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Abstract

This paper addresses the theoretical prediction of the set of energy-
minimizing (or stress-free) strains that can be realized by martensitic mi-
crostructure. Polyconvexification and related notions are used to derive some
upper bounds (in the sense of inclusion of sets). Lower bounds are obtained
from lamination techniques. The geometrically linear setting (infinitesimal
strains) is considered in the present Part 2. Three-, four-, and twelve-well
problems are considered. In particular, the structure of the set of energy-
minimizing strains in cubic to monoclinic transformations is investigated in
detail. That investigation is notably supported by three-dimensional vizual-
isations obtained by considering four-well restrictions.

Keywords: Energy minimization, Lamination, Microstructures, Phase
transformation, Shape-memory alloys

1. Introduction

The peculiar properties of shape memory alloys are the macroscopic result
of a diffusion-less solid/solid phase transformation that occurs at a micro-
scopic level. Adopting the framework of non-linear elasticity, the micro-
scopic behavior is classically described by a multi-well free energy Ψ. The
macroscopic (or effective) free energy is then obtained as the relaxation (or
quasiconvexification) of Ψ. Because of the non-convex structure of Ψ, the
relaxation procedure is notoriously difficult to perform. Exact solutions are
only known in few special cases. This paper focuses on the set of strains that
minimize the macroscopic energy. Those so-called recoverable strains can be
interpreted as stress-free macroscopic strains. As explained by Bhattacharya



and Kohn (1997), they play an important role in the properties of shape
memory alloys.

The problem can be formulated either in the geometrically non-linear
setting (finite strains) or in the geometrically linear setting (infinitesimal
strains). The present Part 2 is devoted to the geometrically linear theory,
whereas the geometrically non-linear theory has been considered in Part 1
(Peigney, 2013). Although the geometrically non-linear theory is more accu-
rate, the problem is significantly more tractable in the geometrically linear
theory. Consider for instance the case of n geometrically compatible phases.
In the geometrically linear setting, it can be proved that the set of energy-
minimizing macroscopic strains is equal to the convex hull of the strains
that minimize Ψ (Bhattacharya, 1993). In contrast, in the geometrically
non-linear setting, the problem is much more complex and has been solved
exactly only in the case n = 2 (Ball and James, 1992). It has to be men-
tioned that, even in the geometrically linear setting, substantial difficulties
remain where the phases are not all pairwise compatible: analytical expres-
sions have been only obtained in the cases of two and three phases (Kohn,
1991; Smyshlyaev and Willis, 1998).

The outline of the present Part 2 is as follows. Using distinctive prop-
erties of the relaxation, we first derive a general upper bound (denoted by
PK) on the set of strains that minimize the macroscopic energy (Section 2).
This is accomplished by adapting a method used in Part 1 to the geomet-
rically linear theory. That upper bound is compared with existing bounds
from the literature. In particular, for the three-well problem (Section 3),
the bound obtained is shown to coincide with the results of Smyshlyaev and
Willis (1998). Four-well problems are considered in Section 4. The upper
bound PK is compared with lower bounds constructed by a sequential lam-
ination algorithm. Three-dimensional visualizations of the various bounding
sets are given for some examples related to the cubic to monoclinic transfor-
mations. Those examples serve two purposes. First, they illustrate the gap
between the lower and upper bounds considered, giving an appreciation of
those bounds. Second, they provide a first insight in the full study of the
twelve-well problems corresponding to cubic to monoclinic transformations,
which is the focus of Section 5. Taking the 12 variants into account adds
some complications in the derivation of meaningful bounds. In particular,
the sequential lamination algorithm introduced in Section 4 cannot be used
directly as it involves prohibitive calculation costs. An alternative strategy
is detailed for constructing relevant lower bounds in that case. The structure
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of the bounds obtained is investigated in detail, distinguishing the cases of
monoclinic-I and monoclinic-II martensite.

2. Upper bound on QK in the geometrically linear theory

Let Ψ denote the free energy density of the material at the microscopic
level. To account for the phase transformation between austenite and marten-
site, Ψ is generally modeled as a function with multiple wells. We denote by
K the set of strains that minimize Ψ. In the geometrically linear setting, K
is a discrete set, i.e.

K = {e1, · · · , en}. (2.1)

At a temperature below the transformation temperature, the strains e1, · · · , en
in (2.1) are the transformation strains of the martensitic variants.

Consider a crystal occupying a domain Ω. The effective free energy of
the material is the relaxation (or quasiconvexification) of Ψ, defined as

QΨ(ē) = inf
e∈A(ē)

1

|Ω|

∫
Ω

Ψ(e) dx (2.2)

where

A(ē) = {e| ∃u(x) ∈ W 1,∞(Ω,R3) such that
e = (∇u+∇Tu)/2 in Ω;u(x) = ē.x on ∂Ω}. (2.3)

The multiple-well structure of Ψ entails that the infimum in (2.2) is generally
not attained, which makes the calculation of QΨ a far from trivial matter.
Also note that QΨ is independent on the domain Ω considered (see e.g.
Dacorogna (2008) and references therein).

In this paper we are interested in estimating the set of effective strains
that minimizeQΨ. That set, denoted byQK, is referred to as the quasiconvex
hull of K. The first step in our study is to derive a general upper bound on
QK. This is accomplished by using a distinctive property of QK, namely
that any strain ē in QK can be written as

ē =

∫
R3×3
s

edν(e) (2.4)

for some Young measure ν supported on K (Ball and James, 1992; Müller,
1999). A notable consequence of that property is that QK only depends on Ψ
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through its set K of minimizers. Young measures notably have the following
properties (Kinderlehrer and Pedregal, 1991):

ν ≥ 0;

∫
R3×3
s

dν(e) = 1; (2.5)

h(

∫
R3×3
s

edν(e)) ≤
∫
R3×3
s

h(e)dν(e) for any quasiconvex function h. (2.6)

In the present case, K has the discrete structure (2.1). The measure ν in
(2.4) is supported on K and therefore can be written as

ν =
n∑
r=1

θrδer (2.7)

where δer is the Dirac mass at er. The property (2.5) implies that θ =
(θ1, · · · , θn) belongs to the set Tn defined as

Tn = {θ = (θ1, · · · , θn)|θr ≥ 0;
n∑
r=1

θr = 1}.

Substituting (2.7) in (2.4)-(2.6) shows that any strain ē in QK can be written
as

ē =
n∑
r=1

θrer

for some θ ∈ Tn verifying

h(ē) ≤
n∑
r=1

θrh(er) for any quasiconvex function h. (2.8)

Recall that a function h is quasiconvex in the linearized strain e if

|Ω|h(ē) ≤
∫

Ω

h(e) dx for all ē and e ∈ A(ē). (2.9)

Let e∗ denote the adjugate of e, defined by the relations

e∗ii = ejjekk − e2
jk, e

∗
jk = ejieki − ejkeii,

for any {i, j, k} permutation of {1, 2, 3}. We use the notation M ≥ 0 to
indicate that a second-order symmetric tensor M is positive, i.e. satisfies
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u.M .u ≥ 0 for all vectors u. It can be verified that the function e 7→ −a : e∗

is quasiconvex provided that a ≥ 0 (see e.g. Peigney (2008)). Using such
functions in (2.8) gives

0 ≤ a : (ē∗ −
n∑
r=1

θre
∗
r) for any a ≥ 0,

and therefore that

ē∗ −
n∑
r=1

θre
∗
r ≥ 0.

That relation can be rewritten in a more convenient form. Using the equality∑
r θr = 1 and the fact that the function e 7→ e∗ is quadratic, we have

ē∗ −
∑
r

θre
∗
r = (

∑
r

θrer)
∗ −

∑
r

θre
∗
r = −1

2

∑
r,s

θrθs(er − es)∗.

The conclusion is that any ē in QK can be written as ē =
∑n

r=1 θrer for some
θ ∈ Tn verifying −

∑
r,s θrθs(er − es)∗ ≥ 0. The set QK is thus included in

the set PK defined as

PK = {
n∑
r=1

θrer|θ ∈ Tn;−
n∑

r,s=1

θrθs(er − es)∗ ≥ 0}. (2.10)

The notation PK is motivated by the fact that the set in (2.10) is related
to the notion of polyconvexity used in the geometrically non-linear theory
(see Part 1). From (2.10) it can be seen that PK is included in the convex
hull CK of {e1, · · · , en}, given by CK = {

∑n
r=1 θrer|θ ∈ Tn}. Moreover,

PK is equal to CK if −(er − es)∗ is positive for all {r, s}. Let us interpret
this last condition: for a fixed pair {r, s}, the symmetric tensor er − es
can be decomposed as er − es =

∑3
i=1 εiui ⊗ ui where (ε1, ε2, ε3) are the

eigenvalues of er−es and (u1,u2,u3) is an orthonormal basis. The adjugate
tensor (er − es)∗ is then equal to ε2ε3u1 ⊗ u1 + ε1ε3u2 ⊗ u2 + ε1ε2u3 ⊗ u3.
Consequently, −(er − es)∗ is positive if and only if εiεj ≤ 0 for all i 6= j, i.e.
if and only if one eigenvalue is equal to 0 and the two others are of opposite
sign. This last condition can be shown (Bhattacharya, 1993) to be equivalent
to the fact that the strains er and es are compatible, i.e. there exists some
vectors (u,v) such that

er − es = u⊗ v + v ⊗ u. (2.11)

Hence PK is equal to CK if the strains {e1, · · · , en} are pairwise compatible.
In that case, it is actually known that QK = CK (Bhattacharya, 1993).
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2.1. Relations with existing bounds on the energy

Any lower bound Q−Ψ on the relaxation QΨ automatically generates an
upper bound on QK (in the sense of inclusion of sets). Indeed, if Q−Ψ is such
that Q−Ψ ≤ QΨ, then QK ⊂ {ē|Q−Ψ(ē) ≤ 0}. It is interesting to compare
such an upper bound with the bound PK in (2.10). In the geometrically
linear setting, lower bounds on QΨ have been proposed in the case where

Ψ(e) = min
1≤r≤n+1

Ψr (2.12)

with

Ψr(e) =
1

2
(e− er) : L : (e− er) for r ≤ n,

Ψn+1(e) =
1

2
e : L : e+m.

