, regression estimation under the combination of sparsity and heteroscedasticity was addressed by [START_REF] Daye | High-dimensional heteroscedastic regression with an application to eQTL data analysis[END_REF][START_REF] Wagener | Bridge estimators and the adaptive Lasso under heteroscedasticity[END_REF][START_REF] Kolar | Variance function estimation in high-dimensions[END_REF]. Because of the inherent nonconvexity of the penalized (pseudo-)loglikelihood considered in these works, the methods proposed therein do not estimate the conditional mean and the variance in a joint manner. They rather rely on iterative estimation of those quantities: they alternate between the two variables, estimating one while keeping the other one fixed. Furthermore, the theoretical results of these papers are asymptotic. In contrast, we propose a method that estimates the conditional mean and the variance by solving a jointly convex minimization problem and derive nonasymptotic risk bounds for the proposed estimators.

Notation We use boldface letters to denote vectors and matrices. For an integer d > 0, we set

[d] = {1, . . . , d}. If v ∈ R d and J ⊂ [d]
, then v J denotes the sub-vector of v obtained by removing all the coordinates having indexes outside J. If J = {j}, we write v J = v j . The ℓ q -norms of v are defined by:

|v| 0 = d j=1 1(v j = 0), |v| ∞ = max j∈{1,...,d} |v j |, |v| q q = d j=1 |v j | q , 1 ≤ q < ∞.
For a matrix A, A i,: and A :,j stand respectively for its i-th row and its j-th column. For a vector Y = [y 1 , . . . , y T ] ⊤ ∈ R T , we define diag(Y ) as the T × T diagonal matrix having the entries of Y on its main diagonal.

Background and assumptions

We start by reparameterizing the problem as follows:

r * (x) = 1/s * (x), f * (x) = b * (x)/s * (x).
(2)

Clearly, under the condition that s * is bounded away from zero, the mapping (s

* , b * ) → (r * , f * ) is bijective.
As shown later, learning the pair (r * , f * ) appears to be more convenient than learning the original meanvariance pair, in the sense that it can be performed by solving a convex problem.

We now introduce two assumptions underlying our approach. The first one is a group sparsity assumption on the underlying function f * . It states that there exists a given dictionary of functions f 1 , . . . , f p from R d to R such that f * is well approximated by a linear combination p j=1 φ * j f j with a (fixed) group-sparse vector φ * = [φ * 1 , . . . , φ * p ] ⊤ . The precise formulation is:

Assumption (A1)
We denote by X the T ×p matrix having [f 1 (x t ), . . . , f p (x t )] as t-th row. Then, for a given partition G 1 , . . . , G K of {1, . . . , p}, there is a vector

φ * ∈ R p such that [f * (x 1 ), . . . , f * (x T )] ⊤ ≈ Xφ * and Card({k : |φ * G k | 2 = 0}) ≪ K.
Assumption (A1) is a restriction on f * only; the function r * does not appear in its formulation. Let us describe two practical situations which fit into the framework delineated by Assumption (A1), some other examples can be found in [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF][START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF][START_REF] Huang | A selective review of group selection in high dimensional models[END_REF].

Sparse linear model with qualitative covariates

Consider the case of linear regression with a large number of covariates, an important portion of which are qualitative. Each qualitative covariate having m modalities is then transformed into a group of m binary quantitative covariates. Therefore, the irrelevance of one qualitative covariate implies the irrelevance of a group of quantitative covariates, leading to the group-sparsity condition.

Sparse additive model [START_REF] Ravikumar | Sparse additive models[END_REF][START_REF] Koltchinskii | Sparsity in multiple kernel learning[END_REF][START_REF] Raskutti | Minimax-optimal rates for sparse additive models over kernel classes via convex programming[END_REF] If f * is a nonlinear function of a moderately large number of quantitative covariates, then-to alleviate the curse of dimensionality-a sparse additive model is often considered for fitting the response. This means that f * is assumed to be of the simple form f * 1 (x 1 )+. . .+f * d (x d ), with most functions f * j being identically equal to zero. Projecting each of these functions onto a fixed number of elements of a basis, f * j (x) ≈ Kj ℓ=1 φ ℓ,j ψ ℓ (x), we get a linear formulation in terms of the unknown vector φ = (φ ℓ,j ). The sparsity of the additive representation implies the group-sparsity of the vector φ.

Our second assumption requires that there is a linear space of dimension q, much smaller than the sample size T , that contains the function r * . More precisely: Assumption (A2) For q given functions r 1 , . . . , r q mapping R d into R + , there is a vector α ∈ R q such that r * (x) = q ℓ=1 α ℓ r ℓ (x) for every x ∈ R d .

Here are two examples of functions r * satisfying this assumption.

Blockwise homoscedastic noise In time series modeling, one can assume that the variance of the innovations varies smoothly over time, and, therefore, can be well approximated by a piecewise constant function. This situation also arises in image processing where neighboring pixels are often corrupted by noise of similar magnitude. This corresponds to choosing a partition of T into q cells and to defining each r ℓ as the indicator function of one cell of the partition.

Periodic noise-level In meteorology or image processing, observations may be contaminated by a periodic noise. In meteorology, this can be caused by seasonal variations, whereas in image processing, this may occur if the imaging system is subject to electronic disturbance of repeating nature. Periodic noise can be handled by (A2) stating that r * belongs to the linear span of a few trigonometric functions.

There are essentially three methods in the literature providing estimators of (b * , s * ) in a context close to the one described above. All of them assume that s * is constant and equal to σ * and [ b * (x 1 ), . . . , b * (x T )] ⊤ = Xβ * with some sparse vector β * ∈ R p . The first method, termed the scaled Lasso [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF], suggests to recover (β * , σ * ) by computing a solution ( β Sc-L , σ Sc-L ) to the optimization problem min

β,σ T log(σ) + |Y -Xβ| 2 2 2σ 2 + λ σ p j=1 |X :,j | 2 |β j | , (3) 
where λ > 0 is a scale-free tuning parameter controlling the trade-off between data fitting and sparsity level. After a change of variables, this can be cast as a convex program. Hence, it is possible to find the global minimum relatively efficiently even for large p.

A second method for joint estimation of β * and σ * by convex programming, the Square-Root Lasso [START_REF] Antoniadis | Comments on: ℓ1-penalization for mixture regression models[END_REF][START_REF] Belloni | Square-root Lasso: Pivotal recovery of sparse signals via conic programming[END_REF], estimates β * by β SqR-L which solves

min β Y -Xβ 2 + λ p j=1 |X :,j | 2 |β j | (4) 
and then defines σ

SqR-L = 1 √ T Y -X β SqR-L
2 as an estimator of σ * . Both in theory and in practice, these two methods perform quite similarly [START_REF] Sun | Scaled sparse linear regression[END_REF].

