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Metallic iron (Fe 0 ) is currently used in subsurface and above-ground water filtration systems on a pragmatic basis. Recent theoretical studies have indicated that, to be sustainable, such systems should not contain more than 60 % Fe 0 (vol/vol). The prediction was already validated in a Fe 0 /sand system using methylene blue as an operational tracer. The present work is the first attempt to experimentally verify the new concept using pumice particles. A well-characterized pumice sample is used as operational supporting material and is mixed with 200 g of a granular Fe 0 , in volumetric proportions, varying from 0 to 100 %. The resulting column systems are characterized (i) by the time dependent evolution of their hydraulic conductivity and (ii) for their efficiency for the removal of Cu II , Ni II , and Zn II from a three-contaminants-solution (about 0.30 M of each metal). Test results showed a clear sustainability of the long term hydraulic conductivity with decreasing Fe 0 /pumice ratio. In fact, the pure Fe 0 system clogged after 17 days, while the 25 % Fe 0 system could operate for 36 days. The experimental data confirmed the view that well-designed Fe 0 PRBs may be successful at removing both reducible and irreducible metal species.

Introduction

Filter materials for water treatment are ideally used in small quantities. The high required affinity of used aggregates for efficient water treatment is not always readily available in natural materials. On the other hand, efficient filters should be designed to make the best use of these latter with the minimum of processing [START_REF] Smith | Aggregates for use in filter media[END_REF]. Alternatively, readily available natural materials (e.g. anthracite, gravel, pumice, sand) may be mixed to low cost synthetic aggregates/materials (activated carbon, blast furnace slag, metallic iron) for improving the performance of the resulting water treatment systems. The key properties determining the permeability, the stability and the longevity (sustainability) of granular filters include porosity/texture of used particles, particle size, particle shape and particle size distribution or material sorting [START_REF] Haarhoff | A falling-head procedure for the measurement of filter media sphericity[END_REF][START_REF] Kubare | Rational design of domestic biosand filters[END_REF][START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF]Caré et al., 2013). Two key interrelated properties required for a sustainable filter include: (i) high permeability combined with resistance to internal erosion of fines and (ii) low susceptibility to chemical attack (prerequisite 1).

Granular metallic iron (Fe 0 ), as currently used in water treatment, is a reactive material and its oxidative dissolution by water is a volumetric expansive process [START_REF] Pilling | The oxidation of metals at high temperatures[END_REF][START_REF] Caré | Mechanical properties of the rust layer induced by impressed current method in reinforced mortar[END_REF]. This means that Fe 0 is highly susceptible to chemical attack and the products of this chemical reaction are fines/precipitates (iron hydroxides and oxides). In other words, 'prerequisite 1' is not satisfied as the sustainability of Fe 0 filters is impaired by the same properties making Fe 0 an attractive material: the chemical reactivity of iron [START_REF] Liu | Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment[END_REF]). However, without considering these key properties, Fe 0 permeable reactive barriers (Fe 0 PRBs) have become an established technology for the treatment of contaminated groundwater [START_REF] O'hannesin | Long-term performance of an in situ "iron wall" for remediation of VOCs[END_REF][START_REF] Li | Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers[END_REF][START_REF] Li | Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers[END_REF][START_REF] Comba | A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers[END_REF][START_REF] Gheju | Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems[END_REF][START_REF] Ruhl | Evaluation of two-component Fe(0) fixed bed filters with porous materials for reductive dechlorination[END_REF].

Currently, about 180 Fe 0 PRBs have been installed worldwide (ITRC, 2011).

The fundamental mechanisms of contaminant removal in Fe 0 filtration systems are adsorption, coprecipitation and adsorptive size-exclusion [START_REF] Noubactep | A critical review on the mechanism of contaminant removal in Fe 0 -H 2 O systems[END_REF]2010;2011). Contaminant removal also implies iron corrosion (Lavine et el., 2001;[START_REF] You | Removal and inactivation of waterborne viruses using zerovalent iron[END_REF][START_REF] Jiao | Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion[END_REF][START_REF] Ghauch | Fe 0 -based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics[END_REF][START_REF] Gheju | Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations[END_REF]. Therefore, due to the volumetric expansive nature of this process ('prerequisite 1'), the remediation of contaminated groundwater necessarily results in the gradual clogging of the Fe 0 PRB, and thus in the deterioration of the permeable barrier hydraulic conductivity (permeability loss) over time [START_REF] Zhang | Effects of gas generation and precipitates on performance of Fe 0 PRBs[END_REF][START_REF] Courcelles | Influence of precipitates on hydraulic performance of permeable reactive barrier filters[END_REF][START_REF] Knowles | Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors[END_REF][START_REF] Amos | Modeling gas formation and mineral precipitation in a granular iron column[END_REF][START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF]Noubactep, 2013a).

The gradual clogging (permeability loss) of Fe 0 filtration systems has several origins: (i) biological activities like biofilm growth or biocorrosion, (ii) chemical processes like (hydr)oxide or calcite precipitation, (iii) physical processes allowing the retention of fine particles in the PRB pores, and (iv) production and accumulation of gases (mainly H 2 ). Pores clogging could generate a decrease in treatment performance and the bypass of untreated contaminated groundwater [START_REF] Courcelles | Influence of precipitates on hydraulic performance of permeable reactive barrier filters[END_REF][START_REF] Knowles | Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors[END_REF][START_REF] Amos | Modeling gas formation and mineral precipitation in a granular iron column[END_REF]. Therefore, PRBs clogging issues will require costintensive reactive material substitution, if satisfactory operational performance has to be maintained. The present work is focused on the characterization of PRB clogging due to pore filling by in-situ generated iron corrosion products neglecting the other possible phenomena that could contribute to permeability reduction (i.e. gas retention, biocorrosion, biofouling) [START_REF] Henderson | Impact of solids formation and gas production on the permeability of ZVI PRBs[END_REF][START_REF] Caré | Modelling the permeability loss of metallic iron water filtration systems[END_REF]Noubactep, 2013a).