(2.13)

In those expressions, Ψr and Ψn+1 are the free energy of martensite variant r
and of the austenite, respectively. At a temperature below the transformation
temperature, the minimum energy m of the austenite is strictly positive. The
tensor L is a symmetric positive definite elasticity tensor, assumed to take
the same value for all the phases. In that case, as detailed by Govindjee et al.
(2003), the relaxation QΨ has the structure

QΨ(ē) = inf
θ∈Tn+1

n+1∑
r=1

θrΨr(ē) + h(θ) (2.14)

where h(θ) can be interpreted as a mixing energy between the phases. Solving
the relaxation problem is equivalent to determining the function h. Govindjee
et al. (2003) considered the lower bound h0 on h provided by the following
formula:

h0(θ) =
1

2

n∑
r,s=1

θrθser : L : es −
1

2

n∑
r=1

θrer : L : er. (2.15)

The resulting lower bound on QΨ is equal to the convexification of Ψ, as
defined by

CΨ(ē) = inf
θ∈Tn+1

CΨ(ē,θ) (2.16)

with

CΨ(ē,θ) =
1

2
(ē−

n∑
r=1

θrer) : L : (ē−
n∑
r=1

θrer) +mθn+1.
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The upper bound on QK that is deduced from (2.16) is the convex hull CK.
If the strains (e1, · · · , en) are not all pairwise compatible, the sets QK and
PK may be strictly smaller than CK (see Section 4 for some examples). A
lower bound h1 that improves on (2.15) has been proposed by Peigney (2009).
The corresponding lower bound on QΨ is expressed as

QΨ(ē) ≥ inf
θ∈Tn+1

CΨ(ē,θ) + h1(θ)

where

h1(θ) = sup
a≥0|L−K(a)≥0

1

2

n∑
r=1

θrer : M (a) : er −
1

2

n∑
r,s=1

θrθser : M(a) : es.

(2.17)
In that equation,K(a) is the symmetric fourth-order tensor such that (1/2)ē :
K(a) : ē = −a : ē∗ for all ē, and M (a) is defined by

M (a) = −K(a)−K(a) : (L−K(a))−1 : K(a). (2.18)

The corresponding bound on QK is given by

{
n∑
r=1

θrer|θ ∈ Tn+1; θn+1 = 0;h1(θ) ≤ 0}. (2.19)

That bound is now compared with the bound PK in (2.10). Consider a given
θ ∈ Tn+1 such that h1(θ) ≤ 0 and θn+1 = 0. We have

0 ≥
n∑

r,s=1

θrθs(er − es) : M (a) : (er − es) (2.20)

for any a ≥ 0 verifying L −K(a) ≥ 0. Let a0 ≥ 0 be fixed. For t positive
sufficiently small, the tensor L −K(ta0) is positive. Moreover, at the first
order in t, the tensor M (ta0) is equal to −tK(a0). We thus obtain from
(2.20) that

0 ≥
n∑

r,s=1

−θrθs(er − es) : K(a0) : (er − es),

i.e. that 0 ≤ −a0 : (
∑

r,s θrθs(er − es)∗). This proves that the tensor
−
∑n

r,s=1 θrθs(er−es)∗ is positive. Consequently, any strain in the set (2.19)

7



is in the PK defined by (2.10). Conversely, consider a given θ ∈ Tn such that
0 ≤ −

∑n
r,s=1 θrθs(er − es)∗. Setting θn+1 = 0, we have from the definition

(2.18) of M (a):

4h(θ) =
n+1∑
r,s=1

θrθs(er − es) : M (a) : (er − es)

= a : (
n∑

r,s=1

θrθs(er − es)∗)−
n∑

r,s=1

τ rs : (L−K(a))−1 : τ rs

(2.21)

where τ rs = K(a) : (er − es). For any a ≥ 0 such that L −K(a) ≥ 0,
the two terms on the right-hand side of (2.21) are negative. Therefore, any
strain in PK is in the set (2.19). The conclusion is that the bound PK in
(2.10) coincides with the set deduced from the energy bound (2.17). Note
however that the latter only applies when the microscopic energy is piecewise
quadratic of the form (2.12), whereas the bound PK does not rely on that
assumption.

3. The tree-well problem

The quasiconvexification of the free energy Ψ in (2.12) has been thor-
oughly studied by Smyshlyaev and Willis (1998) in the case n = 3. Using a
Hashin–Shtrickman type variational formulation and considering known re-
strictions on H-measures, these authors derived a lower bound QSWΨ that
improves on the convexification of Ψ, and obtained a sufficient condition for
that lower bound QSWΨ to coincide with the exact value of QΨ. Here we
consider an example given by Smyshlyaev and Willis (1998), for which the
calculations can be done in closed form: the elasticity tensor L in (2.12) is
taken as isotropic (i.e. Lijpq = λδijδpq + µ(δipδjq + δiqδjp)), and the strains
(e1, e2, e3) in (2.12) are taken as

e1 = diag(λ1, λ2, λ3) , e2 = diag(µ1, µ2, µ3) , e3 = 0. (3.1)

The eigenvalues λi and µi can always be represented in the form

λj = Rj cos
1

2
χj , µj = −Rj sin

1

2
χj, (3.2)

for some scalars Rj and χj. To alleviate the notations, we set:

si = sin
1

2
χi , ci = cos

1

2
χi , s(i+j) = sin

1

2
(χi+χj) , s(i−j) = sin

1

2
(χi−χj).

(3.3)
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We assume that the following condition, introduced by Smyshlyaev and Willis
(1998), is satisfied for all permutation {i, j, k} of {1, 2, 3}:

RjRks(j − i)s(k − i) < 0. (3.4)

The bound QSWΨ obtained by Smyshlyaev and Willis (1998) takes the fol-
lowing expression:

QSWΨ(ē) = inf
(θ1,θ2)∈T ′2

{1

2
(ē− θ1e1 − θ2e2) : L : (ē− θ1e1 − θ2e2) + Î(θ1, θ2)}

(3.5)
with

T ′2 = {(θ1, θ2)|0 ≤ θ1; 0 ≤ θ2; θ1 + θ2 ≤ 1}. (3.6)

The function Î in (3.5) is of the form

Î(θ1, θ2) = inf
(kr,φr)

3∑
r=1

F (φr) (3.7)

where the infimum is taken over values (kr, φr) such that kr ≥ 0 and(
θ1(1− θ1) −θ1θ2

−θ1θ2 θ2(1− θ2)

)
=

3∑
r=1

kr

(
sin2 1

2
φr sin 1

2
φr cos 1

2
φr

sin 1
2
φr cos 1

2
φr cos2 1

2
φr

)
.

(3.8)
The exact expression of the function F in (3.7) can be found in Smyshlyaev
and Willis (1998)(eqn(7.16)). For our purpose, it is sufficient to mention
that F is a positive function. Let QSWK = {ē|QSWΨ(ē) ≤ 0} be the upper
bound on QK deduced from QSWΨ. Since L and F are positive, QSWΨ(ē)
is negative if and only if ē = θ1e1 + θ2e2 for some (θ1, θ2) ∈ T ′2 verifying
Î(θ1, θ2) = 0. When the condition (3.4) is satisfied, it has been shown by
Smyshlyaev and Willis (1998) that Î(θ1, θ2) = 0 if and only if the infimum
over φr in (3.7) is attained for φr = χr. Consequently, the upper bound
QSWK consists of tensors θ1e1 + θ2e2 for which (θ1, θ2) ∈ T ′2 and there exists
kr ≥ 0 verifying(

θ1(1− θ1) −θ1θ2

−θ1θ2 θ2(1− θ2)

)
=

3∑
r=1

kr

(
s2
r srcr

srcr c2
r

)
. (3.9)

Let us now compare this result with the bound PK in (2.10). Define the
tensor E(θ1, θ2) by

E(θ1, θ2) = θ1(1− θ1 − θ2)e∗1 + θ2(1− θ1 − θ2)e∗2 + θ1θ2(e1 − e2)∗. (3.10)
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The set PK in (2.10) consists of tensors θ1e1 + θ2e2 such that (θ1, θ2) ∈ T ′2
and −E(θ1, θ2) ≥ 0. Some simple calculations give

e∗1 = diag(R2R3c2c3, R1R3c1c3, R1R2c1c2),
e∗2 = diag(R2R3s2s3, R1R3s1s3, R1R2s1s2),

(e1 − e2)∗ = diag(R2R3(c(2− 3) + s(2 + 3)),
R1R3(c(1− 3) + s(1 + 3)),
R1R2(c(1− 2) + s(1 + 2))).