A third method, termed scaled Dantzig selector, was studied by [START_REF] Dalalyan | Fused sparsity and robust estimation for linear models with unknown variance[END_REF]) under a more general type of sparsity assumption (called fused or indirect sparsity). Inspired by these works, we propose a new procedure for joint estimation of the conditional mean and the conditional variance in the context of heteroscedasticity and group-sparsity.

Definition of the procedure

Our methodology originates from the penalized loglikelihood minimization. Assuming errors ξ t are i.i.d. Gaussian N (0, 1) and setting f(x) = p j=1 φ j f j (x), the penalized log-likelihood used for defining the group-Lasso estimator is (up to summands independent of (f, r)):

PL(f, r) = t∈T -log(r(x t )) + 1 2 r(x t )y t -X t,: φ 2 + K k=1 λ k j∈G k X :,j φ j 2 , (5) 
where λ = (λ 1 , . . . , λ K ) ∈ R K + is a tuning parameter. A first strategy for estimating (f * , r * ) is to minimize PL(f, r) with respect to φ ∈ R p and r ∈ {g : R d → R : g(x) ≥ 0, for almost all x ∈ R d }. In view of assumption (A2), we can replace r by q ℓ=1 α ℓ r ℓ with an unknown q-vector α.

If we introduce the T × q matrix R having as generic entry r ℓ (x t ), ( 5) translates into a convex program with respect to the p + q dimensional parameter (φ, α) ∈ R p × R q , in which the cost function is:

PL(φ, α) = t∈T -log(R t,: α) + 1 2 y t R t,: α -X t,: φ 2 + K k=1 λ k X :,G k φ G k 2 , (6) 
and the constraint min t R t,: α ≥ 0 should be imposed to guarantee that the logarithm is well defined. This is a convex optimization problem, but it does not fit well the framework under which the convergence guarantees of the state-of-the-art optimization algorithms are established. Indeed, it is usually required that the smooth components of the cost function have Lipschitz-smooth derivative, which is not the case for (6) because of the presence of the logarithmic terms.

One can circumvent this drawback by smoothing these terms2 , but we opted for another solution that relies on an argument introduced in [START_REF] Candès | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] for justifying the Dantzig selector. Let

Π G k = X :,G k (X ⊤ :,G k X :,G k ) + X ⊤ :,G k be the orthogonal projector onto the range of X :,G k in R T . Definition 3.1. Let λ ∈ R K
+ be a vector of tuning parameters. We call the Scaled Heteroscedastic Dantzig selector (ScHeDs) the pair ( φ, α), where

( φ, α, v) is a minimizer w.r.t. (φ, α, v) ∈ R p × R q × R T + of the cost function K k=1 λ k X :,G k φ G k 2 subject to the constraints Π G k diag(Y )Rα -Xφ 2 ≤ λ k , ∀k ∈ [K]; (7) R ⊤ v ≤ R ⊤ diag(Y )(diag(Y )Rα -Xφ); (8) 1/v t ≤ R t,: α; ∀t ∈ T . (9) 
Constraints ( 7)-( 9) are obtained as convex relaxations of the first-order conditions corresponding to minimizing (6). In fact, Eq. ( 7) is a standard relaxation for the condition 0 ∈ ∂ φ PL(φ, α), whereas constraints ( 8) and ( 9) are convex relaxations of the equation ∂ α PL(φ, α) = 0. Further details on this point are provided in the supplementary material. At this stage and before presenting theoretical guarantees on the statistical performance of the ScHeDs, we state a result telling us the estimator we introduced is meaningful.

Theorem 3.2. The ScHeDs is always well defined in the sense that the feasible set of the corresponding op-timization problem is not empty: it contains the minimizer of ( 6). Furthermore, the ScHeDs can be computed by any SOCP solver.

The proof is placed in the supplementary material. As we will see later, thanks to this theorem, we carried out two implementations of the ScHeDs based on an interior point algorithm and an optimal first-order proximal method.

Comments on the procedure

Tuning parameters One apparent drawback of the ScHeDs is the large number of tuning parameters. Fortunately, some theoretical results provided in the supplementary material suggest to choose

λ k = λ 0 √ r k ,
where λ 0 > 0 is a one-dimensional tuning parameter and r k = rank(X :,G k ). In particular, when all the predictors within each group are linearly independent, then one may choose λ proportional to the vector ( Card(G 1 ), . . . , Card(G K )).

Additional constraints In many practical situations one can add some additional constraints to the aforementioned optimization problem without leaving the SOCP framework. For example, if the response y is bounded by some known constant L y , then it is natural to look for conditional mean and conditional variance bounded respectively by L y and L 2 y . This amounts to introducing the (linearizable) constraints |X t,: φ| ≤ L y R t,: α and R t,: α ≥ 1/L y for every t ∈ T .

Bias correction

It is well known that the Lasso and the Dantzig selector estimate the nonzero coefficients of the regression vector with a bias toward zero. It was also remarked in [START_REF] Sun | Comments on: ℓ1penalization for mixture regression models[END_REF], that the estimator of the noise level provided by the scaled Lasso is systematically over-estimating the true noise level. Our experiments showed the same shortcomings for the ScHeDs. To attenuate these effects, we propose a two-step procedure that applies the ScHeDs with the penalties λ k = λ 0 √ r k at the first step and discards from X the columns that correspond to vanishing coefficients of φ. At the second step, the ScHeDs is applied with the new matrix X and with λ = 0.

Gaussian assumption Although the proposed algorithm takes its roots from the log-likelihood of the Gaussian regression, it is by no means necessary that the noise distribution should be Gaussian. In the case of deterministic design x t , it is sufficient to assume that the noise distribution is sub-Gaussian. For random i.i.d. design, arguments similar to those of [START_REF] Belloni | Square-root Lasso: Pivotal recovery of sparse signals via conic programming[END_REF][START_REF] Gautier | High-dimensional instrumental variables regression and confidence sets[END_REF]) can be applied to show oracle inequalities for even more general noise distributions.

Equivariance Given the historical data (y 1:T , x 1:T ) of the response and the covariates, let us denote by y T +1 (y 1:T ) = p ℓ=1 φ j f j (x T +1 ) / q ℓ=1 α ℓ r ℓ (x T +1 ) the prediction provided by the ScHeDs for a new observation x T +1 . This prediction is equivariant with respect to scale change in the following sense. If all the response values y 1 , . . . , y T are multiplied by some constant c, then it can easily be proved that the new prediction can be deduced from the previous one by merely multiplying it by c: y T +1 (cy 1:T ) = c y T +1 (y 1:T ). 