The objective of the present work is to characterize the efficiency of Fe 0 /pumice granular mixtures for contaminant removal in column experiments containing 0 to 100 % Fe 0 (vol/vol). Fe 0 is admixed to a well-characterized pumice specimen [START_REF] Moraci | Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers[END_REF][START_REF] Calabrò | Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater[END_REF]Bilardi et al., 2013a), in different volumetric ratios. The model oxic solution (about 8 mg/L O 2 ) contained about 0.30 M of Cu II , Ni II , and Zn II . The evolution of the systems is characterized by determining the (i) extent of contaminant removal (or retention), and (ii) variation of hydraulic conductivity.
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Materials and methods

Chemicals

Copper(II) nitrate hydrate (purity 99.999), nickel(II) nitrate hexahydrate (purity 99.999) and zinc(II) nitrate hexahydrate (purity 99.000) were obtained from Sigma-Aldrich. The three heavy metals are used for their different affinity to iron oxides [START_REF] Wang | Relationships between heavy metals and iron oxides, fulvic acids, particle size fractions in urban roadside soils[END_REF][START_REF] Moreira | Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and non-competitive systems[END_REF][START_REF] Vodyanitskii | The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications[END_REF]. In addition, a survey of the electrode potential (E 0 ) of involved couples indicated differential redox behaviours. In fact, Zn II (E 0 = -0.763 V) can not be reduced by Fe 0 (E 0 = -0.440 V) while Cu (E 0 = 0.337 V) is readily reduced. The electrode potential of Ni (E 0 = -0.250 V)

is relatively close to that of Fe (∆E 0 = 0.19 V) such that quantitative reduction can not be expected.

Solid materials

Pumice: the used pumice originates from Lipari (Aeolian Islands, Sicily -Italy); its mineralogical [START_REF] Moraci | Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers[END_REF][START_REF] Calabrò | Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater[END_REF], it was used here as an operational inert material with the virtual capacity of storing corrosion products in its pores and retarding clogging [START_REF] Moraci | Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers[END_REF]Noubactep and Caré, 2010;Noubactep et al. 2012a;Noubactep et al. 2012b The microstructure of used Fe 0 and pumice was characterized using Mercury Intrusion Porosimetry (MIP) measurements and by Scanning Electron Microscopy (SEM) observations (see Supporting Information).

Columns experiments

The used solutions were obtained by dissolving copper nitrate, nickel nitrate and zinc nitrate in distilled water. The molar concentration of the resulting solution was as follows: 0.27 M Cu, 0.29 M Ni and 0.37 M Zn. The corresponding mass concentrations are 17 mg/L Cu, 17 mg/L Ni, and 23 mg/L Zn.

No attempt was made to control the mass of dissolved oxygen (DO) present during the column experiments. The main source of molecular oxygen is the air in the headspace of the PE bottles. It can be assumed that the model solutions contained up to 8 mg/L DO. The role of dissolved oxygen in accelerating the kinetics of aqueous iron corrosion is well-documented (e.g. [START_REF] Cohen | The formation and properties of passive films on iron[END_REF][START_REF] Stratmann | The mechanism of the oxygen reduction on rust-covered metal substrates[END_REF]. Using an oxic solution is a tool to enable the characterization of clogging under relevant conditions at reasonable experimental durations.

Simplified model solutions (no carbonates, bicarbonates and relevant cations) were used as this work is a seminal one focused on the impact of molecular O 2 on the clogging process of Fe 0 PRBs as influenced by pumice addition in various proportions. Testing more complex solutions relevant to simulate natural situation could be built on the results from these simplified systems.

Laboratory scale polymethyl methacrylate (Plexiglas) columns were operated in up-flow mode. The influent solution was pumped upwards from a single PE bottle using a precision peristaltic pump (Ismatec, ISM930). In all the tests the flow rate was maintained constant at a value of 0.5 mL/min.

Tygon tubes were used to connect inlet reservoir, pump, columns and outlet. Six plexiglas columns (50 cm long, 5.0 cm inner diameter) were used in the experiments (Fig. 1).

The ratio column diameter (D) to average material particle size (d) ensured the prevention of channelling and wall effects. In fact, used D/d ratio (actually 100 to 165) is by far larger than the threshold value of 50 [START_REF] Badruzzaman | The application of rapid small-scale column tests in ironbased packed bed arsenic treatment systems[END_REF].

Six different systems were investigated (Systems A through F) (Tab. 1). System A was the operational reference system containing only pumice (0 % Fe 0 ) and system F was a pure iron column (100 % Fe 0 ). The volumetric proportion of Fe 0 in the 4 other systems was 10, 25, 50 and 75 % following a procedure recently presented [START_REF] Noubactep | Designing laboratory metallic iron columns for better result comparability[END_REF]Noubactep et al. 2012b). In systems B to F, the mass of iron was fixed to 200 g. This mass represented either 100 % of the reactive zone (rz) or the relevant volumetric proportion of rz (Fig. 1, Tab. 1). Tab. 1

summarizes the theoretical (rz theor; i.e. the height of the column occupied by the reactive medium if Fe 0 and pumice were used in series and not as a mixture) and measured (rz eff i.e. the height of the reactive zone in the column effectively measured) reactive zone for each individual systems.