(3.11)

The tensor −E(θ1, θ2) is diagonal, and positive if and only if −Eii(θ1, θ2) ≥ 0
for i = 1, 2, 3. Using (3.11), we obtain three inequalities of the form

RjRk[θ1θ2s(j + k) + θ1(1− θ1)cjck + θ2(1− θ2)sjsk] ≤ 0 (3.12)

where j 6= k. We now show that the conditions (3.12) are actually equivalent
to the requirements (3.9). Let us introduce the following matrix:

∆ =

 s2
1 s2

2 s2
3

c2
1 c2

2 c2
3

−s1c1 −s2c2 −s3c3

 . (3.13)

The condition (3.9) can be rewritten as

∆

 k1

k2

k3

 =

 θ1(1− θ1)
θ2(1− θ2)
−θ1θ2

 with kr ≥ 0. (3.14)

Calculating the determinant of ∆ gives det ∆ = s(3− 2)s(1− 2)s(1− 3). By
(3.4), the matrix ∆ is thus invertible and the condition (3.9) is equivalent to

∆−1

 θ1(1− θ1)
θ2(1− θ2)
−θ1θ2

 ≥ 0. (3.15)

The inversion of ∆ yields

∆−1 =
1

det ∆

 c2c3s(3− 2) s2s3s(3− 2) −s(3 + 2)s(3− 2)
c1c3s(1− 3) s1s3s(1− 3) −s(1 + 3)s(1− 3)
c1c2s(2− 1) s1s2s(2− 1) −s(1 + 2)s(2− 1)

 . (3.16)

Substituting (3.16) in (3.15), we obtain the three following inequalities

1

s(i− j)s(i− k)
[θ1θ2s(j + k) + θ1(1− θ1)cjck + θ2(1− θ2)sjsk] ≥ 0 (3.17)
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where {i, j, k} is a permutation of {1, 2, 3}. Because of the condition (3.4),
this inequality is equivalent to (3.12). Therefore, the upper bound PK co-
incides with QSWK. It has to be emphasized that the mathematical ar-
guments used by Smyshlyaev and Willis (namely a variational formulation
of a Hashin–Shtrickman type) are of a different nature than those used for
deriving the bound PK.

4. Four-well problems

In this section, K is assumed to be of the form K = {e1, e2, e3, e4}.
The upper bound PK in (2.10) is compared with lower bounds resulting
from sequential lamination techniques (Kohn, 1991). The construction of
such lower bounds relies on the fact that if two given strains e and e′ are
compatible in the sense of (2.11), then any strain in the line segment [e, e′]
is realized by a simple laminate. As mentioned earlier, the compatibility
condition can be reformulated as λ2 = 0, where λ1 ≤ λ2 ≤ λ3 are the
eigenvalues of e − e′. That condition can easily be proved to be equivalent
to

det(e− e′) = 0, (4.1)

(tr(e− e′))2 − (e− e′) : (e− e′) ≤ 0. (4.2)

Rank-r laminates can be constructed by using that argument in an it-
erative fashion. The set of strains realized by such laminates forms a lower
bound on QK, denoted by RrK. We now detail a formal algorithm to con-
struct RrK. That algorithm consists in determining a representation of RrK
in the form

RrK =
⋃
i∈Ir

[air, b
i
r] (4.3)

where air and bir are strains in CK. Setting R0K equal to K, the set
Rr+1K is constructed from RrK by going through each pair of line segments
{[air, bir], [ajr, bjr]} in (4.3) and looking for strains e ∈ [air, b

i
r] and e′ ∈ [ajr, b

j
r]

that are compatible. Writing e and e′ as

e = xair + (1− x)bir , e
′ = x′ajr + (1− x′)bjr,

we need to solve the equation

0 = det(e− e′) = det(x′(bjr − ajr)− x(bir − air) + bir − bjr). (4.4)
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That equation is a third-degree polynomial in (x, x′). For any root (x, x′)
in [0, 1] × [0, 1] verifying (4.2), the strains in the line segment [e, e′] are
realized by rank-(r + 1) laminates of strains in K. Taking the union of all
such line segments gives the representation of Rr+1K in the form (4.3). That
algorithm makes it clear that the dimension of the manifold Rr+1K (denoted
by dim Rr+1K) is bounded from above by 1 + dim RrK. It follows that

dim RrK ≤ r. (4.5)

For r > 1, that algorithm may be difficult to execute by hand, but it can
easily be implemented numerically. In that regard, a dramatic escalation in
needed computational resources is observed as r increases. Computational
time typically varies as M r where M is a constant (depending on the size of
K). As a notable consequence, it proved difficult to get beyond r = 3 in the
calculations. Also note that the above construction of lamination bounds is
not restricted to four-well problems.

The different sets introduced so far satisfy the chain of inclusion

K = R0K ⊂ R1K ⊂ · · · ⊂ RrK ⊂ QK ⊂ PK ⊂ CK ⊂ vect(K)

where vect(K) is the vectorial space spanned by K. Since all those sets
are included in vect(K), the gap between two of them can be quantified by
comparing their measures in vect(K), as defined by

|S| =
∫
e∈vect(K)

χS(e)de (4.6)

where χS is the characteristic function of the set S considered (i.e. χS(e) is
equal to 1 if e ∈ S, and null otherwise).

Consider the linear mapping f defined as

f : R3 → R3×3
s

(θ1, θ2, θ3) 7→
3∑
r=1

θrer + (1−
3∑
r=1

θr)e4.
(4.7)

That mapping is injective if e1−e4, e2−e4, e3−e4 are linearly independent,
which is assumed from now on. The mapping f in (4.7) serves two purposes.
First, since it defines a one-to-one mapping between R3 and R3×3

s , the map-
ping f provides 3-dimensional representations of the convex hull K and other
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related bounds on QK. In particular, the convex hull K is represented by
the tetrahedron T ′3 = {(θ1, θ2, θ3) ∈ R3

+|
∑3

r=1 θr = 1} and the upper bound
PK is represented by the three-dimensional set f−1(PK) given by

f−1(PK) = {θ ∈ T ′3 |0 ≤ −
3∑

r,s=1

θrθs(er−es)∗−2(1−
3∑
r=1

θr)
3∑
s=1

θs(e4−es)∗}.

(4.8)
Second, the mapping f being affine, it allows for a simple calculation of
measures in (4.6). We have indeed

|S| = J

∫
θ∈f−1

(S)

dθ (4.9)

where J is the Jacobian of f and is equal to the mixed product [e1−e4, e2−
e4, e3 − e4]. Since f−1(CK) = T ′3 and

∫
θ∈T ′3 dθ = 1/6, we obtain

|S|
|CK|

= 6

∫
θ∈f−1

(S)

dθ. (4.10)

The ratio |S|/|CK| is thus directly obtained from the volume of the three-
dimensional set f−1(S). Note that |CK| and J are strictly positive if e1 −
e4,e2− e4,e3− e4 are linearly independent. However, even in that case, it is
generally not ensured that |QK| > 0.

4.1. Examples from the monoclinic-I transformation

The bounds detailed previously are now illustrated on some four-well
problems related to the cubic to monoclinic-I transformation. There are 12
martensitic variants in that transformation, each variant being compatible
with seven of the others (see Tables 1 and 2). In order to have a first insight
in the structure of QKI , we consider only four of the twelve transformations
strains in Table 1. There are obviously a large number of four-well problems
that can be constructed that way. The structure of the corresponding bounds
is strongly dependent on the number of pairwise transformation strains in
the four-well restriction that is considered. Rather than carrying out an
exhaustive study of all the possibilities, we present a selection of examples
which proves to be illustrative for our purpose, notably for the subsequent
study of the twelve-well problem.

The first case we consider is KI4 = {eI1, eI2, eI6, eI11}. The three-dimensional
set f−1(PKI4) is represented in Figure 1 for Ti-49.75Ni. The values of the
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eI1 eI2 eI3 eI4 α δ ε
δ α ε
ε ε β

  α δ −ε
δ α −ε
−ε −ε β

  α −δ −ε
−δ α ε
−ε ε β

  α −δ ε
−δ α −ε
ε −ε β


eI5 eI6 eI7 eI8 α ε δ

ε β ε
δ ε α

  α −ε δ
−ε β −ε
δ −ε α

  α −ε −δ
−ε β ε
−δ ε α

  α ε −δ
ε β −ε
−δ −ε α


eI9 eI10 eI11 eI12 β ε ε

ε α δ
ε δ α

  β −ε −ε
−ε α δ
−ε δ α

  β −ε ε
−ε α −δ
ε −δ α

  β ε −ε
ε α −δ
−ε −δ α


Table 1: Transformation strains in the cubic to monoclinic-I transformation.