D k = (X ⊤ :,G k X :,G k ) 1/2
is not necessarily diagonal. Our choice has the advantage of being equivariant w.r.t. (invertible) linear transformations of predictors within groups.

Interestingly, this difference in the penalty definition has an impact on the calibration of the parameters λ k : while the recommended choice is

λ 2 k ∝ Card(G k ) when diagonal matrices 3 D k are used, it is λ 2 k ∝ rank(X :,G k )
for the ScHeDs. Thus, the penalty chosen for the ScHeDs is slightly smaller than that of the usual group-Lasso, which also leads to a tighter risk bound.

Risk bounds

We present a finite sample risk bound showing that, under some assumptions, the risk of our procedure is of the same order of magnitude as the risk of a procedure based on the complete knowledge of the noise-level.

Recall that the model introduced in the foregoing sections can be rewritten in its matrix form

diag(Y )Rα * = Xφ * + ξ, (10) 
with ξ 1 , . . . , ξ T i.i.d. zero mean random variables. To state the theoretical results providing guarantees on the accuracy of the ScHeDs estimator ( φ, α), we need some notation and assumptions.

For φ * ∈ R p , we define the set of relevant groups K * and the sparsity index S * by

K * = k : φ * G k 1 = 0 , S * = k∈K * r k , (11) 
Note that these quantities depend on φ * . To establish tight risk bounds, we need the following assumption on the Gram matrix X ⊤ X, termed Group-Restricted Eigenvalues (GRE).

Assumption GRE(N, κ): For every K ⊂ [p] of cardinality not larger than N and for every δ ∈ R p satisfying

K c λ k X :,G k δ G k 2 ≤ K λ k X :,G k δ G k 2 , (12) it holds that Xδ 2 2 ≥ κ 2 k∈K X :,G k δ G k 2 2 . We also set C 1 = max ℓ=1,...,q 1 T t∈T r 2 tℓ (X t,: φ * ) 2 (R t,: α * ) 2 , ( 13 
)
C 2 = max ℓ=1,...,q 1 T t∈T r 2 tℓ (R t,: α * ) 2 , ( 14 
)
C 3 = min ℓ=1,...,q 1 T t∈T r tℓ (R t,: α * ) , (15) 
and define

C 4 = ( √ C 2 + √ 2C 1 )/C 3 .
To establish nonasymptotic risk bounds in the heteroscedastic regression model with sparsity assumption, we first tried to adapt the standard techniques [START_REF] Candès | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Peter | Simultaneous analysis of Lasso and Dantzig selector[END_REF] used in the case of known noise-level. The result, presented in Theorem 5.1 below, is not satisfactory, since it provides a risk bound for estimating φ * that involves the risk of estimating α * . Nevertheless, we opted for stating this result since it provides guidance for choosing the parameters λ k and also because it constitutes an important ingredient of the proof of our main result stated in Theorem 5.2 below.

Theorem 5.1. Consider model (10) with deterministic matrices X and R. Assume that the distribution of ξ is Gaussian with zero mean and an identity covariance matrix and that Assumption GRE(K * , κ) is fulfilled with K * = Card(K * ). Let ε ∈ (0, 1) be a tolerance level and set

λ k = 2 r k + 2 r k log(K/ε) + 2 log(K/ε) 1/2 . If T ≥ 8C 4 log( 2q ε ) then, with probability at least 1-2ε, X( φ -φ * ) 2 ≤ C 4 (8/T ) log(2q/ε)(2|Xφ * | 2 + |ξ| 2 ) + 8 κ 2S * + 3K * log(K/ε) + |diag(Y )R( α -α * )| 2 . ( 16 
)
In order to gain understanding on the theoretical limits delineated by the previous theorem, let us give more details on the order of magnitude of the three terms appearing in ( 16). First, one should keep in mind that the correct normalization of the error consists in dividing X( φφ * ) 2 by √ T . Assuming that the function b * is bounded and using standard tail bounds on the χ 2

ScHeDs Square-root Lasso | β -β * |2 | S -S * | 10| σ -σ * | | β -β * |2 | S -S * | 10| σ -σ * | (T,
T distribution, we can see that the first term in the right-hand side of ( 16) is negligible w.r.t. the second one. Thus if we ignore for a moment the third term, Theorem 5.1 tells us that the normalized squared error T -1 X( φφ * ) 2 2 of estimating φ * by φ is of the order of S * /T , up to logarithmic terms. This is the (optimal) fast rate of estimating an S * -sparse signal with T observations in linear regression.

To complete the theoretical analysis, we need a bound on the error of estimating the parameter α * . This is done in the following theorem. Theorem 5.2. Let all the conditions of Theorem 5.1 be fulfilled. Let q and T be two integers such that 1 ≤ q ≤ T and let ε ∈ (0, 1/5). Assume that for some constant D 1 ≥ 1 the inequality max t∈T Rt,: α Rt,:α * ≤ D 1 holds true and denote

D T,ε = D 1 (2|Xφ * | 2 ∞ + 5log(2T /ε))
. Then, on an event of probability at least 1 -5ε, the following inequality is true:

X( φ -φ * ) 2 ≤ 4(C 4 + 1)D 3/2 T,ε 2q log(2q/ε) + 8D T,ε κ 2S * + 3K * log(K/ε). (17)
Furthermore, on the same event,

R(α * -α) 2 D 1/2 1 |Rα * | ∞ ≤ 4(C 4 + 2)D 3/2 T,ε 2q log(2q/ε) + 8D T,ε κ 2S * + 3K * log(K/ε). (18)
The first important feature of this result is that it provides fast rates of convergence for the ScHeDs estimator. This compares favorably with the analogous result in [START_REF] Kolar | Variance function estimation in high-dimensions[END_REF], where asymptotic bounds are presented under the stringent condition that the local minimum to which the procedure converges coincides with the global one. The joint convexity in φ and α of our minimization problem allows us to avoid such an assumption without any loss in the quality of prediction.

One potential weakness of the risk bounds of Theorem 5.2 is the presence of the quantity D 1 , which controls, roughly speaking, the ℓ ∞ norm of the vector R α. One way to circumvent this drawback is to add the constraint max t R t,: α ≤ µ * to those presented in ( 7)-( 9), for some tuning parameter µ * . In this case, the optimization problem remains an SOCP and in all the previous results one can replace the random term D 1 by µ * /µ * , where µ * is a lower bound on the elements of the vector Rα * . This being said, we hope that with more sophisticated arguments one can deduce the boundedness of D 1 by some deterministic constant without adding new constraints to the ScHeDs.