The hydraulic conductivity was determined during the column tests, by either constant-head (k > 10 -6 m/s) or variable-head (k < 10 -6 m/s) permeability methods [START_REF] Head | Permeability, shear strength & compressibility tests[END_REF], at given times to assess the permeability of the systems. During hydraulic conductivity determinations, the test was interrupted and a tank or a burette, filled with the same contaminated solution used during the test, was connected to the column in order to carry out the appropriate procedure. At the end of the permeability test the flow in the column was re-established with the operation mode illustrated before. The duration of these procedures was very limited therefore the disturbance to the test was fully acceptable. The column tests were performed at room temperature (21 ± 4 °C). Solution specimens for analysis were collected from the columns outlet at periodic intervals and the experiments where prolonged until contaminant breakthrough (system A) or a significant loss of the hydraulic conductivity (systems C to F) was observed; only system B was voluntarily stopped after 90 days. Tab. SI summarizes the experimental research program (Supporting Information).

The aqueous concentrations of Cu, Ni and Zn were determined by Atomic Absorption Spectrophotometry (AAS -Shimadzu AA -6701F) using conventional Standard Methods (APHA 2005).

Expression of the experimental results

In order to characterize the magnitude of tested systems for contaminant removal, the removal efficiency (E) and the specific removal (E s ) were calculated using Eq. 1 and Eq. 2 [START_REF] Moraci | Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF].

E = m rem /m in *100 (1) E s = m rem /m Fe *100 (2)
where m in is the mass of contaminant flowed into the column, m rem is the mass of removed contaminant, and m Fe the mass of Fe 0 present in the column.

Results and discussion

Contaminant removal

The presentation is based on the concept that tested contaminants are removed in Fe 0 columns (at pH > 5) by adsorption, co-precipitation and adsorptive size-exclusion [START_REF] Noubactep | A critical review on the mechanism of contaminant removal in Fe 0 -H 2 O systems[END_REF]2010;2011). Given the importance of the pH value for this concept, the results of pH monitoring are presented first.

pH value

Figure 2 summarizes the results of the evolution of the pH value in all investigated systems. It is shown that in the reference system (100 % pumice), the initial pH (6.3) decreased to 5.8 and remained constant for the entire column tests duration. The slight pH decrease could be attributed to acidic sites at the pumice surface (Eq. 3). In all other systems, the pH value first increased to value > 9.0 and progressively decreased to values close to 6.0 -7.0. The observed pH increase is certainly due to iron corrosion which consumes H + (Eq. 4).

SiO 2(s) + 2 H 2 O 1 H 4 SiO 4 (aq) (3) Fe 0 + 2 H + 1 Fe 2+ + H 2 (4)
The subsequent progressive decrease of the pH value is consistent with lowered kinetics of iron corrosion due to the formation of an oxide scale at the Fe 0 surface [START_REF] Cohen | The formation and properties of passive films on iron[END_REF][START_REF] Evans | Mechanism of rusting[END_REF][START_REF] Aleksanyan | Steady-state anodic dissolution of iron in neutral and close-to-neutral media[END_REF][START_REF] Nesic | Key issues related to modelling of internal corrosion of oil and gas pipelines -A review[END_REF]. The most important issue from Fig. 2 is that for all Fe 0containing systems, the effluent pH value is higher than 5.0. This suggests that contaminant removal by adsorption, co-precipitation and adsorptive size-exclusion [START_REF] Noubactep | Aqueous contaminant removal by metallic iron: Is the paradigm shifting?[END_REF]) could be quantitative within these columns.

Iron release

Figure 3 summarizes the results of the evolution of dissolved iron concentration in the effluent. It is evident from Fig. 3a, that the highest iron release was observed in the system with the lowest Fe 0 ratio (B, 10 % Fe 0 ). The lowest Fe 0 ratio corresponds to the highest amount of pumice (243 g -Tab.

1), acidifying the system after Eq. 3. The transport of iron corrosion products is certainly favoured at low pH values and may be favoured by larger porosity [START_REF] Nimmo | Porosity and pore size distribution[END_REF][START_REF] Woudberg | Predicting the permeability of very low porosity sandstones[END_REF][START_REF] Glover | Grain-size to effective pore-size transformation derived from electrokinetic theory[END_REF]. In other words, in all other systems, even more iron could be dissolved but it is retained within the system by (i) adsorption onto available iron oxides or onto pumice, or (ii) precipitation as iron (hydr)oxides [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF].

It is very important to notice that the extent of iron release depends primarily on the intrinsic reactivity of used Fe 0 . Although data on iron release from column experiments are available in the literature (e.g. [START_REF] Westerhoff | Nitrate removal in zero-valent iron packed columns[END_REF] it is impossible to make a quantitative comparison. In fact, a parameter (or an index) to characterize the intrinsic reactivity of Fe 0 is still lacking [START_REF] Noubactep | Exploring the influence of operational parameters on the reactivity of elemental iron materials[END_REF][START_REF] Noubactep | Characterizing the reactivity of metallic iron in Fe 0 /As-rock/H 2 O systems by long-term column experiments[END_REF].

Fig. 3b shows that, apart from system B (10:90), in all other systems less than 1 mg/L iron was released in the effluent solution. It is interesting to note that, for the remaining systems, the two columns with the largest proportion of Fe 0 (50 and 100 %) exhibited the highest iron release.