Variant 1 2 3 4 5 6 7 8 9 10 11 12
1 . 1 1 1 1 . 1 . 1 . 1 .
2 1 . 1 1 . 1 . 1 . 1 . 1
3 1 1 . 1 1 . 1 . . 1 . 1
4 1 1 1 . . 1 . 1 1 . 1 .
5 1 . 1 . . 1 1 1 1 . . 1
6 . 1 . 1 1 . 1 1 . 1 1 .
7 1 . 1 . 1 1 . 1 . 1 1 .
8 . 1 . 1 1 1 1 . 1 . . 1
9 1 . . 1 1 . . 1 . 1 1 1
10 . 1 1 . . 1 1 . 1 . 1 1
11 1 . . 1 . 1 1 . 1 1 . 1
12 . 1 1 . 1 . . 1 1 1 1 .

Table 2: Compatible variants (indicated by ’1’) in monoclinic-I martensite.
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lattice parameters are α = 0.0243, β = −0.0437, δ = 0.058, ε = 0.0427
(Knowles and Smith, 1981). In Figure 1 (top), two snapshots from differ-
ent viewpoints are put together for a better grasp of the three-dimensional
representation of f−1(PKI4). Let us address a few comments on the shape
of that set: since the pair {eI1, eI6} is not compatible (see Table 2), any θ
in the line segment ]f−1(eI1), f−1(eI6)[ is expected to be excluded from the
set f−1(PKI4). For such a value of θ, the tensor -

∑
r,s θrθs(e

I
r − eIs)∗ indeed

reduces to A(eI1−eI6)∗ (with A 6= 0) and therefore is not positive. In a similar
fashion, the pair {eI2, eI11} is also incompatible, and the corresponding edge
of the tetrahedron T ′3 is expected to be excluded from f−1(PKI4). As can be
seen on Figure 1, there is actually a three-dimensional volume surrounding
those two edges that is excluded from f−1(PKI4). As a result, the measure
of PKI4 is smaller than the measure of the convex hull CKI4: use of relation
(4.10) gives |PKI4|/|CKI4| ' 0.79. The upper bound PKI4 thus brings an
significant improvement on the upper bound CKI4.

One particular point of interest is to determine if the quasiconvex hull
QKI4 has a non-empty interior, i.e. if |QKI4| is strictly positive. Since
|RnKI4| < |QKI4|, a sufficient condition is that |RnKI4| > 0 for some n. As
as direct consequence of (4.5), it is necessary to take at least n = 3 for
the corresponding set RnKI4 to have a non-empty interior. The set R3KI4
corresponding to rank-3 laminates is shown in Figure 1 (bottom). We find
|R3KI4|/|CKI4| ' 0.6, which confirms that |QKI4| has a non-empty interior.
Also observe that R3KI4 is found to have a similar shape as PKI4. The gap
between R3KI4 and PKI4 is illustrated in Figure 2, on which those two sets
are superimposed. The gap between R3KI4 and PKI4 can be measured using
relation (4.10), yielding |R3KI4|/|PKI4| ' 0.76.

In Figure 3 is represented the upper bound PKI4′ corresponding to KI4′ =
{eI1, eI3, eI6, eI8}. In that case, only two of the six pairs of strains in KI4′ are
compatible (namely {eI1, eI3} and {eI6, eI8}). Nevertheless, the set PKI4′ is
found to be quite close to the convex hull CKI4′ . As in the previous ex-
ample, each edge connecting two incompatible strains is surrounded by a
three-dimensional domain of strains that are not in PKI4′ . However, that do-
main is much smaller than in the previous example, resulting in a set PKI4′
that is much closer to the convex hull. More precisely, we find using (4.10)
that |PKI4′|/|CKI4′| ' 0.94. Consideration of the lower bound R3KI4 (not
represented) leads to a similar conclusion (see Table 5).
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Figure 1: Three-dimensional representation of the upper bound PKI
4 (in red) and of the

lower bound R3KI
4 (in green).

4.2. Examples from the monoclinic-II transformation

We now examine some four-well problems related to monoclinic-II trans-
formation. The 12 transformation strains of the cubic to monoclinic-II trans-
formation are listed in Table 3. Each martensitic variant is compatible with
seven of the others, just as for the cubic to monoclinic-I transformation (Table
4). We consider two examples of four-well problems that are the analogues of
those studied previously for monoclinic-I martensite. Figure 4 shows the up-
per bound PKII4 corresponding to KII4 = {eII1 , eII2 , eII6 , eII11}. In a similar way
to KI4, {eII1 , eII6 } and {eII2 , eII11} are the only pairs of strains in KII4 that are
not compatible. The set PKII4 can be interpreted in a similar way as PKI4,
but the detailed shape of f−1(PKII4 ) is different from that of f−1(PKI4) and
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eII1 eII2 eII3 eII4 α+ ε δ 0
δ α− ε 0
0 0 β

  α− ε δ 0
δ α+ ε 0
0 0 β

  α+ ε −δ 0
−δ α− ε 0
0 0 β

  α− ε −δ 0
−δ α+ ε 0
0 0 β


eII5 eII6 eII7 eII8 α+ ε 0 δ

0 β 0
δ 0 α− ε

  α− ε 0 δ
0 β 0
δ 0 α+ ε

  α+ ε 0 −δ
0 β 0
−δ 0 α− ε

  α− ε 0 −δ
0 β 0
−δ 0 α+ ε


eII9 eII10 eII11 eII12 β 0 0

0 α− ε δ
0 δ α+ ε

  β 0 0
0 α+ ε δ
0 δ α− ε

  β 0 0
0 α− ε −δ
0 −δ α+ ε

  β 0 0
0 α+ ε −δ
0 −δ α− ε



Table 3: Transformation strains in the cubic to monoclinic-II transformation.

Variant 1 2 3 4 5 6 7 8 9 10 11 12
1 . 1 1 1 1 . 1 . 1 . 1 .
2 1 . 1 1 . 1 . 1 . 1 . 1
3 1 1 . 1 1 . 1 . 1 . 1 .
4 1 1 1 . . 1 . 1 . 1 . 1
5 1 . 1 . . 1 1 1 . 1 . 1
6 . 1 . 1 1 . 1 1 1 . 1 .
7 1 . 1 . 1 1 . 1 . 1 . 1
8 . 1 . 1 1 1 1 . 1 . 1 .
9 1 . 1 . . 1 . 1 . 1 1 1
10 . 1 . 1 1 . 1 . 1 . 1 1
11 1 . 1 . . 1 . 1 1 1 . 1
12 . 1 . 1 1 . 1 . 1 1 1 .

Table 4: Compatible variants (indicated by the index ’1’) in monoclinic-II martensite.
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Figure 2: Three-dimensional representation of the upper bound PKI
4 with KI

4 =
{eI1, eI2, eI6, eI11}.

results in a smaller domain (see Table 5).
Let us now consider the quasiconvexification of KII4′ = {eII1 , eII3 , eII6 , eII8 }.

The corresponding set PKII4′ is represented on Figure 5. Even though the
compatibility relations between the transformation strains in KII4′ are the
same as forKI4′ , the shape of PKII4′ is dramatically different from that of PKI4′ .
In particular, we can observe that PKII4′ has two distinct connected compo-
nents. It can be proved that one of these components is the line segment
[eII6 , e

II
8 ] (see Appendix A). The other component is found to be a manifold

of dimension 3 containing the line segment [eII1 , e
II
3 ]. As can be guessed from

Figure 5, the measure of PKII4′ is very small: we find |PKII4′ |/|CKII4′ | ' 0.006.
Concerning lower bounds, we find that RrKII4′ = [eII1 , e

II
3 ] ∪ [eII6 , e

II
8 ] for

r ≥ 1. The reason is that no pair of compatible strains e ∈ [eII1 , e
II
3 ] and

e′ ∈ [eII6 , e
II
8 ] can be found.

Comparing those results with those obtained previously for monoclinic-I
martensite (see Table 5), we observe that

|PKII4 |
|CKII4 |

<
|PKI4|
|CKI4|

, (4.11)

i.e. the set PKI4 is closer to the convex hull CKI4 than PKII4 is to CKII4 . A
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Figure 3: 3D representation of the upper bound PKI
4′ with KI

4′ = {eI1, eI3, eI6, eI8}.

similar relation is verified by the lower bounds, i.e

|R3KII4 |
|CKII4 |

<
|R3KI4|
|CKI4|

. (4.12)

Analog inequalities are obtained between KI4′ and KII4′ :

|R3KII4′ |
|CKII4′ |

<
|R3KI4′ |
|CKI4′|

and
|PKII4′ |
|CKII4′ |

<
|PKI4′|
|CKI4′|

.