One may also wonder how restrictive the assumptions ( 13)-( 15) are and in which kind of contexts they are expected to be satisfied. At a heuristic level, one may remark that the expressions in ( 13)-( 15) are all empirical means: for instance, (1/T ) t r 2 tℓ /(R t,: α * ) 2 = (1/T ) t r ℓ (x t ) 2 /r * (x t ) 2 . Assuming that the time series {x t } is stationary or periodic, these empirical means will converge to some expectations. Therefore, under these types of assumptions, (13)-( 15) are boundedness assumptions on some integral functionals of r * , f * and r ℓ 's. In particular, if r ℓ 's are bounded and bounded away from 0, f * is bounded and r * is bounded away from zero, then the finiteness of the constant C 4 is straightforward.

To close this section, let us emphasize that the GRE condition is sufficient for getting fast rates for the performance of the ScHeDs measured in prediction loss, but is by no means necessary for the consistency. In other terms, even if the GRE condition fails, the ScHeDs still provides provably accurate estimates that converge at a slower rate. This slow rate is, roughly speaking, of the order [T -1 (S * + K

* log K)] 1/4 instead of [T -1 (S * + K * log K)] 1/2 .

Experiments

To assess the estimation accuracy of our method and to compare it with the state-of-the-art alternatives, we performed an experiment on a synthetic dataset. Then, the prediction ability of the procedure is evaluated on a real-world dataset containing the temperatures in Paris over several years.

Implementation

To effectively compute the ScHeDs estimator we rely on Theorem 3.2 that reduces the computation to solving a second-order cone program. To this end, we implemented a primal-dual interior point method using the SeDuMi package [START_REF] Jos | Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] of Matlab as well as several optimal first-order methods [START_REF] Yurii | A method for solving the convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Auslender | Interior gradient and proximal methods for convex and conic optimization[END_REF][START_REF] Beck | A fast iterative shrinkagethresholding algorithm for linear inverse problems[END_REF] using the TFOCS [START_REF] Becker | Templates for convex cone problems with applications to sparse signal recovery[END_REF]. We intend to make our code publicly available if the paper is accepted. Each of these implementations has its strengths and limitations. The interior point method provides a highly accurate solution for moderately large datasets (Fig. 1, top), but this accuracy is achieved at the expense of increased computational complexity (Fig. 1,bottom). Although less accurate, optimal first-order methods have cheaper iterations and can deal with very large scale datasets (see Table 2). All the experiments were conducted on an Intel(R) Xeon(R) CPU @2.80GHz.

Synthetic data

In order to be able to compare our approach to other state-of-the-art algorithms, we place ourselves in a setting of homoscedastic noise with known ground truth. We randomly generate a matrix X ∈ R T ×p with i.i.d. standard Gaussian entries and a standard Gaussian noise vector ξ ∈ R T independent of X. The noise variance is defined by σ t ≡ σ * with varying values σ * > 0. We set β 0 = [1 S * , 0 p-S * ] ⊤ and define φ * = β * /σ * , where β * is obtained by randomly permuting the entries of β 0 . Finally, we set Y = σ * (Xφ * + ξ).

Nine different settings depending on the values of (T, p, S * , σ * ) are considered. In each setting the experiment is repeated 500 times; the average errors of esti- Table 2. Comparing implementations of the ScHeDs: interior point (IP) vs. optimal first-order (OFO) method. We report the time per iteration (in seconds) for varying p in the experiment described in Section 6.2 with T = 200, S * = 2, σ = 0.1. Note that the iterations of the OFO are very cheap and their complexity increases linearly in p.

mation of β * , S * and σ * for our procedure and for the Square-root Lasso are reported in Table 1 along with the standard deviations. For both procedures, the universal choice of tuning parameter λ = 2 log(p) is used (after properly normalizing the columns of X) and a second step consisting in bias correction is applied (cf. [START_REF] Sun | Scaled sparse linear regression[END_REF] and the discussion in Section 4 on bias correction). Here, we did not use any group structure so the penalty is merely proportional to the ℓ 1 -norm of β. One can observe that the ScHeDs is competitive with the Square-root Lasso, especially for performing variable selection. Indeed, in all considered settings the ScHeDs outperforms the Square-root Lasso in estimating S * .

Application to the prediction of the temperature in Paris

For experimental validation on a real-world dataset, we have used data on the daily temperature in It was produced by the National Climatic Data Center (NCDC), (Asheville, NC, USA) and is publicly available at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. Performing good predictions for these data is a challenging task since, as shown in Fig. 2, the observations look like white noise. The dataset contains the daily average temperatures, as well as some other measurements like wind speed, maximal and minimal temperatures, etc.

We selected as response variable y t the difference of temperatures between two successive days. The goal was to predict the temperature of the next daybased on historical data. We selected as covariates x t the time t, the increments of temperature over past 7 days, the maximal intraday variation of the temperature over past 7 days and the wind speed of the day before. Including the intercept, this resulted in a 17 dimensional vector x t . Based on it, we created 136 groups of functions f, each group containing 16 elements. Thus, the dimension of φ * was 136×16 = 2176. We chose q = 11 with functions r ℓ depending on time t only. The precise definitions of f j and r ℓ are presented below.

To specify X, we need to define the functions f j generating its columns. We denote by u t the subvector of x t obtained by removing the time t. Thus, u t is a 16dimensional vector. Using this vector u t ∈ R 16 , we define all the second-order monomes:

χ i,i ′ (u t ) = u (i) t u (i ′ ) t
with i ≤ i ′ . We look for fitting the unknown function f * by a second-order polynomial in u t with coefficients varying in time. To this end, we set ψ 1 (t) = 1, ψ ℓ (t) = t 1/(ℓ-1) , for ℓ = 2, 3, 4 and ψ ℓ (t) = cos(2π(ℓ -4)t/365); ℓ = 5, . . . , 10; ψ ℓ (t) = sin(2π(ℓ -10)t/365); ℓ = 11, . . . , 16.