Metal concentration

Table 2 summarizes the results of the removal of Cu II , Ni II and Zn II in terms of removal efficiency E, and of specific removal efficiency E s for all the 5 systems containing Fe 0 . While, reading this table, it should be kept in mind that the experimental duration was variable as most of the experiments were stopped because of significant permeability loss (see Tab. 1). Nevertheless, it can be seen that 367 to 2881 mg of individual contaminants flowed into the columns and were retained with an efficiency E > 90.0 %. Moreover, the specific efficiency (E s ) varied from 1.7 to 13.6 mg contaminant per g of Fe 0 .

An important feature from Tab. 2 regards the suitability of E s values (Eq. 2) for the characterization of processes occurring in Fe 0 /H 2 O systems [START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF].

Normalizing the extent of contaminant removal (m rev -Eq. 2) by the available amount of Fe 0 (here 200 g) is only valid, if there is a clear linear relationship between iron corrosion and contaminant removal. Such a relationship has not been demonstrated in the Fe 0 remediation literature despite repeated reports on reaction orders. Moreover, an adequate argumentation for adsorptive processes has been simply transposed to systems, where adsorption is only one (and not necessarily the dominant) removal path.

In pure adsorption systems (e.g. activated carbon, iron oxide, clay), the whole mass of adsorbing material is present at the start of the removal process (t 0 or t = 0), its adsorption capacity can be exhausted with the time. In a Fe 0 system on the contrary, adsorbing species are generated in situ after the start of the experiment (t > t 0 ). Accordingly the extent of contaminant removal depends on the kinetics of iron corrosion and the affinity of contaminants for corrosion products as far as pure adsorption is concerned. Additionally, contaminants are also removed by co-precipitation and sizeexclusion. In other words, normalizing the extent of contaminant removal by the Fe 0 amount requires at least the knowledge of the intrinsic reactivity of used Fe 0 and the impact of operational parameters thereon. The most relevant operational parameter in the present work is the volumetric Fe 0 :pumice ratio.

Figure 4 shows that the influence of the volumetric Fe 0 :pumice ratio on the removal efficiency of Cu 2+ , Ni 2+ , Zn 2+ is very similar to the influence of the adsorbent amount on adsorption of Mn 2+ by clay minerals [START_REF] Goldani | A study employing differents clays for Fe and Mn removal in the treatment of acid mine drainage[END_REF]. These authors reported on a decreasing trend of the adsorption capacity (q e value / mg g -1 ) for Mn 2+ with increasing adsorbent amount (50 to 500 mg). This observation was mainly rationalized by the fact that a large adsorbent amount reduces the unsaturation of the adsorption sites. Correspondingly, the number of such sites per unit mass comes down resulting in comparatively less adsorption at higher adsorbent amount. In the present work, the Fe 0 amount is constant (200 g), only its volumetric ratio in the mixture to pumice varies.

Moreover, a higher Fe 0 ratio is coupled to a shorter reactive zone (e.g. 2.6 cm for 100 % Fe 0 and 26.2 cm for 10 % Fe 0 ). Thus, a higher Fe 0 volumetric ratio may create particle aggregation (cementation), decreasing the total number of adsorption sites, decreasing the porosity of the reactive zone, and increasing the diffusion path to adsorption sites. Altogether, these factors contribute to the decrease of the amount of contaminant adsorbed, assuming that the same amount of adsorbent is generated in all systems. As summarized in Tab. 2, except system B (10 % Fe 0 ), metal removal was quantitative in all other systems.

Contaminant breakthrough was observed in other systems only short before the experiment was stopped and was mainly attributed to transport through preferential flow paths (Miyajima and Noubactep, 2013a and ref. cited therein). Even under such conditions the concentration of Cu and Zn remained below 1 mg/L whereas the concentration of Ni exceeded 4 mg/L for system F (100 % Fe 0 ) and system D (50 % Fe 0 ) but not for system E (75 % Fe 0 ). This anomaly in the sequence D/E/F confirms that the process responsible for metal breakthrough near system clogging is probably a meta-stable one (preferential flow).

Mechanism of contaminant removal

The experimental data previously described has shown that contaminants are quantitatively removed in columns with volumetric Fe 0 ratio higher than 10 % until the system is almost clogged.

In the system with 10 % Fe 0 , quantitative iron release is observed (Fig. 5). Quantitative iron release coincided with minimal contaminant removal (or contaminant breakthrough) as discussed above.

This section further discusses the behaviour of system B (Fig. 5a).

The ionic radii of the investigated cations increase in the order Ni 2+ < Cu 2+ < Zn 2+ . The metallic ions are removed by four different mechanisms [START_REF] Herbert | Metal retention by iron oxide precipitation from acidic ground water in Dalarna, Sweden[END_REF][START_REF] Wang | Relationships between heavy metals and iron oxides, fulvic acids, particle size fractions in urban roadside soils[END_REF][START_REF] Vodyanitskii | The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications[END_REF]: (i) co-precipitation with iron hydroxides, (ii) adsorption onto the (hydr)oxide surfaces, (iii) isomorphic substitution for Fe in the iron oxide structure, or adsorptive size-exclusion. In multielement systems, the most common reported affinity sequence for iron oxides and soils is Cu > Zn > Ni [START_REF] Moreira | Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and non-competitive systems[END_REF]. This trend is confirmed by Fig. 5b.