Morever, |PKII4′ |/|CKII4′ | < |R3KI4′|/|CKI4′| so that

|QKII4′ |
|CKII4′ |

<
|QKI4′ |
|CKI4′ |

. (4.13)

That inequality shows that the quasiconvexhull QKI4′ is closer to CKI4′ than
QKII4′ is to CKII4′ . The relations (4.11)-(4.12) suggest that a property similar
to (4.13) also holds between KI4 and KII4 , although this can not be proved
rigorously from (4.11)-(4.12).

5. Twelve-well problems in monoclinic martensite

5.1. Convex bounds

In this Section we study the quasiconvexification of the setsKI = ∪12
r=1{eIr}

and KII = ∪12
r=1{eIIr }, thus considering the 12 transformation strains in the
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Figure 4: 3D representation of the upper bound PKII
4 with KII

4 = {eII1 , eII2 , eII6 , eII11}.

K |R3K|/|CK| |PK|/|CK|
Monoclinic-I
Variants 1,2,6,11 0.60 0.79
Variants 1,3,6,8 0.82 0.94

Monoclinic-II
Variants 1,2,6,11 0.57 0.65
Variants 1,3,6,8 0 0.006

Table 5: Measures of the bounding sets (expressed as fractions of |CK|) for some 4-well
problems related to monoclinic martensite.

two types of cubic to monoclinic transformations.
Bhattacharya and Kohn (1997) proved that the set QKI is not convex,

and conjectured that a similar property holds for monoclinic-II martensite.
Such a property does not follow directly from the fact that the set PKII4′
represented in Figure 5 is non-convex : the family (eII1 , · · · , eII12) being not
free, the decomposition

ē =
12∑
r=1

θre
II
r (5.1)

of a given tensor ē is generally not unique. However, consider the intersection
of the convex hull CKII with the subspace H defined by the equations ē12 =
ē13 = δ/2, assuming that δ > 0 (the variants in Table 3 can always be
numbered in such a way that this condition is satisfied). For any ē in CKII ∩
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Figure 5: 3D representation of the upper bound PKII
4 with KII

4 = {eII1 , eII3 , eII6 , eII8 }.

H, the decomposition (5.1) is unique and satisfies

θ1 + θ2 = θ5 + θ6 =
1

2
. (5.2)

Let us briefly justify this assertion. For a fixed ē in CKII ∩H, there exists
θ in T12 such that ē =

∑12
r=1 θre

II
r . Using Table 3, we have ē12 = δ(θ1 + θ2−

θ3−θ4) ≤ δ(θ1 +θ2). In a similar fashion, we have ē13 ≤ (θ5 +θ6)δ. Therefore,
the equations ē12 = ē13 = δ/2 imply that 1/2 ≤ θ1 + θ2 and 1/2 ≤ θ5 + θ6.
Since θ ∈ T12, these conditions can be realized only if 1/2 = θ1 + θ2 = θ5 + θ6

and θr = 0 for r /∈ {1, 2, 5, 6}. The decomposition (5.2) is thus obtained.
The uniqueness of this decomposition comes from the fact that the tensors
(eII1 , e

II
2 , e

II
3 , e

II
4 ) in Table 3 are linearly independent.

Consider now the tensor (eII1 + eII6 )/2, which is in CKII ∩H. It can be
easily verified that −(eII1 − eII6 )∗ is not positive. Since the decomposition
(5.1) is unique, it can be concluded from (2.10) that (eII1 +eII6 )/2 is excluded
from PKII , and a fortiori from QKII . This proves that QKII is not convex.

From here onwards we use the notation K to denote indifferently KI
or KII . The corresponding transformations strains are denoted by er (i.e.
er = eIr for K = KI , and er = eIIr for K = KII). In the literature so far, the
structure of QK in cubic to monoclinic transformations has been essentially
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studied using convex bounds. Since QK is not convex, such bounds can
only be strict. Shu and Bhattacharya (1998) notably used the convex hull of
CK to bound QK from above. A convex lower bound has been proposed in
closed form by Bhattacharya and Kohn (1997). Noting that e2i−1 and e2i are
compatible for each i = 1, · · · , 6 (see Tables 2-4), Bhattacharya and Kohn
(1997) observed that QK contains the strains e′i = (e2i−1+e2i)/2. The strains
e′1, · · · , e′6 can be verified to be pairwise compatible (they actually correspond
to the six transformation strains of the cubic to orthorombic transformation).
As a consequence, QK contains the convex hull S of e′1, · · · , e′6. As proved
by Bhattacharya and Kohn (1997), the set S is formed by the tensors ē
satisfying the conditions:

tr ē = 2α + β;
min(α, β) ≤ ēii ≤ max(α, β) for i=1, 2, 3;

|ējk| ≤
ēii − α
β − α

δ for all {i, j, k} permutation of {1, 2, 3}.
(5.3)

It can be proved that S has a non-empty interior in the 5-dimensional space
{ē|trē = 2α + β} (Bhattacharya and Kohn, 1997). Consequently, QK is of
dimension 5, contrary to the four variant cases considered in Section 4 for
which the sets QKI4 and QKII4 are manifolds of dimension 3.

A schematic representation of the convex bounds S and CK is given in
Figure 6. In that Figure, the 12 transformation strains are represented as
cocyclic points. Compatible transformation strains are connected by a line
segment (for simplicity, each transformation strain is represented as being
compatible with only two of the others). The lower bound S (shown in green)
is constructed as the convex hull of six particular points (which are middle
points of line segments connecting compatible transformation strains). The
upper bound CK is the union of the red and green domains.

The gap between the convex bounds S and CK can be quantified by
comparing the measures of those two sets. Those measures are defined as in
(4.6), except that vectK is now the 5−dimensional space {ē| tr ē = 2α+ β}.
As mentioned above, the set S has a non-empty interior in vectK and there-
fore has a non-zero measure. The exact value of |S| can be calculated from
the analytical expression (5.3) of S. In lack of a closed-form expression of
CK, its measure is obtained numerically using the algorithm of Barber et al.
(1996) for calculating convex hulls in vectorial spaces of arbitrary dimension.
The calculations of |S| and |CK| have been performed for several materi-
als, using measurements of lattice parameters from the literature (Knowles
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and Smith, 1981; Seo and Schryvers, 1998; Saburi et al., 1976; Tadaki et al.,
1975; Chakravorty and Wayman, 1977). Corresponding values of the ratio
|S|/|CK| are reported in the first column of Table 6. As can be observed
in that table, the ratio |S|/|CK| is relatively low (< 0.18) in all the exam-
ples considered, especially in the case of monoclinic-I martensite for which
it does not exceed 0.07. This is an indication that the gap between the two
bounds S and CK is relatively large. In the following, we aim at refining our
knowledge of QK by deriving tighter bounds.

Figure 6: Schematic representations of the convex bounds (left) and of the lower bound
S1K (right) for monoclinic martensite. The line segments form the set R1K. The lower
bound S1K is constructed by looking for strains ē that are realized by simple lamination
of a strain e′ in S and a strain e on a line segment in R1K, such as [e2, e3] (middle).

5.2. Non-convex bounds

In this section, we investigate the structure of QK by deriving non-convex
upper bounds and lower bounds similar in nature to those considered previ-
ously for the four-well problem. The consideration of the 12 variants, how-
ever, add some complication in the derivation of those bounds. Concerning
the upper bound PK, the main difficulty is that the decomposition of a strain
ē in the form

ē =
12∑
r=1

θrer (5.4)
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is not unique. More precisely, consider the mapping g defined as

g : R12 → R3×3
s

(θ1, · · · , θ12) 7→
12∑
r=1

θrer.
(5.5)

Except for special values of the lattice parameters, Ker g is a vectorial space
of dimension 7. Denoting by g̃ the (injective) restriction of g on (Ker g)⊥,
the set of solutions to (5.4) is the affine space defined as

g−1(ē) = g̃−1(ē) + Ker g. (5.6)

Let A be the bounded subset of R12 defined as

A = {θ ∈ T12| −
∑
r,s

θrθs(er − es)∗ ≥ 0}.

From (2.10), the distinctive property of strains ē in PK is

g−1(ē) ∩ A 6= ∅. (5.7)

Assuming that ē is given and using a numerical approach, it is relatively easy
to determine if (5.7) is satisfied or not.

Difficulties in deriving meaningful non-convex lower bounds are more sub-
stantial. It has already be mentioned that QK has a non-empty interior, i.e.
that |QK| > 0. The relation (4.5) shows that it is necessary to take at
least r = 5 for the corresponding bound RrK to have a non-zero measure.
However, for twelve-well problems, it proves difficult to get beyond r = 2
in the numerical calculations. Note that rank-2 laminates have been consid-
ered by Govindjee et al. (2007) for bounding the effective energy in cubic to
monoclinic transformations.