Once these functions χ i,i ′ and ψ ℓ defined, we denote by f j the functions of the form ψ ℓ (t)χ i,i ′ (u t ). In other terms, we compute the tensor product of these two sets of functions, which leads to a set of functions {f j } of cardinality 16 × 16 × 17/2 = 2176. These functions are split into 136 groups of 16 functions, each group defined by

G i,i ′ = {ψ ℓ (t) × χ i,i ′ (u t ) : ℓ = 1, . . . , 16}.
We defined R as a T × 11 matrix, each of its eleven columns was obtained by applying some function r ℓ to the covariate x t for t = 1, . . . , T . The functions r ℓ were chosen as follows:

r 1 (x t ) = 1, r 2 (x t ) = t, r 3 (x t ) = 1/(t + 2 × 365)
1 2 and r ℓ (x t ) = 1 + cos(2π(ℓ -3)t/365); ℓ = 4, . . . , 7; r ℓ (x t ) = 1 + cos(2π(ℓ -7)t/365); ℓ = 8, . . . , 11.

Note that these definitions of X and R are somewhat arbitrary. Presumably, better results in terms of prediction would be achieved by combining this purely statistical approach with some expert advice.

We used the temperatures from 2003 to 2007 for training (2172 values) and those of 2008 (366 values) for testing. Applying our procedure allowed us to reduce the dimensionality of φ from 2176 to 26. The result of the prediction for the increments of temperatures in 2008 is depicted in Fig. 2. The most important point is that in 62% of the cases the sign of the increments is predicted correctly. It is also interesting to look at the estimated variance: it suggests that the oscillation of the temperature during the period between May and July is significantly higher than in March, September and October. Interestingly, when we apply a Kolmogorov-Smirnov test to the residuals y t R t,: α -X t,: φ for t belonging to the testing set, the null hypothesis of Gaussianity is not rejected and the p value is 0.72.

Conclusion and outlook

We have introduced a new procedure, the ScHeDs, that allows us to simultaneously estimate the conditional mean and the conditional variance functions in the model of regression with heteroscedastic noise. The ScHeDs relies on minimizing a group-sparsity promoting norm under some constraints corresponding to suitably relaxed first-order conditions for maximum penalized likelihood estimation. We have proposed several implementations of the ScHeDs based on various algorithms of second-order cone programming. We have tested our procedure on synthetic and real world datasets and have observed that it is competitive with the state-of-the-art algorithms, while being applicable in a much more general framework. Theoretical guarantees for this procedure have also been proved.

In a future work, we intend to generalize this approach to the case where the inverse of the conditional standard deviation belongs to a reproducing kernel Hilbert space, or admits a sparse linear representation in a large, possibly over-complete, dictionary. The extension of our methodology to the case of nonoverlapping groups [START_REF] Obozinski | Support union recovery in high-dimensional multivariate regression[END_REF][START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF] and the substitution of the ℓ 1 /ℓ 2 -norm penalty by more general ℓ 1 /ℓ q -norms in our framework are challenging avenues for future research.

Set ∆ = φφ. On an event of probability at least 1 -2ε, ( φ, α) is a feasible solution of the optimization problem of the ScHeDs whereas ( φ, α) is an optimal solution, therefore

K k=1 λ k X :,G k ∆ G k 2 ≤ K k=1 λ k X :,G k ∆ G k 2 + K k=1 λ k X :,G k φ G k 2 - K k=1 λ k X :,G k φ G k 2 = k∈K * λ k X :,G k ∆ G k 2 + k∈K * λ k ( X :,G k φ G k 2 -X :,G k φ G k 2 ) ≤ 2 k∈K * λ k X :,G k ∆ G k 2 . ( 25 
)
This readily implies that

k∈K * c λ k X :,G k ∆ G k 2 ≤ k∈K * λ k X :,G k ∆ G k 2 .
Applying GRE(κ, s) assumption and the Cauchy-Schwarz inequality, we get

K k=1 λ k X :,G k ∆ G k 2 ≤ 2 k∈K * λ 2 k 1/2 k∈K * X :,G k ∆ G k 2 2 1/2 ≤ 2 κ k∈K * λ 2 k 1/2 X∆ 2 . ( 26 
)
It is clear that

X∆ 2 2 = ∆ ⊤ X ⊤ (X φ -X φ) = ∆ ⊤ X ⊤ (X φ -diag(R α)Y ) + ∆ ⊤ X ⊤ (diag(R α)Y -X φ) + ∆ ⊤ X ⊤ diag(Y )R( α -α).
In addition, using the relation

X∆ = K k=1 X :,G k ∆ G k = K k=1 Π G k X :,G k ∆ G k
and the fact that both ( φ, α) and ( φ, α) satisfy constraint (7), we have

X∆ 2 2 ≤ K k=1 ∆ ⊤ G k X ⊤ :,G k Π G k (X φ -diag(R α)Y ) + K k=1 ∆ ⊤ G k X ⊤ :,G k Π G k (diag(R α)Y -X φ) + ∆ ⊤ X ⊤ diag(Y )R( α -α) ≤ 2 K k=1 λ k X :,G k ∆ G k 2 + X∆ 2 . D Y R( α -α) 2 . (27) 
Therefore, from (26),

|X∆| 2 ≤ 4 κ k∈K * λ 2 k 1/2 + |D Y R( α -α)
| 2 and we easily get

|X( φ -φ * )| 2 ≤ |X( φ -φ * )| 2 + |X∆| 2 ≤ (z -1)|Xφ * | 2 + 4 κ k∈K * λ 2 k 1/2 + |D Y R( α -α)| 2 .
where we have used the following notation: for any vector v, we denote by D v the diagonal matrix diag(v).

To complete the proof, it suffices to replace z and λ k by their expressions and to use the inequality

|D Y R( α -α)| 2 ≤ |D Y R( α -α * )| 2 + (z -1)|D Y Rα * | 2 ≤ |D Y R( α -α * )| 2 + (z -1)|Xφ * + ξ| 2 ≤ |D Y R( α -α * )| 2 + (z -1) |Xφ * | 2 + |ξ| 2 .

Proof of Lemma 8.1

For all ε ∈ (0, 1), consider the random event

B ε = q ℓ=1 B 2 ε,ℓ ∩ B 1 ε,ℓ , where B 2 ε,ℓ = t∈T r tℓ R t,: α * X t,: φ * ξ t ≥ -2C 2 T log(2q/ε) , B 1 ε,ℓ = t∈T r tℓ R t,: α * (ξ 2 t -1) ≥ -2 C 1 T log(2q/ε) .
Using standard tail estimates for the Gaussian and the χ 2 distributions, in conjunction with the union bound, one easily checks that P (B ε ) ≥ 1-ε. In what follows, we show that on the event B ε , ( φ, α, v) satisfies constraints ( 7)-( 9).