Fig. 5a illustrates the fact that contaminants breakthrough occurs when increased iron release is observed. For example, no significant breakthrough was observed in system B until t=30 days although up to 8 mg/L Fe was released into the outlet solution. For t > 30 days Zn and Ni breakthrough occurs and the breakthrough magnitude is in agreement with the affinity sequence for iron oxides (Cu > Zn > Ni). Accordingly, breakthrough is first observed for less bounded Ni followed by Zn. As concerning Cu no breakthrough was observed through the end of the experiment. At first glance, this observation could be attributed to Cu II cementation at the surface of Fe 0 in the column. In fact, Cu reduction to elemental Cu (Cu 0 ), as mentioned above, is very favourable and is used in many hydrometallurgical processes (Gros et al., 2011a;2011b). However, because Cu removal in this study occurred at pH > 5 (section 3.2.1), the Fe 0 surface was necessarily covered by iron (hydr)oxides [START_REF] Aleksanyan | Steady-state anodic dissolution of iron in neutral and close-to-neutral media[END_REF][START_REF] Nesic | Key issues related to modelling of internal corrosion of oil and gas pipelines -A review[END_REF] and was not directly accessible to Cu II (Ni II and Zn II ). More detailed discussion on the removal of metallic ions by Fe 0 in multielements system is given for instance by [START_REF] Cantrell | Zero-valent iron for the in situ remediation of selected metals in groundwater[END_REF], [START_REF] Qiu | Removal of contaminants from aqueous solution by reaction with iron surfaces[END_REF], [START_REF] Bartzas | Laboratory evaluation of Fe 0 barriers to treat acidic leachates[END_REF], [START_REF] Komnitsas | Inorganic contaminant fate assessment in zero-valent iron treatment walls[END_REF]2007) and [START_REF] Scott | Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants[END_REF].

It should be recalled that in a Fe 0 /H 2 O system, so-called structural Fe II (adsorbed Fe II ) is available and is, in some circumstances, a more efficient reducing agent than Fe 0 [START_REF] White | Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides[END_REF].

Accordingly, Cu II might be quantitatively removed within the oxide scale on iron. Even if Cu II is reduced at the surface of Fe 0 , it will be enmeshed within the matrix of iron oxides as corrosion proceeds. In conclusion, aqueous Cu II is also permanently removed by the process of iron corrosion (enmeshment or co-precipitation). It should be also remembered that the stronger affinity of Cu II for iron oxides (adsorption) is sufficient to rationalize the absence of Cu breakthrough for 90 days (Fig. 5b).

Hydraulic conductivity

The results presented in Fig. 6 clearly demonstrate that granular Fe 0 /pumice mixtures are more sustainable in terms of long term permeability than the pure Fe 0 PRB for the decontamination of used model solution. Fig. 6a shows that the pure pumice systems exhibited an initial porosity of 72.6 % while the porosity of the pure Fe 0 system was 49.6 % (Tab. 1). Fig. 6b shows that the 100 % Fe 0 system was clogged after 17 days; the 25 % Fe 0 system after 37 days and the 10 % Fe 0 system was still highly permeable after 90 days. Even though the 10 % Fe 0 system was not efficient at removing Ni and Zn, such systems could be used to generate dissolved Fe for other purposes including: (i) in-situ generation of Fe for contaminant removal [START_REF] Khan | Appraisal of a simple arsenic removal method for groundwater of Bangladesh[END_REF][START_REF] Pokhrel | Biological filtration for removal of arsenic from drinking water[END_REF]) and (ii) oxygen scavenger to sink the O 2 concentrations in above-ground devices [START_REF] Mackenzie | Mineral precipitation and porosity losses in granular iron columns[END_REF]Noubactep and Schöner, 2010;Noubactep et al., 2010).

A fundamental feature from Fig. 6a is that it combines contaminant removal (here E s value for Zn) and initial porosity. The initial porosity decreases linearly with increasing Fe 0 ratio. This behaviour is rationalized by the fact that a compact material (Fe 0 ) is admixed to a porous one (pumice). The initial pore volume will be progressively filled by in situ generated iron corrosion products (Caré et al., 2013) which adsorb and co-precipitate metal ions. Reduced pore volume increases sizeexclusion efficiency while decreasing permeability. The challenge of designing hybrid Fe 0 /material systems is to find out the optimal system concealing sustained permeability and efficient contaminant removal. Fig. 6a confirms/shows unambiguously that such a system should contain as less Fe 0 (volumetric proportion) as possible (Caré et al., 2013;[START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF].

Considering the factor of 65 times to account for the differential kinetics of Fe 0 oxidation under oxic (8 mg/L O 2 ) and anoxic (0 mg/L O 2 ) conditions [START_REF] Cohen | The formation and properties of passive films on iron[END_REF], it can be argued that the shortest experimental duration (17 days) reported here could corresponds to about 1105 days under anoxic conditions. These are more than 3 years necessary to observe clogging under the experimental conditions of this work after 17 days. This result justifies the use of oxic conditions to investigate target processes under laboratory conditions. By performing parallel experiments with various amounts of molecular O 2 [START_REF] Vidic | Role of dissolved oxygen on the adsorptive capacity of activated carbon for synthetic and natural organic matter[END_REF] a better characterization of the impact of the availability of molecular O 2 is possible. This effort is even urgently needed as Fe 0 beds have been proposed for an array of applications varying from pure anoxic (groundwater remediation) to oxic (household filter) systems. %) corresponds to system F (100 % Fe 0 ) and the largest (70.5 %) to system B (10 % Fe 0 ). It is seen that the experimental duration (system sustainability) increases almost linearly with decreasing Fe 0 proportion from 100 to 25 %. From 25 to 10 % Fe 0 an abrupt increase of the experimental duration is observed. These results are qualitatively confirmed by the evolution of the residual porosity for η = 6.4 (Fig. 7a) where η is the coefficient of volumetric expansion of rust specimens [START_REF] Caré | Mechanical properties of the rust layer induced by impressed current method in reinforced mortar[END_REF].