An alternative approach which proves to be fruitful is to consider simple
laminates involving compatible strains in S and RrK, i.e. to consider the set
SrK defined as

SrK =
⋃

e∈RrK,e′∈S
det(e−e′)=0

[e, e′]. (5.8)

That set is a lower bound on QK and contains S for r ≥ 1. The motivation
for introducing the set SrK in (5.8) is that, contrary to RrK, it has a non-
zero measure for any r ≥ 1. In particular, we can use values of r that are
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low enough for the computations to remain tractable (typically r ≤ 2). The
expectation - which remains to be confirmed at that point - is that SrK is
strictly larger than RrK ∪ S.

The following property, illustrated in Figure 6 (middle), is easily proved
from (5.8):

A given strain ē is in SrK if there exists a strain e ∈ RrK such that :
(i) e is compatible with ē,
(ii)the half line {e+ y(ē− e)|y ≥ 0} intersects S.

(5.9)
That characterization of SrK is well suited to numerical implementation.

Assume indeed that the decomposition (4.3) of RrK is known (using for
instance the algorithm detailed in Section 4). To test if a given strain ē is
in SrK, we can go through each line segment [ari , b

r
i ] in (4.3) and look for

strains e = xari +(1−x)bri that are compatible with ē. Corresponding values
of x ∈ [0, 1] are roots of the 3rd-degree polynom det(xari +(1−x)bri − ē). For
any such e, we can use the relations (5.3) to determine if S has a non-empty
intersection with the half-line {e+ y(ē− e)|y ≥ 0}. If this is the case, then
the strain ē considered is in SrK.

5.3. Examples

In order to quantify the improvement brought upon by the bounds SrK
and PK, we first calculate their measures and compare the results to the
measures of S and CK. A Monte-Carlo method is used to evaluate the
integrals (4.6) that define |SrK| and |PK|. In those integrals, the functions
χ
PK(ē) and χ

SrK(ē) are calculated using the characterizations (5.7) and
(5.9). Table 6 shows the results obtained for several materials, both for
monoclinic-I and monoclinic-II martensite.

A first observation is that in all cases, the lower bounds SrK dramatically
improve on the convex lower bound S. The upper bound PK significantly
improves on CK for monoclinic-II martensite, but remains close to CK for
monoclinic-I martensite (in a similar way to the four-well example KI4′ of
Section 4.1). As a corollary, the gap between the best available bounds
(namely S2K and PK) is greatly reduced compared to the gap between the
convex bounds (S and CK), yielding a much improved estimate of QK.
Comparing the results for monoclinic-I martensite with those for monoclinic-
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|S|/|CK| |S1K|/|CK| |S2K|/|CK| |PK|/|CK|

Monoclinic-I
Ni-49.75Ti 0.0645 0.543 0.824 0.994
CuZr 0.0543 0.547 0.865 0.998

Monoclinic-II
Cu-20Zn-12Ga 0.154 0.576 0.787 0.922
Cu-39.3Zn 0.131 0.539 0.761 0.924
Cu-15Zn-17Al 0.176 0.592 0.756 0.917
β′1Cu-14Al-4Ni 0.0915 0.470 0.706 0.918

Table 6: Measures of the bounding sets (expressed as fractions of |CK|).

II martensite, we observe that

|PKI |
|CKI |

<
|PKII |
|CKII |

,

i.e. the set PKI is thus closer to the convex hull CKI than the set PKII
is to the set CKII . The best available lower bound S2K satisfies the same
property, that is to say

|S2KI |
|CKI |

<
|S2KII |
|CKII |

.

That situation is reminiscent of the four-well examples presented in Section
4, for which similar relations were observed. This might be an indication that
the set QKI is closer to its corresponding convex hull than the set QKII .

Although calculating measures is instructive in getting a global picture,
it does not fully characterize the various bounding sets introduced, nor the
estimate of QK that results from those bounds: the gap between S2K and
PK is typically expected to be larger in certain directions than in others. To
better illustrate that point, we consider effective strains ē(ω, τ) of the form

ē(ω, τ) =
1

3
(2α + β)I + τ(u(ω)⊗ v(ω) + v(ω)⊗ u(ω)), (5.10)

with

u(ω) = cos(ω)u1 + sin(ω)u2 , v(ω) = − sin(ω)u1 + cos(ω)u2.

In those expressions, (u1,u2,u3) is an orthonormal basis of the cubic austenitic
lattice. For latter reference, note that the matrix representation of ē(ω, τ)

26



in the basis (u1,u2,u3) is

ē(ω, τ) =
2α + β

3
I + τ

 − sin 2ω cos 2ω 0
cos 2ω sin 2ω 0
0 0 0

 . (5.11)

The strain ē(ω, τ) can be achieved by cooling down a stress-free sample
below the transformation temperature and subsequently applying a simple
shear of amplitude 2τ (between the directions u(ω) and v(ω)) in the cooled
state. Cooling down a stree-free sample indeed produces the so-called self-
accommodated state in which there is no austenite and all the martensitic
variants appear in equal volume fraction, resulting in a macroscopic strain
(2α + β)/3I. We are interested in bounding the values of (ω, τ) for which
ē(ω, τ) ∈ QK. As monoclinic martensite is invariant in the u1 7→ −u1

symmetry, the conditions ē(ω, τ) ∈ QK and ē(ω,−τ) ∈ QK are equivalent.
It is therefore sufficient to consider only positive values of τ . Let

Sτ(ω) = sup{τ |ē(ω, τ) ∈ S}.

Since S is convex and closed, we have ē(ω, τ) ∈ S for any positive τ such
that τ ≤ Sτ(ω). It can be calculated from (5.3) that

Sτ(ω) = min(
A

| sin 2ω|
,

δ

3| cos 2ω|
) (5.12)

where

A = min(
2α + β

3
−min(α, β),−2α + β

3
+ max(α, β)).

In a similar fashion, we define

Cτ(ω) = sup{τ |ē(ω, τ) ∈ CK} , Qτ(ω) = sup{τ |ē(ω, τ) ∈ QK},
P τ(ω) = sup{τ |ē(ω, τ) ∈ PK} , Srτ(ω) = sup{τ |ē(ω, τ) ∈ SrK}.

The relations S ⊂ S1K ⊂ S2K ⊂ QK ⊂ PK ⊂ CK imply that

Sτ ≤ S1τ ≤ S2τ ≤ Qτ ≤ Pτ ≤ Cτ. (5.13)

Since CK is convex and closed, we have ē(ω, τ) ∈ CK for any 0 ≤ τ ≤ Cτ(ω).
Even though PK and SrK are not convex, numerical computations show that
they satisfy a similar property, i.e. ē(ω, τ) ∈ PK for any 0 ≤ τ ≤ Pτ(ω),
and ē(ω, τ) ∈ SrK for any 0 ≤ τ ≤ Srτ(ω). The functions Sτ , Srτ , Pτ and
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Cτ thus completely characterize the intersection of the various bounding sets
with strains of the form (5.10). Those functions are represented in Figure 7
for Ni-49.75Ti (monoclinic-I martensite) and in Figure 8 for β′1Cu-14Al-4Ni
(monoclinic-II martensite). It is obvious from the definition (5.10) that all
those functions are of period π. As can be observed in Figures 7-8, they
are also invariant in the ω 7→ π/2 − ω and ω 7→ π − ω symmetries. This
can be verified to stem from the invariance of monoclinic martensite in the
(u1,u2) 7→ (u2,u1) and u2 7→ −u2 transformations, respectively. Let us now
study the results of Figures 7-8 in more detail. Because of the mentioned
symmetries, we limit our attention to ω ∈ [0, π/4].

Figure 7: Bounds on (ω, τ) such that ē(ω, τ) ∈ QKI .

Concerning the monoclinic-I example (Figure 7), it can be proved that
Sτ coincides with Cτ on an interval of the form [ω1, π/4]. The value of ω1 is
given by

tan 2ω1 =
α− β
δ

.
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Indeed, for ω1 ≤ ω ≤ π/4, it can easily be calculated that A/| sin 2ω| reaches
the minimum in (5.12). Use of (5.11) gives

ē22(ω, Sτ(ω)) = max(α, β).

Note that any ē ∈ CKI satisfies

max
i=1,2

ēii ≤ max
r
eIr,12 = max(α, β).

Consider now a given τ ′ such that τ ′ > Sτ(ω). The expression (5.11)
shows that ē22(ω, τ ′) > ē22(ω, Sτ(ω)) = max(α, β). Therefore we have
ē(ω, τ ′) /∈ CKI and consequently τ ′ > Cτ(ω). By letting τ ′ tend towards
Sτ(ω) from above, we obtain that Sτ(ω) ≥ Cτ(ω). Comparing with (5.13)
we can conclude that Sτ(ω) = Cτ(ω). For ω1 ≤ ω ≤ π/4, the bounds Sτ
and Cτ are thus optimal and give the exact value of Qτ(ω).

For ω < ω1, the numerical results displayed in Figure 7 show that S1τ and
S2τ significantly improve on Sτ . In particular, there is an interval [ω∗, ω1]
on which the bounds S2τ and Cτ are found to coincide (up to the accuracy
of the numerical calculations). Let us prove in particular that

Cτ(ω∗) = S2τ(ω∗) = τ ∗ (5.14)

where
tan 2ω∗ = (α− β)/(δ + 2ε)

and

τ ∗ =
1

3

√
(α− β)2 + (δ + 2ε)2.