Constraints (9) are satisfied (with equality) by definition of v. To check that ( 8) is satisfied as well, we should verify that for all ℓ = 1, . . . , q,

1 z 2 t∈T r tℓ R t,: α * ≤ t∈T r tℓ R t,: α * X t,: φ * ξ t + t∈T r tℓ R t,: α * ξ 2 t .
On the event B ε , the right-hand side of the last inequality can be lower bounded as follows:

t∈T

r tℓ R t,: α * X t,: φ * ξ t + t∈T r tℓ R t,: α * ξ 2 t ≥ -( C 2 + 2C 1 ) 2T log(2q/ε) + t∈T r tℓ R t,: α * . Thus, on B ε if for all ℓ = 1, . . . , q z 2 -1 z 2 t∈T r tℓ R t,: α * ≥ ( C 2 + 2C 1 ) 2T log(2q/ε) (28)
then constraint ( 9) is fulfilled by ( φ, α, v). Inequality ( 28) is valid since for any z ≥ 1

z 2 -1 z 2 t∈T r tℓ R t,: α * = z -1 z 1 + 1 z t∈T r tℓ R t,: α * ≥ z -1 z T C 3 and z-1 z T C 3 ≥ ( √ C 2 + √ 2C 1 ) 2T log(2q/ε) when z = 1 + 2C 4 2 log(2q/ε) T ≤ 2.
On the other hand, since z ≤ 2, a sufficient condition implying that the pair ( φ, α) satisfies ( 7) is

2 Π G k ξ 2 ≤ λ k , ∀k ∈ {1, . . . , K}. (29) 
Recall that r k denotes the rank of Π G k . Let R ε be the random event of probability at least 1ε defined as follows

R ε = K k=1 R ε,k = K k=1 Π G k ξ| 2 2 ≤ r k + 2 r k log(K/ε) + 2 log(K/ε) .
To prove that P (R ε ) ≥ 1ε, we use the fact that Π G k ξ| 2 2 is drawn from the χ 2 r k distribution. Using well-known tail bounds for the χ 2 distribution, we get P (R c ε,k ) ≤ ε K . Then, we conclude by the union bound. Since we chose 2

(r k + 2 r k log(K/ε) + 2 log(K/ε)) 1/2 = λ k ,
on the event R ε inequality (29) is satisfied by ( φ, α).

Finally, the triplet ( φ, α, v) fulfills constraints ( 7)-( 9) on the event B ε ∩ R ε , which is of a probability at least 1 -2ε.

Proof of Theorem 5.2

We start by noting that, the ScHeDs ( φ, α) satisfies ∀ℓ ∈ {1, . . . , q}, the relation t∈T

r tℓ R t,: α = t∈T y t R t,: α -X t,: φ y t r tℓ . (30) 
First, for the ScHeDs, all the inequalities in (9) are equalities. Indeed, v t 's are only involved in ( 8) and ( 9) and if we decrease one v t to achieve an equality in (9), the left-hand side of (8) will decrease as well and the constraint will stay inviolated. Thus, setting v t = 1/R 

To be convinced that Eq. ( 30) is true, let us consider for simplicity the one dimensional case q = 1. If inequality (31) was strict, for some w ∈ (0, 1), the pair (w φ, w α) would also satisfy all the constraints of the ScHeDs and the corresponding penalty term would be smaller than that of ( φ, α). This is impossible since φ is an optimal solution. Thus we get t∈T

R ⊤ t,: (R t,: α) -1 = t∈T R ⊤ t,: y t y t R t,: α -X t,: φ = R ⊤ D Y D Y R α -X φ . ( 32 
)
Using the identity (R t,: α)

-1 = (R t,: α * ) -1 + (R t,: αR t,: α * ) -1 R t,: (α * -α), we get t∈T 1 (R t,: α)(R t,: α * ) R ⊤ t,: R t,: (α * -α) = - t∈T 1 R t,: α * R ⊤ t,: + R ⊤ D Y D Y R α -X φ = -R ⊤ D -1 Rα * 1 T + R ⊤ D 2 Y R( α -α * ) -R ⊤ D Y X( φ -φ * ) + R ⊤ D Y D Y Rα * -Xφ * . ( 33 
)
In view of the identities

D Y Rα * -Xφ * = ξ and D Y = D -1 Rα * (D Xφ * + D ξ ), Eq. (33) yields 4 R ⊤ D 2 Y + D -1 Rα * D -1 R α R(α * -α) = R ⊤ D -1 Rα * (ξ 2 -1 T ) -R ⊤ D Y X( φ -φ * ) + R ⊤ D -1 Rα * D Xφ * ξ. (34) 
As a consequence, denoting by M the Moore-Penrose pseudo-inverse of the matrix

R ⊤ D 2 Y + D -1 Rα * D -1 R α R, R(α * -α) = RMR ⊤ D -1 Rα * (ξ 2 -1 T ) -D Y X( φ -φ * ) + D -1 Rα * D Xφ * ξ . (35) 
Multiplying both sides by D Y and taking the Euclidean norm, we get

D Y R(α * -α) 2 ≤ D Y RMR ⊤ D -1 Rα * (ξ 2 -1 T ) + D -1 Rα * D Xφ * ξ 2 + D Y RMR ⊤ D Y X(φ * -φ) 2 . (36) 
At this stage of the proof, the conceptual part is finished and we enter into the technical part. At a heuristic level, the first norm in the right-hand side of ( 36) is bounded in probability while the second norm is bounded from above by (1c) X(φ *φ) 2 for some constant c ∈ (0, 1). Let us first state these results formally, by postponing their proof to the next subsection, and to finalize the proof of the theorem.

Lemma 8.2. Let q and T be two integers such that 1 ≤ q ≤ T and let ε ∈ (0, 1/3) be some constant. Assume that for some constant D 1 ≥ 1 the inequality max t∈T Rt,: α Rt,:α * ≤ D 1 holds true. Then, on an event of probability at least 1 -3ε, the following inequalities are true5 :

|||M 1/2 R ⊤ D Y ||| ≤ 1, ( 37 
)
M 1/2 R ⊤ D -1 Rα * (ξ 2 -1 T ) + D -1 Rα * D Xφ * ξ 2 ≤ 10 q D 1 log(2T /ε) log(2q/ε), ( 38 
)
|||D Y RMR ⊤ D Y ||| ≤ 1 - 1 2 D 1 |Xφ * | 2 ∞ + |ξ| 2 ∞ + 1 ≤ 1 - 1 D 1 2|Xφ * | 2 ∞ + 5 log(2T /ε) . ( 39 
)
In view of these bounds, we get that on an event of probability at least 1 -3ε, D Y R(α *α) 2 ≤ 10 q D 1 log(2T /ε) log(2q/ε) + 1 -1

D 1 2|Xφ * | 2 ∞ + 5 log(2T /ε) X(φ * -φ) 2 . ( 40 
)
Combining this inequality with Theorem 5.1 and using the inequality 2|Xφ * | 2 + |ξ| 2 ≤ √ T 2|Xφ * | ∞ + |ξ| ∞ , we get that the following inequalities are satisfied with probability ≥ 1 -5ε: Combining this with (42) yields (17).