The residual porosity (Φ(t)/Φ 0 ) is defined as the ratio of the porosity at time t Φ(t) to the initial porosity Φ 0 induced by the formation of rust leading to porosity loss according to:

V V 1 t 0 0 1 2 3 Φ ∆ - = Φ Φ (5)
Where ∆V= (η -1)*V is the effective volumetric expansion of the initial volume V of Fe 0 .

The residual porosity which, acting as an indicator of the hydraulic conductivity, is given for all systems in Fig. 7. The observed time-dependant decrease of the hydraulic conductivity is attributed to two different factors: (i) the decrease of the effective pore-size as concentric layers of iron oxides are formed on Fe 0 , and (ii) the filling of pores by precipitated Fe species that escaped out of the oxide scale. Permeability loss due to in-situ generated particles is retarded when larger particle sizes are used. Accordingly, as the grain-size increases, the loss of hydraulic conductivity should follow the inverse trend. In other words, the kinetics of the occupation of the voids depends on the grainsize of used particles (effective pore-size).

Theoretically, for spherical grains of uniform size (monosized), the grain diameter will not impact initial porosity but only the void diameter. However, the total porosity generally increases with increasing sorting (grain size distribution), decreases with increasing sphericity and roundness of particles, decreases with the increasing of relative density (closer packing) [START_REF] Gibb | Effective porosity of geologic materials: first annual report[END_REF]. All these aspects have to be considered to discuss literature results as well.

It appears from Fig. 7a that the residual porosity tends to zero (Φ(t)/Φ 0 = 0 or permeability loss) for clogged systems (% Fe 0 1 25 -clogging precedes Fe 0 depletion). For Fe 0 < 25 %, Φ(t)/Φ 0 2 0 at Fe 0 depletion in accordance with the evolution of the hydraulic conductivity and the test duration. At first glance, this observation could be misinterpreted as the confirmation of the proposed model. But under the experimental conditions, Fe 0 was not completely depleted. Accordingly, this experimental evidence rather suggests that the entrance zone of the column could have been rapidly clogged due to elevated O 2 levels [START_REF] Mackenzie | Mineral precipitation and porosity losses in granular iron columns[END_REF]. The presence of O 2 leads to iron (hydr)oxides with higher expansion coefficient (η) implying a more rapid decrease of the residual porosity (Fig. 7b). Fig. 7b depicts the modelled variation of the residual porosity for 3 different values of η (2.08, 3.03 and 6.4). It is seen that under ideal conditions (uniform corrosion), the sustainability of a Fe 0 filter depends on the availability of O 2 . Accordingly the most sustainable systems is the one operating under conditions where Fe 3 O 4 (η = 2.08) is the major iron corrosion product (anoxic conditions). These conditions could be obtained in a second column in series with a first one acting as O 2 scavenger.

The fact that observed preservation of permeability with time is coupled with a decrease of contaminant removal efficiency suggests that for any Fe 0 /additive couple, an increase of filter sustainability with decreasing Fe 0 proportion down to a threshold value (here 25 % Fe 0 ) would be observed.

This study has traceably demonstrated that admixing non expansive material with Fe 0 is a tool to increase permeable reactive barriers sustainability. In other words, an efficient but not sustainable system (100 % Fe 0 ) is transformed into an efficient and more sustainable one by admixing a certain volumetric proportion of pumice (here ≥ 75 %). The admixing material (here pumice) should necessarily be less expensive than Fe 0 ; thus, cost savings could be regarded as a positive side effect of increased performance.

Significance for future works

This study is a continuation of a broad-based work aiming at designing non-site-specific Fe 0 filtration systems for water treatment and environmental remediation in its third step.

The first step consisted in identifying the common underlying mechanisms for contaminant removal [START_REF] Noubactep | Processes of contaminant removal in "Fe 0 -H 2 O" systems revisited. The importance of co-precipitation[END_REF][START_REF] Noubactep | A critical review on the mechanism of contaminant removal in Fe 0 -H 2 O systems[END_REF]2010;2011). Adsorption, co-precipitation and size-exclusion were identified as fundamental paths for water treatment in Fe 0 packed beds [START_REF] Noubactep | Aqueous contaminant removal by metallic iron: Is the paradigm shifting?[END_REF]. This result belittled the importance of chemical reduction in the process of contaminant removal in Fe 0 /H 2 O systems and clearly demonstrated that Fe 0 is not a relevant reducing agent under environmental conditions. The strong fact that Fe 0 is the parent of all reducing species (e.g. Fe II , Fe 3 O 4 , green rust, H/H 2 ) should never be misinterpreted as 'contaminant reduction coupled with electrochemical iron corrosion' (Noubactep, 2013b).

The second step consisted in writing the dimensionless equation of a Fe 0 packed beds (Noubactep and Caré, 2010;Noubactep et al., 2010;[START_REF] Noubactep | Designing laboratory metallic iron columns for better result comparability[END_REF]Noubactep et al., 2012a;Noubactep et al., 2012b;Caré et al., 2013). It is important to notice, that the equation is based on the volumetric fraction of the packed beds available for 'storing' corrosion products (total porosity) [START_REF] Noubactep | Designing laboratory metallic iron columns for better result comparability[END_REF]. This theoretical work has shown that the volumetric ratio of Fe 0 in a granular mixture should ideally not exceed 60 %. The basics for a systematic research for non-sitespecific Fe 0 filtration systems were established. In particular each Fe 0 material should be characterized for its intrinsic reactivity; all used materials should be characterized for their form, homogeneity and shape (Crane and [START_REF] Noubactep | Characterizing the reactivity of metallic iron in Fe 0 /As-rock/H 2 O systems by long-term column experiments[END_REF]Noubactep et al., 2012a;Caré et al., 2013).