That value τ ∗ actually corresponds to the maximum of S2τ and Cτ (see
Figure 7). To prove (5.14) we first note that

ē(ω∗, τ ∗) =

 α+2β
3

δ+2ε
3

0
δ+2ε

3
α 0

0 0 2α+β
3

 .

Observing that ē22(ω∗, τ ∗) = α and that α > β (in the case of Ni-49.75Ti),
we can show that τ ∗ ≥ Cτ(ω∗) by a similar reasoning as used previously. We
now prove that ē(ω∗, τ ∗) is realized by a rank-2 laminate. To that purpose,
observe that ē(ω∗, τ ∗) can be written as

ē(ω∗, τ ∗) =
1

2
(e′ + e′′) with e′ =

1

3
eI1 +

2

3
eI9 and e′′ =

1

3
eI2 +

2

3
eI12.
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Note from Table 1 that eI1 and eI9 (resp. eI2 and eI12) are compatible, so that
the strain e′ (resp. e′′) is in R1KI . It can be verified that det(e′ − e′′) = 0,
i.e that e′ and e′′ are compatible. Therefore the strain ē(ω∗, τ ∗) is in R2K.
As a consequence, we have τ ∗ ≤ S2τ(ω∗). Combining the obtained rela-
tions Cτ(ω∗) ≤ τ ∗ ≤ S2τ(ω∗) with (5.13), we can conclude that S2τ(ω∗) =
Cτ(ω∗) = τ ∗.

The results for the monoclinic-II example (Figure 8) differ in several as-
pects. A first observation is that, contrary to the case of Ni-49.75Ti, the
convex bounds Cτ and Sτ never coincide. As for monoclinic-I martensite,
there exists values of ω such that maxi ēii(ω, Sτ(ω)) = max(α, β). However,
it can no longer be concluded that ē(ω, Sτ(ω)) /∈ CKII for τ > Sτ(ω). The
reason is that strains ē in CKII do not necessarily verify ēii ≤ max(α, β)
(they only satisfy the less stringent restriction eii ≤ max(α− ε, α + ε, β)).

A second observation is that the bound S2τ improves on Sτ for all value
of ω. Hence, contrary to the case of monoclinic-I martensite, the convex
lower bound Sτ is never optimal. Lastly, concerning upper bounds, we note
that Pτ(ω) is stricly lower than Cτ(ω) for some values of ω - that situation
was not observed in the monoclinic-I example. The numerical calculations
show that Cτ , Pτ and S2τ all reach a maximum at the same value ω = π/4.
It can be proved that

Cτ(
π

4
) = R2τ(

π

4
) =

2|β − α|
3

.

The proof is similar to the reasoning detailed previously for justifying (5.14).
The most delicate point consists in proving that ē(π/4, 2|β − α|/3) is in
R2KII . To that purpose, note that

ē(
π

4
,
2|β − α|

3
) = diag(β,

4α− β
3

,
2α + β

3
).

That tensor can be written in the form

ē(
π

4
,
2|β − α|

3
) = (

1

2
− x)eII9 + xeII10 +

1

2
eII12,

with x = (α − β)/6ε. The lattice parameters in β′1Cu-14Al-4Ni satisfy 0 ≤
α − β ≤ 3ε, so that x ∈ [0, 1/2]. Noting from Table 3 that the strains eII9 ,
eII10, eII12 are pairwise compatible, we can conclude that ē(π/4, 2|β − α|/3) is
in R2K.
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Figure 8: Bounds on (ω, τ) such that ē(ω, τ) ∈ QKII .

In the case of β′1Cu-14Al-4Ni, the functions Pτ and Cτ are very close and
therefore give a good approximation of the function Qτ characterizing the
quasiconvex hull. The results for Ni-49.75Ti do not give the same level of
closeness between Pτ and Cτ , but a significant improvement is still observed
compared to the convex lower bound Sτ .

In Part 1 of this paper (Peigney, 2013), bounds on the energy-minimizing
strains for the cubic to tetragonal transformation have been derived in the
geometrically non-linear setting. Those bounds have been illustrated by con-
sidering effective strains which are the analogue of (5.10) in the geometrically
non-linear theory, i.e. a simple shear (of amplitude τ and orientation ω) ap-
plied in the self-accommodated state. The results obtained are qualitatively
similar to those displayed in Figure 8: the transformation considered is re-
coverable up to a maximum shear amplitude τ(ω) that depends on ω, the
function ω 7→ τ(ω) exhibiting localized peaks at specific values of ω. Such
similarities should not obscure the fact that the arguments at play are of a
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different nature. In the geometrically linear example considered in Figure 8,
the results that are obtained partly come from the fact that, because we are
considering 12 transformation strains, the material is given a large number of
degrees of freedom to accommodate a given strain ē. In contrast, if the cubic
to tetragonal transformation is studied in the geometrically linear setting, it
can easily be verified that the strain ē(ω, τ) is recoverable only for τ = 0.
In the geometrically non-linear theory, local rotations act as an additional
degree of freedom for the material to accommodate strains. This is the main
reason why, even for the cubic to tetragonal transformation, non-zero shear
τ(ω) is predicted to be recoverable in that theory.

6. Concluding remarks

In difference with the geometrically non-linear theory, the minimizers of
the microscopic energy in the geometrically linear theory form a discrete set.
This contributes to major simplifications in the analysis. For instance, the
upper bound (3.12) for the three-well problem is obtained with relatively sim-
ple calculations, whereas considerable effort is needed for the analog bound
in the geometrically non-linear theory (Peigney, 2013).

Four- and twelve-well problems have been studied extensively in this pa-
per. There is a connection between the two: for cubic to monoclinic trans-
formations, sufficient conditions on the effective strain ē can be found for
the microstructures to be restricted to only four variants (see Appendix
B). In particular, the four-well example {e1, e2, e5, e6} considered in Sec-
tion 4 can be interpreted as the trace of QK on a particular hyperplane
of {ē| tr ē = 2α + β}. As notably illustrated on the four-well examples of
Section 4.2, the convex upper bound may significantly overestimate the set
QK. It is interesting to observe, however, that it gives a relatively good
approximation of QK in cubic to monoclinic transformations (especially for
monoclinic-I martensite), performing better than the convex lower bound S
in that regard.

The bounds presented could be improved in several ways. For instance,
the lower bound S2K considered in Section 5 is not stable by lamination.
Therefore, the set formed by simple laminates of compatible strains in S2K
is expected to give a tighter lower bound. Note that the characterization (5.9)
of S2K is simple enough for such a calculation to remain tractable. It would
also be interesting to compare the results presented with the lower bound
recently proposed by Chenchiah and Schlömerkemper (2013) for monoclinic-
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I martensite. Another interesting line of investigation consists in extending
the study to polycrystals.

Appendix A. Proof that [eII6 , e
II
8 ] is a connected component of

QKII
4

In the case K = KII4 , the mapping f introduced in (4.7) specializes as

f : T ′3 → R3×3
s

(θ1, θ3, θ6) 7→ θ1e
II
1 + θ3e

II
3 + θ6e

II
6 + (1−

∑
r∈{1,3,6} θr)e

II
8 .

Let
l : T ′3 → R

(θ1, θ3, θ6) 7→ θ1 + θ3.

Let C ⊂ QKII4 be a connected subset of QKII4 that contains [eII6 , e
II
8 ]. Since

f−1l is continous, f−1l(C) is a connected set of R, i.e. an interval. Moreover,
for any θ ∈ f−1(QKII4 ) (resp. θ ∈ f−1([eII6 , e

II
8 ])), we have l(θ) ≥ 0 (resp.

l(θ) = 0 ). It follows that f−1l(C) is an interval of the form [0, η] with
η ≥ 0. Assume that η > 0. Then for any η ≥ η′ > 0, there exists θ =
{θ1, θ3, θ6, θ8} ∈ T4 such that

∑
r,s=1,3,6,8 θrθs(e

II
r −eIIs )∗ ≤ 0 and θ1 +θ3 = η′.

Any such θ can be written in the form

θ = (x, η′ − x, y, 1− η′ − y),

with 0 ≤ x ≤ η′ and 0 ≤ y ≤ 1 − η′. Let η′ tend towards zero. At the first
order in (x, η′), we have

1

2

∑
r,s=1,3,6,8

θrθs(e
II
r − eIIs )∗ = xy(eII1 − eII6 )∗ + x(1− y)(eII1 − eII8 )∗

+(η′ − x)y(eII3 − eII6 )∗ + (η′ − x)(1− y)(eII3 − eII8 )∗

+y(1− y − η′)(eII6 − eII8 )∗.

For monoclinic-II martensite, it can easily be verified that u.(eII6 −eII8 )∗.u =
0 for any u ∈ vect(u1,u3), and that u3.e.u3 = 2ε(α − β − ε) − δ2 for
e ∈ {eII1 − eII6 , eII1 − eII8 , eII3 − eII6 , eII3 − eII8 }. Therefore we get

1

2

∑
r,s=1,3,6,8

θrθsu3.(e
II
r − eIIs )∗.u3 = η′(2ε(α− β − ε)− δ2).
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The lattice parameters in β′1Cu-14Al-4Ni are such that 2ε(α−β−ε)−δ2 > 0.
In that case, the relation

∑
r,s θrθsu3.(e

II
r −eIIs )∗.u3 ≤ 0 implies that η′ = 0,

in contradiction with the starting assumption η′ > 0. If follows that η is
necessarily equal to 0, i.e. that f−1l(C) = {0}. Any e in C is such that
θ1 + θ3 = 0, i.e. is in [eII6 , e

II
8 ]. The set C is thus equal to [eII6 , e

II
8 ]. This

completes the proof that [eII6 , e
II
8 ] is a connected component of QKII4 .

Appendix B. Reduction to four-wells in cubic to monoclinic trans-
formations

Let K = {e1, · · · , e12} be the set of transformation strains in a cubic
to monoclinic transformation. We examine sufficient conditions on ē for
the microstructures to be restricted on a given set of four variants, say
{e1, e2, e3, e4}. Assume there exists a tensor N such that

er : N = e1 : N for r = 2, 3, 4;
er : N < e1 : N for 5 ≤ r ≤ 12.

(B.1)

Consider a given strain ē in QK. There exists θ ∈ T12 such that ē =∑12
r=1 θrer. We have

ē : N ≤ (
4∑
r=1

θr)e1 : N + (
12∑
r=5

θr)er : N

≤ (
4∑
r=1

θr)(e1 : N − sup
k>4
{ek : N}) + sup

k>4
{ek : N}

,

so that
ē : N − supk>4 ek : N

e1 : N − supk>4 ek : N
≤

4∑
r=1

θr. (B.2)

Recall that θ satisfies
∑12

r=1 θr = 1 and θk ≥ 0 for all k. Consequently, if ē
satisfies

ē : N = e1 : N , (B.3)

then the inequality (B.2) implies that
∑4

r=1 θr = 1 and θk = 0 for k >
4. Any microstructure realizing ē is thus necessarily restricted to the four
variants e1, e2, e3, e4. To determine if there exists a tensor N satisfying
(B.1), consider the affine space W spanned by {e1, e2, e3, e4}. Any tensor
N satisfying (B.1) is necessarily in the orthogonal W⊥ of W in the vectorial
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Variants (N11, N22, N12, N13, N23) Variants (N11, N22, N12, N13, N23)

(1,2,3,4) (0.698, 0.716, 0, 0, 0) (1,2,3,7) (0.418, 0.216, 0.204,−0.277, 0.277)
(1,2,3,10) (0.216, 0.418, 0.204,−0.277, 0.277) (1,2,4,6) (0.427, 0.215, 0.203, 0.275,−0.275)
(1,2,4,11) (0.217, 0.41, 0.205, 0.278,−0.278) (1,2,5,6) (0.267, 0, 0.278, 0.278,−0.278)
(1,2,5,8) (0.696,−0.158, 0.35, 0, 0) (1,2,5,12) (−0.0417,−0.0417, 0.347, 0.254,−0.254)
(1,2,6,11) (0.13, 0.13, 0.254, 0.298,−0.298) (1,2,7,8) (0.275, 0, 0.278,−0.278, 0.278)
(1,2,7,10) (0.135, 0.135, 0.252,−0.298, 0.298) (1,2,8,9) (−0.0407,−0.0407, 0.345,−0.255, 0.255)
(1,2,9,10) (0, 0.254, 0.279,−0.279, 0.279) (1,2,9,12) (−0.155, 0.707, 0.345, 0, 0)
(1,2,11,12) (0, 0.274, 0.278, 0.278,−0.278) (1,3,4,5) (0.402, 0.218,−0.205, 0.279, 0.279)
(1,3,4,9) (0.218, 0.403,−0.205, 0.279, 0.279) (1,3,5,7) (0.822, 0, 0, 0, 0.285)
(1,3,5,9) (0.241, 0.21,−0.197, 0.268, 0.337) (1,3,7,10) (0.242, 0.205, 0.193,−0.262, 0.345)
(1,3,9,10) (0.138, 0.778, 0, 0, 0.306) (1,4,5,6) (0.764, 0.142, 0, 0.315, 0)
(1,4,5,9) (0.206, 0.242,−0.194, 0.344, 0.263) (1,4,6,11) (0.204, 0.242, 0.193, 0.345,−0.262)
(1,4,9,11) (0, 0.825, 0, 0.282, 0) (1,5,6,11) (0, 0.0444, 0.252, 0.35,−0.252)
(1,5,7,8) (0.223,−0.232, 0.297,−0.219, 0.297) (1,5,7,9) (0.0347,−0.214, 0.274,−0.201, 0.351)
(1,5,8,9) (−0.0338,−0.246, 0.347,−0.2, 0.272) (1,5,9,11) (−0.21, 0.039, 0.269, 0.356,−0.198)
(1,5,9,12) (−0.246,−0.0331, 0.346, 0.273,−0.201) (1,5,11,12) (−0.122, 0, 0.3, 0.3,−0.259)
(1,7,8,9) (0,−0.138, 0.301,−0.254, 0.301) (1,7,9,10) (0.0482, 0, 0.248,−0.248, 0.355)
(1,9,11,12) (−0.233, 0.202, 0.298, 0.298,−0.22)

Table B.7: Reduction to four-wells in Ni-49.75Ti (only groups including variant 1 are
listed).

space V = {ē|trē = 2α + β}. The spaces V and W are respectively of
dimension 5 and 3, so that W⊥ is of dimension 2. Let (f 1,f 2) denote an
orthonormal basis of W⊥ and define N (ω) = cosω f 1 + sinω f 2 for all ω.
The system (B.1) admits a solution provided that

sup
0≤ω≤2π

{e1 : N (ω)− sup
k>4

ek : N (ω)} > 0. (B.4)

Tables B.7-B.8 list the groups of four variants in Ni-49.75Ti and β′1Cu-14Al-
4Ni that fulfill that condition (B.4), along with the components of a corre-
sponding tensor N satisfying (B.1) (N33 is set equal to 0). Those tables are
limited to groups including variant 1. Values of the lattice parameters are
the same as in Section 5.
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Chenchiah, I., Schlömerkemper, A., 2013. Non-laminate microstructures in
monoclinic-I martensite. Arch. Rational Mech. Anal. 207, 39–74.

Dacorogna, B., 2008. Direct methods in the calculus of variations, second
edition. Springer.

Govindjee, S., Hackl, K., Heinen, R., 2007. An upper bound to the free energy
of mixing by twin-compatible lamination for n-variant martensitic phase
transformations. Continuum Mech. Thermodyn. 18, 443–453.

Govindjee, S., Mielke, A., Hall, G., 2003. The free energy of mixing for
n−variant martensitic phase transformations using quasi-convex analysis.
J. Mech. Phys. Solids 51, I–XXVI.

36



Kinderlehrer, D., Pedregal, P., 1991. Characterizations of young measures
generated by gradients. Arch. Rational Mech. Anal. 115, 329–365.

Knowles, K., Smith, D., 1981. Crystallography of the martensitic transfor-
mation in equiatomic nickel-titanium. Acta Mater. 29, 101–110.

Kohn, R., 1991. Relaxation of a double-well energy. Continuum Mech. Ther-
modyn. 3, 193–236.

Müller, S., 1999. Variational models for microstructure and phase transitions.
In: Calculus of variations and geometric evolution problems. Springer.

Peigney, M., 2008. Recoverable strains in composite shape-memory alloys. J.
Mech. Phys. Solids 56, 360–375.

Peigney, M., 2009. A non-convex lower bound on the effective free energy of
polycrystalline shape memory alloys. J. Mech. Phys. Solids 57, 970–986.

Peigney, M., 2013. On the energy-minimizing strains in martensitic mi-
crostructures - Part 1: geometrically non-linear theory. J. Mech. Phys.
Solids 61, 1489–1510.

Saburi, T., Nenno, S., Kato, S., Takata, K., 1976. Configurations of marten-
site variants in Cu-Zn-Ga. J. Less Common Metals 50, 223–236.

Seo, J., Schryvers, D., 1998. Tem investigation of the microstructure and
defects of CuZr martensite. Acta Mater. 46, 1177–1183.

Shu, Y., Bhattacharya, K., 1998. The influence of texture on the shape-
memory effects in polycrystals. Acta Mater. 15, 5457–5473.

Smyshlyaev, V., Willis, J., 1998. On the relaxation of a three-well energy.
Proc. R. Soc. Lond. A 455, 779–814.

Tadaki, T., Tokoro, M., Shimizu, K., 1975. Thermoelastic nature and crys-
tal structure of the Cu-Zn martensite related to the shape memory alloy.
Trans. Jap. Inst. Metals 56, 285–296.

37