X( φ -φ * ) 2 ≤ 2C 4 D 1 2|Xφ * | 2 ∞ +
To prove (18), we use once again (35) to infer that

R(α * -α) 2 ≤ RMR ⊤ D -1 Rα * (ξ 2 -1 T ) + D -1 Rα * D Xφ * ξ 2 + RMR ⊤ D Y X(φ * -φ) 2 ≤ |||RM 1/2 ||| M 1/2 R ⊤ D -1 Rα * (ξ 2 -1 T ) + D -1 Rα * D Xφ * ξ 2 + |||M 1/2 R ⊤ D Y ||| X(φ * -φ) 2 .
In view of Lemma 8.2, this leads to R(α *α) 2 ≤ |||RM 1/2 ||| 10 q D 1 log(2T /ε) log(2q/ε) + X(φ *φ) 

In view of the inequality6 

(RM 1/2 )(RM 1/2 ) ⊤ = R R ⊤ (D 2 Y + D -1 Rα * D -1 R α )R + R ⊤ R R ⊤ (D -1 Rα * D -1 R α )R + R ⊤ (max t∈T [R t,: α * • R t,: α])R R ⊤ R + R ⊤ we get |||RM 1/2 ||| 2 = |||(RM 1/2 )(RM 1/2 ) ⊤ ||| ≤ D 1 Rα * 2 ∞ • |||R R ⊤ R + R ⊤ ||| ≤ D 1 Rα * 2
∞ , where the last inequality follows from the fact that R R ⊤ R + R ⊤ is an orthogonal projector.

To conclude, it suffices to remark that P(|ξ| ∞ ≤ 2 log(2T /ε)) ≥ 1ε. This implies that

D Y RMR ⊤ D -1 Rα * (D 2 ξ -I T )1 T + D -1 Rα * D Xφ * ξ 2
≤ 2 D 1 log(2T /ε)( √ q + 2 log(q/ε)) + q D 1 4 log(2q/ε) ≤ 4 2q D 1 log(2T /ε) log(q/ε) + 4 q D 1 log(2q/ε) ≤ 10 q D 1 log(2T /ε) log(2q/ε).

This completes the proof of the first claim of the lemma.

Let us now switch to a proof of (39). It is clear that

|||D Y RMR ⊤ D Y ||| = |||M 1/2 R ⊤ D Y ||| 2 ≤ |||M 1/2 R ⊤ (D 2 Y + D -1 R α D -1 Rα * ) 1/2 ||| 2 |||(D 2 Y + D -1 R α D -1 Rα * ) -1/2 D Y ||| 2 ≤ |||(D 2 Y + D -1 R α D -1 Rα * ) -1/2 D Y ||| 2 = max t∈T y 2 t y 2 t + (R t,: α * • R t,: α) -1 . ( 50 
)
Using the fact that R t,: α ≤ D 1 R t,: α * for every t, we obtain

|||D Y RMR ⊤ D Y ||| = max t∈T y 2 t (R t,: α * ) 2 y 2 t (R t,: α * ) 2 + D -1 1 = 1 -min t∈T 1 D 1 y 2 t (R t,: α * ) 2 + 1 = 1 -min t∈T 1 D 1 (X t,: φ * + ξ t ) 2 + 1 . ( 51 
)
To complete the proof of the lemma, it suffices to remark that (X t,: φ * + ξ t ) 2 ≤ 2(X t,: φ * ) 2 + 2ξ 2 t ≤ 2|Xφ * | 2 ∞ + 2|ξ| 2 ∞ and to apply the well-known bound on the tails of the Gaussian distribution.
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 1 Figure 1. Comparing implementations of the ScHeDs: interior point (IP) vs. optimal first-order (OFO) method. We used the experiment described in Section 6.2 with T = 200, S * = 3, σ = 0.5. Top: square-root of the MSE on the nonzero coefficients of β * . Middle: square-root of the MSE on the zero coefficients of β * . Bottom: running times. p 200 400 600 800 1000 IP (sec/iter) 0.14 0.70 2.15 4.68 9.46 OFO (100*sec/iter) 0.91 1.07 1.33 1.64 1.91

Figure 2 .

 2 Figure 2. Top row: increments of temperatures (in Fahrenheit) from one day to the next observed in Paris in 2008. Middle row: predictions provided by our ScHeDs procedure; we observe that the sign is often predicted correctly. Bottom row: estimated noise level. Paris from 2003 to 2008.It was produced by the National Climatic Data Center (NCDC), (Asheville, NC, USA) and is publicly available at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. Performing good predictions for these data is a challenging task since, as shown in Fig.2, the observations look like white noise. The dataset contains the daily average temperatures, as well as some other measurements like wind speed, maximal and minimal temperatures, etc.

D 1 +

 1 5 log(2T /ε) 2 log(2q/ε)(2|Xφ * | ∞ + |ξ| ∞ ) 2|Xφ * | 2 ∞ + 5 log(2T /ε) + 10 D 1 2|Xφ * | 2 ∞ + 5 log(2T /ε) q D 1 log(2T /ε) log(2q/ε) ≤ 4C 4 D 1 2|Xφ * | 2 ∞ + 5log(2T /ε) (2T /ε) 2S * + 3K * log(K/ε) 1/2 + 10 D 1 2|Xφ * | 2 ∞ + 5 log(2T /ε) q D 1 log(2T /ε) log(2q/ε). (41)Using the notationD T,ε = D 1 2|Xφ * | 2 ∞ + 5 log(2T /ε) , we obtain X( φφ * ) 2 ≤ 4C 4 D 10D T,ε q D 1 log(2T /ε) log(2q/ε). (42)To further simplify the last term, we use the inequalities:10D T,ε q D 1 log(2T /ε) log(2q/ε) = D T,ε √ 10 5 D 1 log(2T /ε) 2q log(2q/ε)

  least 1 -5ε. Using the bound in (17), we getR(α *α) 2 ≤ |||RM 1/2 ||| 4(C 4 + 2)D 3/2 T,ε 2q log(2q/ε) + 8D T,ε κ 2S * + 3K * log(K/ε) .

  |D k φ G k | 2 with some diagonal matrices D k . In general, this differs from the penalty we use since in our case

	Most	papers	dealing	with	group-sparsity
	(Lounici et al.,	2011;	Liu et al.,	2010;
	Huang and Zhang, 2010) use penalties of the form

k

Table 1 .

 1 p, S * , σ * ) Performance of the (bias corrected) ScHeDs compared with the (bias corrected) Square-root Lasso on a synthetic dataset. The average values and the standard deviations of the quantities | ββ * |2, | S -S * | and 10| σ -σ * | over 500 trials are reported. They represent respectively the accuracy in estimating the regression vector, the number of relevant covariates and the level of noise.

	Ave	StD	Ave	StD	Ave	StD	Ave	StD	Ave	StD	Ave	StD
	(100, 100, 2, 0.5) .06	.03 .00 .00 .29	.21	.08	.05 .19 .42 .31	.23
	(100, 100, 5, 0.5) .11	.06 .00 .00 .29	.31	.12	.05 .16 .41 .30	.24
	(100, 100, 2, 1.0) .13	.07 .02 .14 .53	.40	.16	.11 .19 .44 .56	.42
	(100, 100, 5, 1.0) .28	.24 .08 .32 .76	.78	.25	.13 .19 .44 .66	.57
	(200, 100, 5, 0.5) .08	.03 .00 .00 .20	.16	.09	.03 .20 .46 .22	.16
	(200, 100, 5, 1.0) .15	.05 .01 .09 .40	.30	.17	.07 .20 .44 .42	.31
	(200, 500, 8, 0.5) .10	.03 .00 .04 .23	.16	.11	.03 .17 .40 .24	.17
	(200, 500, 8, 1.0) .21	.13 .02 .17 .50	.58	.22	.08 .19 .43 .46	.38
	(200, 1000, 5, 1.0) .15	.05 .01 .08 .40	.31	.17	.07 .17 .40 .42	.33

  t,: α, we get from (8) R t,: α -X t,: φ y t r tℓ , ∀ℓ ∈ {1, . . . , q}.

	t∈T	r tℓ R t,: α	≤

t∈T y t

This formulation of the problem includes "timedependent" mean and variance, i.e., the case of E[yt|xt] = b * t (xt) and Var[yt|xt] = s * t (xt), since it is sufficient then to consider as explanatory variable [t; x ⊤ t ] ⊤ instead of xt.

This will result in introducing new parameters the tuning of which may increase the difficulty of the problem.

Even if the matrices D k are not diagonal and are chosen exactly as in our case, recent references like[START_REF] Simon | Standardization and the Group Lasso penalty[END_REF] suggest to use λ 2 k ∝ Card(G k ) without theoretical support.

We denote by ξ 2 the vector (ξ 2 t )t∈T .

Here and in the sequel, the spectral norm of a matrix A is denoted by |||A|||.

We use the notation A B and B A for indicating that the matrix A -B is positive semi-definite. For any matrix A, we denote by A + its Moore-Penrose pseudoinverse.

Supplement to the paper: Learning Heteroscedastic Models by Convex

Programming under Group Sparsity 8.1. Proof of Theorem 3.2

The fact that the feasible set is not empty follows from the fact that it contains the minimizers of (6). This immediately follows from the first-order conditions and their relaxations. Indeed, for a minimizer (φ • , α • ) of ( 6), the first-order conditions take the following form: there exists ν • ∈ R T + such that for all k ∈ [K] and ℓ ∈ [q],

and ν 

, otherwise one has to replace it by the condition stating that the null vector belongs to the subdifferential. Since this does not alter the proof, we prefer to proceed as if everything was differentiable.

On the one hand, (φ

,G k being the orthogonal projector onto the range of X :,G k in R T . Taking the norm of both sides in the last equation, we get 7). On the other hand, since the minimum of ( 6) is finite, one easily checks that R t,: α • = 0 and, therefore, ν 8), ( 9). This proves that the set of feasible solutions of the optimization problem defined in the ScHeDs is not empty.

Let us show that one can compute the ScHeDs ( φ, α) by solving an SOCP. More precisely, we show that if

a solution to the following problem of second-order cone programming:

subject to (7) and

then ( φ, α, v) is a solution to the optimization problem stated in Definition 3.1. This claim readily follows from the fact that the constraint v t ; R t,: α; √ 2 2 ≤ v t + R t,: α can be equivalently written as v t (R t,: α) ≥ 1 and v t + R t,: α ≥ 0 for every t. This yields v t ≥ 0 and R t,: α ≥ 1/v t for every t. Furthermore, it is clear that if ( φ, α, u, v) is a solution to the aforementioned optimization problem, then all the inequalities in ( 22) are indeed equalities. This completes the proof.

Proof of Theorem 5.1

To prove Theorem 5.1, we first introduce a feasible pair ( φ, α), in the sense formulated in Lemma 8.1. with some ε > 0 and assume that z ≤ 2.

Then with probability at least 1 -2ε, the triplet ( φ, α, v) = zφ * , zα * , ( 1 zRt,:α * ) t=1,...,T satisfies constraints (7), ( 8) and (9). Moreover, the group-sparsity pattern k : φ G k 1 = 0 of φ coincides with that of φ * , that is with K * .

The proof of this lemma can be found in Section 8.3.

Proof of Lemma 8.2

We start by presenting a proof of (38). We have

We remark that

which implies that

where

Rα * is the orthogonal projection on the linear subspace of R T spanned by the columns of the matrix D -1

Rα * D Xφ * R. By the Cochran theorem, the random variable η 1 = ξ ⊤ Π 1 ξ is distributed according to the χ 2 q distribution. Using similar arguments based on matrix inequalities, one checks that

where

Rα * is the orthogonal projection on the linear subspace of R T spanned by the columns of the matrix D -1 Rα * R. To further simplify (46), one can remark that under the condition R t,: α ≤ D 1 R t,: α * , it holds

These bounds, combined with (45), yield

One can also notice that Π 2 is a projector on a subspace of dimension at most equal to q, therefore one can write Π 2 = q ℓ=1 v ℓ v ⊤ ℓ for some unit vectors v ℓ ∈ R T . This implies that

|v ⊤ ℓ (ξ 2 -1 T )| 2 ≤ q max ℓ=1,...,q t∈T v ℓ,t (ξ 2 t -1)

2

.

Hence, large deviations of η 1 and η 2 can be controlled using standard tail bounds; see, for instance, Laurent and Massart (2000, Lemma 1). This implies that with probability at least 1 -2ε,

√ q + 2 log(q/ε)) + q D 1 4 log(2q/ε).