The current third step consists in validation the equation of the column [START_REF] Calabrò | Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater[END_REF]Biliardi et al., 2013a;Biliardi et al., 2013b). In this effort methylene blue (MB) was positively tested as an operational tracer [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF][START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF]. Experiments with MB confirmed theoretical predictions that a pure Fe 0 bed is not sustainable. Moreover, it could be shown that the optimal volumetric Fe 0 ratio for sustainable filters is lower 50 %. Given the large density difference between Fe 0 (7.8 g cm 3 ) and commonly tested additives (e.g. anthracite, gravel, pumice, sand) (< 3.0 g cm 3 ), this results clearly shows that the commonly used 1:1 weight ratio is not optimal as well. Experiments with MB suggested that the optimal Fe 0 volumetric ratio in a dual Fe 0 /sand system is comprised between 30 and 50 %.

The present work has systematically tested the Fe 0 /pumice system for the first time using Cu, Ni and Zn as model contaminants. The results showed that the optimal Fe 0 ratio for a sustainable filter is 25 %. This result could be regarded as close to 30 % as determined by [START_REF] Btatkeu | Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies[END_REF]. However, under their experimental conditions, these authors could not experimentally document permeability loss. Accordingly, the present work has provided the most reliable optimal Fe 0 ratio for sustainable Fe 0 filtration systems. In other words, this work provide the following rule of thumb for further research (including pilot plant studies): "mix one volume of Fe 0 and 3 volumes of the additive(s)". The universal validity of this rule of thumb relies on the evidence that it is based on a dimensionless equation. Thus, if a filter has to contain 1 kg Fe 0 , the volume occupied by this Fe 0 mass is used as unit and three units volume of the additives of comparable size (and shape) are to be added and homogenized.

Concluding remarks

Environmental remediation and water treatment using metallic iron (Fe 0 ) in packed beds is an established technology. Despite two decades of active research, this technology is still mostly regarded as an innovative one or has been simply declared a developed one. However, a developed technology is a technology that has established the scientific basis of the involved processes. This work has clearly confirmed theoretical predictions that: (i) pure Fe 0 beds are not sustainable as a rule, (ii) a bed made up of 25 % Fe 0 (vol/vol) and 75 % pumice is probably the most efficient system concealing sustained permeability and increased efficiency for contaminant removal, (iii) the specificity of contaminant removal in Fe 0 filters fundamentally depends on the adsorptive affinity to iron oxides (and not on the redox affinity).

The knowledge that the most sustainable filter is made up of more than 70 % (vol/vol) of pumice corroborates the view that sustainable Fe 0 /aggregate filters are Fe 0 -amended aggregate filters (e.g.

Fe 0 -amended pumice filter or Fe 0 -amended sand filter). Most common natural aggregates are anthracite, sand, gravel, pumice or crushed rock. However, manufactured aggregates (e.g. blast furnace slag) can also be used as well. Basically there is an infinite number of Fe 0 -amended filters as relevant aggregates may include activated carbon and biomaterial (e.g. wood and coconut shell).

A Fe 0 -amended filter can be regarded as a size-exclusion system in which size exclusion is improved by in situ generated iron corrosion products. This is a typical case of self-filtration. The challenge for future works is the proper design of these filters.

Further research at laboratory scale is needed to develop methodologies for the Fe 0 filter design.

This effort should be accompanied by numerical modelling. Pilot scale installations are needed afterwards to fine tune determine the practicality of several aspects optimised at lab scale. 

SI Material characterization

SI1 Experimental Section

The microstructure of used Fe 0 and pumice was characterized using mercury intrusion porosimetry (MIP) measurements and by scanning electron microscopy (SEM) observations.

Moreover grain size distribution and the geotechnical parameters (i.e. coefficient of uniformity and mean grain size) derived from it have been determined.

SI1.1 MIP

MIP is performed by injecting mercury into a desaturated porous material. The in-pore invasion process is supposed to be governed by the Washburn-Laplace equation in which the size of intruded pore accessed, assimilated to cylindrical pores are inversely proportional to the applied pressure according to Eq. 5 (Washburn, 1921):

p 2 cos P R γ θ = - (SI1)
where P is the mercury injection pressure (Pa), γ is the surface tension of mercury (0.485 N/m), θ is the contact angle between solid and mercury (θ = 130°) and R p is the pore access radius for cylindrical pores (m). MIP measurements have been carried out using a Micromeritics instrument apparatus type (AutoPore IV 9500). The instrument is capable of a minimum intruding pressure of 3.4 kPa and a maximum pressure of 227 MPa, so that the pore radius ranges from 2.7 nm to 180 µm.

For pumice particles the measured pore data allow determining the inter-particular and intraparticular porosities of the pumice particles, the apparent specific weight ρ as (defined as the ratio of the mass and the apparent volume of the pumice particles) and the specific weight ρ s (defined as the ratio of the mass and the volume of the solid phase of the pumice particles).

SI1.2 SEM

During SEM (Hitachi, type: s3400N) observations, secondary electron mode was used. Pumice particles were coated with carbon. The observations enable a characterization of the morphology of both materials and of the inner pore structure of pumice.

SI2

Results and Discussion SI2.1 SEM Observations of Fe 0 and pumice particles SEM images detailing the microstructures of, respectively, Fe 0 and pumice particles are shown in Fig. SI1. These observations show that the Fe 0 and pumice particles are irregular. It can be observed that the pumice particles (grains) are porous with oval shaped and fibrous cavities (or pores). The diameter of these cavities at the surface is lower than about 40 µm (radius 20 µm).

SI2.2 MIP measurements of pumice particles

As shown in Fig. SI2, where for graphical convenience the pore size distribution is as usual expressed as

( ) ( ) d log d log i V r r
where V i is the volume intruded by mercury and R is the pore equivalent radius, pumice exhibits a well defined peak around 70 µm and pores with equivalent radius inferior to 20 µm. According to the SEM observations, these results show that the pores with radius inferior to 20 µm can be attributed to the inner porosity of the pumice particles, so that the pores with equivalent radius superior to 20 µm can be attributed to the inter-particular porosity. The total porosity of the pumice medium Φ 0 (%)in the conditions used in MIP tests, is defined as:

Φ 0 = V mercury intruded * M / V (SI3)
Where V mercury intruded is the total intrusion volume (mL/g), M the mass of pumice (g) and V the volume of the pumice medium (mL).

The volume of the inter-particular volume Φ inter (%) is given by: Two types of porosity are observed: inter particular porosity Φ inter (R > 20µm) and intra particular porosity ϕ pp (R < 20µm).

Φ inter = V R>20µm / V (SI4)
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 SI1 Figure SI1: SEM images of the Fe 0 particles (A) and of the pumice particles (B).

Figure SI2 :

 SI2 Figure SI2: Cumulative volume intruded (mL/g) and pore size distribution of the pumice particles.

Table 1 :

 1 Main characteristics of the studied columns. "Volume" is the apparent volume of granular medium. "rz theor " is sum of the volumes occupied by the two media separately. "rz eff " is the measured reactive zone. The estimated porosity and the duration of the experiment are also given.

	System	Volume		Mass		Column	
		Fe 0	Pumice	Fe 0	Pumice	rz theor	rz eff.	Porosity* Duration
		(%)	(%)	(g)	(g)	(cm)	(cm)	(%)	(day)
	A	0	100	0.0	269.7	29.69	30.0	72.6	45
	B	10	90	200.0	242.7	26.72	26.2	70.5	90
	C	25	75	200.0	80.9	10.48	9.8	64.9	36**
	D	50	50	200.0	27.0	5.24	5.0	59.5	28**
	E	75	25	200.0	9.0	3.49	3.4	54.8	22**
	F	100	0	200.0	0.0	2.62	2.6	49.6	17**
	* in this values the internal porosity of the pumice is also included			
	** stopped because of excessive permeability loss				

Table 2 :

 2 Magnitude of contaminant removal in investigated systems. m in is the mass of contaminant flowed into the column, E is the removal efficiency and E s the specific removal.

	System		m in			E			Es
		Ni	Cu	Zn	Ni	Cu	Zn	Ni	Cu	Zn
			(mg)			(%)			(mg/g)
	B	2130 2130 2881 90.1 99.8 94.2 9.58 10.6 13.6
	C	881.3 881.3 1192 98.7 99.9 99.9 4.53 4.40 5.96
	D	612 612 828 93.3 99.9 99.6 2.86 3.06 4.12
	E	514.1 514.1 695.5 97.9 99.9 99.9 2.52 2.57 3.47
	F	367.2 367.2 496.8 94.7 99.9 99.8 1.74 1.83 2.48

Table SI1 :

 SI1 Composition and experimental duration of the studied columns. *-marked systems were stopped because of excessive permeability loss.

	System	Composition	Duration
		(Fe 0 :pumice)	(day)
	A	0:100	45
	B	10:90	90
	C	25:75	36*
	D	50:50	28*
	E	75:25	22*
	F	100:0	17*

Table SI2 :

 SI2 Characteristics of Fe 0 and pumice particles tested by MIP.

		Fe 0	Pumice
	Specific weight ρ s (g/cm 3 )	7.78	1.92
	Apparent specific weight ρ as (g/cm 3 )	7.78	1.14
	Compactness C (-)	0.51	0.45
	Inter particular porosity Φ inter (%)	49.6	54.8
	Intra particular porosity ϕ pp (%)	-	41.0
	Porosity Φ 0 (%)	49.6	73.3
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Where V R>20µm (mL) is the volume of intruded mercury in pores with radius superior to 20 µm.

It can be noticed that the compactness C pumice (-) of the pumice particles, defined as the ratio of the apparent volume of the particles to the total packing volume (V = volume of the medium), is given by:

Furthermore, the volume of the intra-particular ϕ pp is given by:

Where V R<20µm (mL) is the volume of intruded mercury in pores with radius inferior to 20 µm.

The results are given in Tab. SI2. The total porosity of the pumice medium has been estimated to be 73.3 % and the inner porosity of the pumice to be 41.0 %.

SI2.3 Grain size distributions of Fe 0 and pumice particles

The grain size distributions of Fe 0 and pumice particles are shown in Fig. SI3.

The main geotechnical parameters derived by the grain size distributions are the coefficient of uniformity U= d 60 /d 10 (i.e. ratio between the diameters corresponding to 60 and 10 % finer in the grain size distribution) and the mean grain size d 50 (i.e. the diameters corresponding to 50 % finer in the grain size distribution).

The mean grain size (d 50 ) is about 0.5 mm and 0.3 mm for ZVI and Pumice respectively, their coefficients of uniformity (U) are, respectively 2 and 1.4 and therefore both materials are characterised by a uniform grain size distribution.

SI2.4 Porosity of the columns

Under the hypothesis that the relative density (packing) of granular mixtures are the same in the columns and in the MIP tests, the estimated porosity of the reactive zone can be given for systems

A through E (Tab. 1, main text) according to: