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Abstract 8 
 9 
Important damages occur in small headwater catchments when they are hit by severe 10 
storms with complex spatio-temporal structure, sometimes resulting in flash floods. As 11 
these catchments are mostly not covered by sensor networks, it is difficult to forecast 12 
these floods. This is particularly true for road submersions, representing major concerns 13 
for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts 14 
(QPE/QPF) especially based on radar measurements could particularly be adequate to 15 
evaluate rainfall-induced risks. Although their characteristic time and space scales 16 
would make them suitable for flash flood modelling, the impact of their uncertainties 17 
remain uncertain and have to be evaluated. 18 
 19 
The Gard region (France) has been chosen as case study. This area is frequently affected 20 
by severe flash floods, and an application devoted to the road network has also been 21 
recently developed for the North part of this region. This warning system combines 22 
distributed hydro-meteorological modelling and susceptibility analysis to provide 23 
warnings of road inundations. The warning system has been tested on the specific storm 24 
of the 29-30 September 2007. During this event, around 200 mm dropped on the South 25 
part of the Gard and many roads were submerged. Radar-based QPE and QPF have 26 
been used to forecast the exact location of road submersions and the results have been 27 
compared to the effective road submersions actually occurred during the event as listed 28 
by the emergency services.  29 
 30 
Used on an area it has not been calibrated, the results confirm that the road submersion 31 
warning system represents a promising tool for anticipating and quantifying the 32 
consequences of storm events at ground. It rates the submersion risk with an acceptable 33 
level of accuracy and demonstrates also the quality of high spatial and temporal 34 
resolution radar rainfall data in real time, and the possibility to use them despite their 35 
uncertainties. However because of the quality of rainfall forecasts falls drastically with 36 
time, it is not often sufficient to provide valuable information for lead times exceeding 37 
one hour.  38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
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1- Introduction 51 
 52 
Mediterranean regions are subject to violent flash floods, resulting in heavy economic 53 

damages, estimated at a billion Euros in France over the last two decades Gaume et al., 54 

2004 and, in some cases, human casualties, as illustrated by the recent events in Nîmes 55 

(1988), Vaison-la-Romaine (1992), Tarragona (1994), Biescas (1996), Corbière (1999), 56 

Alger (2001), Gard (2002) and Var (2010). Flash floods are identified as the 57 

consequence of an intense rain event producing several hundreds of mm in few hours 58 

(Creutin and Borga, 2003; Collier, 2007; Younis et al., 2008). During this type of event, 59 

spatial and temporal variability of rainfall appears to be the main factor controlling the 60 

hydrological response (Chancibault et al., 2007; Le Lay and Saulnier, 2007) and this 61 

evolution is very difficult to predict. Flash floods typically occur in quick response 62 

watersheds for two main reasons: (i) a short concentration time due to the size generally 63 

under few hundreds km2, (ii) flood flows that are essentially composed of surface runoff 64 

water or at least fast responding runoff processes (Creutin, 2009). That makes very 65 

difficult for emergency management services to anticipate and deliver flash flood 66 

warnings in real time.  67 

This is particularly true concerning the road network that could be strongly affected 68 

during flash floods. In a situation of risk, the state of the road network has appeared as a 69 

major concern within these affected regions for two main reasons. First, many flash 70 

flood victims are in fact motor vehicle passengers trapped in inundated roads (Staes et 71 

al., 1994; Bourque et al., 2007). Second, emergency services require a clear overview of 72 

possible road conditions in order to efficiently plan interventions and identify safe 73 

access or evacuation routes.  74 

Based on these considerations, a Road Inundation Warning System (RIWS) for flash 75 

flood prone areas has been recently developed and tested on the North part of the Gard 76 

Region (France) frequently affected by flash floods (Versini et al., 2010a). Coupling a 77 

susceptibility analysis of river road intersections (representing one part of the 78 

vulnerability to flooding) based on geographical information (Versini et al., 2010b and 79 

a) distributed hydrological model, the RIWS has provided promising results. Tested on 80 

real cases, it was able to correctly assess the inundation risk with an acceptable level of 81 

accuracy. Nevertheless, this previous work has opened many ways of investigation 82 

before being applied in a decision support system. First, operational services interested 83 
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by the RIWS has advised to study its possible application on a territory where it has not 84 

been calibrated to test the transferability of the whole prototype. Secondly, as the spatio-85 

temporal distribution of rainfall has appeared to have a major influence on the state of 86 

the road network, the hydrological model had to be adapted to take into account 87 

distributed rainfall products, especially those based on weather radar. Indeed, one 88 

important feature of road submersion is the significant number of targets (that could be 89 

located on very small watersheds) regarding the limited coverage of rain and stream 90 

gauges, making this framework close to ungauged conditions. For example, the Gard 91 

region (580 km2) is covered by 38 stream gauges for 2480 crossing structures. 92 

Accurate quantitative precipitation estimates (QPE) are also crucial for operational flash 93 

flood forecasting. Ground-based operational weather radars currently appear as the only 94 

instrument able to provide valuable information with a high spatial (1 km2) and 95 

temporal (tens of minutes) resolution. The density of automated rain gauges network is 96 

generally too low and not adapted to flash flood short time and space resolutions. In this 97 

case rainfall estimation uncertainties are still a major factor limiting the accuracy of 98 

rainfall-runoff modelling (Moulin et al., 2009). Moreover, rainfall estimated using 99 

satellite remote sensing is still under development and not sufficiently advanced to be 100 

used in an operational mode. Consequently, radar QPE is accepted as one of the most 101 

reliable data that can be used for hydrological applications (Corral et al., 2000; Borga, 102 

2006; Cole and Moore, 2008).  103 

This is also the case concerning quantitative precipitation forecasts (QPF). Although 104 

few works have focused on using QPF based on weather radar data, results show 105 

significant improvements in the quality of forecasted hydrographs (Corral et al., 2000; 106 

Dolciné et al., 2001; Berenguer et al., 2005; Borga, 2006; Boudevillain et al., 2006; Van 107 

Horne et al., 2006; Vivoni et al., 2006; Cole and Moore, 2008). These radar-based QPF 108 

are usually limited to forecasting time ranging from 10 to 120 minutes. Tested on rather 109 

large basins (from hundreds to thousands km2), the anticipation of flow peak could be 110 

estimated, with enough quality, with a lead-time for up to few hours. It represents a 111 

notable improvement for fast response basins such those in Mediterranean regions. It is 112 

also recognized that the nature of the event has an important effect on the quality of the 113 

forecasted flow estimates. In Collier, 2007) a review is made to study how flash floods 114 

are forecasted considering the limitations and uncertainties involved in both 115 

meteorological and hydrological models of the forecasting system. The author 116 
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concludes the possibility to deliver valuable information from a flash flood risk 117 

management point of view limited to a lead-time of two hours.  118 

This paper deals with a practical application of this statement. The main objective of the 119 

present work is to test the use of radar-based QPE and QPF on a specific hydrological 120 

application devoted to the road network. The spatio-temporal variability information 121 

provided by the radar based precipitation estimates and forecasts will be tested using the 122 

RIWS. The warning system will be firstly transported and adapted to a new basin 123 

located in the South part of the Gard region. It will be then applied to reproduce the 124 

specific storm of 29-30 September 2007 during which 19 roads were submerged. 125 

Predicted road inundations will be compared to what actually occurred. This will allow 126 

us to assess both the transfer of the RIWS on an area where it has not been calibrated, 127 

and the use of the available QFE and QPF products for flood forecasting in a framework 128 

reproducing operational conditions.   129 

This paper is organised as follows: the next section presents the scope of study in more 130 

detail, including a description of the area of study, the rainfall products, and the RIWS. 131 

Section 3 describes the methodology applied to: i) transfer and test the RIWS to the new 132 

domain, and ii) test the information provided by the QPE/QPF, and their benefits in the 133 

detection and prediction of inundated roads. The results obtained during the 29-30 134 

September 2007 storm are presented in Section 4. Finally, Section 5 will conclude on 135 

both topics presented in Section 3. 136 

 137 
 138 
2- Presentation of the case study 139 
 140 
2-1 The Gard region 141 

The Gard region (South of France) was used to develop and test the RIWS because it is 142 

frequently affected by severe flash floods (Delrieu et al., 2005; Gaume et al., 2009). 143 

This region has a typical Mediterranean climate characterized by frequent and very 144 

heavy storm events occurring especially in autumn. The 1 in 10 year daily precipitation 145 

exceeds 100 mm on the plateaus (eastern part) and 150 mm in the mountainous western 146 

part of the area (CNRS/INPG, 1997). Single storm events can produce locally hundreds 147 

of millimetres within few hours.  148 

During these storms, roads are often flooded. Significant inundation occurs at least once 149 

a year on average on the same vulnerable section of the road network. 40% of the 150 
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victims of floods in the Gard during the last 50 years were motorists Antoine et al., 151 

2001. During the extreme September 2002 flood (Delrieu et al., 2005; Ruin et al., 152 

2008), about 200 emergency vehicles were seriously damaged or destroyed by the 153 

flows. For these reasons, the monitoring of the road network during flash flood events 154 

has become a major concern for management services. The inundated road sections are 155 

now systematically inventoried during or after every major event by the local services in 156 

charge of road maintenance. It is based on these considerations that the first attempt 157 

represented by the RIWS has been conducted to forecast the possible inundated road 158 

(Versini et al., 2010a). A summary of this prototype will be described further (Section 159 

2.3). 160 

This study mainly focuses on the southern part of the Gard region (Fig. 1) where both 161 

Vidourle and Vistre watersheds join the scrubland of La Camargue (swamp zone of the 162 

Rhône Delta) before entering into the Mediterranean Sea. Both watersheds are located 163 

outside the calibration area of the RIWS and differ from this one from a geographical 164 

point of view. The Vidourle basin has a drainage area of 833 km2 and an altitude 165 

ranking from 3m to 770 m. This watershed is essentiality covered by rural landscapes: 166 

vines and forest. The Vistre watershed (476 km2) is quite different with lower altitudes 167 

(4 m to 200 m with an average altitude of 70 m) and a more urbanized land with the 168 

presence of the city of Nîmes (150.000 inhabitants) upstream of the basin. Because of 169 

this very flat topography, river floodplains are wider and easily inundated. 170 

 171 

2-2 Meteorological and Hydrological data: 172 

Known as an area very sensitive to flash flood, the Gard region is covered by a dense 173 

network of rain gauges and two weather radars (Nîmes and Bollène). Rain gauge and 174 

discharge data used in this study were collected and analysed in the framework of the 175 

Cevennes-Vivarais hydro-meteorological observatory (OHM-CV, 176 

www.lthe.hmg.inpg.fr/OHM-CV). This observatory is a research initiative aiming at 177 

monitoring and understanding intense Mediterranean storms and flash floods (Delrieu, 178 

2004). On the other hand, two different services are in charge of hydro-meteorological 179 

warning and are authorized to deliver QPE and QPF for flood management in real-time: 180 

(i) the service of flood prevention (SPC for “Service de Prévention des crues” in 181 

French) is the local service in charge of flooding prevention specially devoted to the 182 
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Gard region, and (ii) the national meteorological agency, Meteo France (MF hereafter), 183 

that delivers radar-based rainfall maps for the whole country. Processing of this 184 

different data is briefly described below. 185 

2.2.1 Cevennes-Vivarais hydro-meteorological observatory data 186 

Seventeen automatic hourly rain gauges are located within or close to the Vidourle and 187 

Vistre watersheds. They have been set up for flood forecasting purposes. While the 188 

density of about two gauges per 100 km2 is quite good, it could not enable accurate 189 

estimations of rainfall intensities by spatial interpolation at time and space scales suited 190 

to flash flood dynamics: sub-hourly time step and kilometric scale (Moulin et al., 2009). 191 

OHM-CV uses an ordinary kriging technique (Journel and Huijbregts, 1978), using a 192 

spherical variogram model, to interpolate the rain gauge measurements and map rainfall 193 

rates at a 15-minutes time step and 1 km2 grid covering the area of study Lebel et al., 194 

1987. As rain gauge data are only available at hourly time step, constant rainfall 195 

intensities were assumed for the entire hours.  196 

The Vidourle catchment is well instrumented with numerous hourly stream gauges. 197 

Three dams (Ceyrac, Conqueyrac, and La Rouvière) are located in the upstream part 198 

and four gauge stations (Quissac, Vic-Le-Fesq, Sommières, Marsillargues) on the 199 

principal stream in the Vidourle valley (see Figure 1). On the other hand, the Vistre 200 

catchment is poorly instrumented with only one station located at the watershed outlet 201 

(Le Cailar). 202 

 203 

2.2.2 Gard region data 204 

Complex SPC inundation forecasting system Bressand, 2002 is able to deliver valuable 205 

spatial rainfall intensity at the 1km2 scale every 5 minutes. Although this system has 206 

been created by the private company REAH®, some basic elements can be explained on 207 

the processes involved to correct and generate radar images Ayral, 2005. The Gard 208 

region is divided into 5 windows corresponding approximately to the five main basins 209 

of the region (Vistre, Vidourle, upstream Hérault, Gardon and upstream Cèze, Gardon 210 

and downstream Cèze). In each window, the radar maps are specifically adjusted with 211 

the rain gauge measurements using a calibration factor (FC). This coefficient is 212 

calculated every 5 minutes using the three last measurements (Eq. 1). It usually varies 213 

between 0.5 and 3. 214 
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      (1) 215 

Where Pi is the rain gauge measurement, Ri is the radar measurement at the rain gauge 216 

location, n is the total number of rain gauges used to adjust radar data. 217 

Precipitation forecasts are also calculated for different lead times varying between 5 218 

minutes to one hour. In this case, FC used to adjust radar-based rainfall is fixed. This 219 

represents one of the weaknesses of the system. Consider the radar/rain gauge relation is 220 

constant during the storm can lead to misestimate –often underestimate- rainfall 221 

forecast.  222 

 223 

2.2.3 Meteo France data 224 

Meteo France produces QPE and QPF every 5 minutes over the whole country at the 1 225 

km2 scale based on an aggregation of radar data. After a processing chain that corrects 226 

ground clutter, partial beam blocking, VPR effects, and advection, the radar image is 227 

corrected using the rain gauges data (Tabary, 2007; Tabary et al., 2007). The principle 228 

to fit radar data to rain gauge values is also based on the use of a calibration factor. Two 229 

differences with the FC calculated for SPC data can be noted. First, this one takes into 230 

account previous rain gauge and radar measurements over a longer period. In order to 231 

give more importance to the newest values, they are multiplied by weights increasing 232 

with time. Second, a “memory” coefficient is added to constrain FC to converge to a 233 

monthly calibration factor FCmonth when there is little rain between two events.  234 

FC =

ω
i
⋅P

i
i=H−M

H

∑ + C
rec

ω
i
⋅R

i
i=H−M

H

∑ +
C

rec

FC
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          (2) 235 

Where M is the period on which the factor is calculated, H is the lead time, Pi is the rain 236 

gauge measurement at time H, Ri is the radar measurement at the rain gauge location at 237 

time H, ωi is the weight to filter oldest values at time H, Crec is the memory coefficient, 238 

FCmonth is the monthly coefficient. 239 
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QPF are produced for different lead times ranging from 5 to 70 minutes. The method 240 

used (Juvanon du Vachat et al., 1995a; Juvanon du Vachat et al., 1995b) derives the 241 

motion field between consecutive radar scans from the distance of the mass centers of 242 

two corresponding radar echoes. The centers are assumed to be representative for 243 

individual convective cells. This motion field is then extrapolated and applied to 244 

produce future rainfall field.  245 

 246 
2-3 The Road Inundation Warning System 247 
The RIWS for flash flood prone area has been developed within the FLOODsite1 project 248 

funded by the European Sixth Framework Program. It focuses on intersections between 249 

road and river networks that can be flooded during a flash flood event, and it has been 250 

calibrated and tested on the North part of the Gard region (called “calibration area” in 251 

the rest of the paper). Both components of the RIWS (susceptibility analysis and 252 

hydrological model) are briefly presented below. For a detailed presentation, please 253 

refer to Versini et al., 2010a; Versini et al., 2010b).  254 

2.3.1 Susceptibility rating method 255 

An inventory of past road inundations was carried out by the public agency in charge of 256 

the road management on the North part of the Gard region, outside the studied area 257 

(Lignon, 2004). As comprehensive as possible, its objective was to collect the location 258 

of the most frequent road submersions. Based on the employees’ experience and 259 

memory, it contains the exact location of 167 road sections flooded (and noted) during 260 

the last 40 years on the main road network. From this inventory, four categories of 261 

susceptibility to flooding (high, medium, low, and safe) were defined. Geographical 262 

characteristics (local altitude and slope, upstream watershed area) of crossing structure 263 

have been highlighted to explain this susceptibility to flooding and allocate every road 264 

intersection in a category. Using historical road inundations and their estimated 265 

frequency of flooding, a statistical distribution of return period of flooding was 266 

calculated for each susceptibility category.  267 

 268 
2.3.2 Hydrological model 269 
The CINECAR hydrological model (Gaume et al., 2004) has been selected to simulate 270 

distributed discharges. Developed specifically to model flash floods, it represents the 271 

                                                
1 http://www.floodsite.net/ 
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entire watershed as a network of river reaches having a simple rectangular cross-section, 272 

connected to two rectangular slopes (characterized by areas of few km2). The US Soil 273 

Conservation Service (SCS) Curve Number (CN) model is used to calculate the 274 

evolution of the runoff coefficient on each slope during the storm event, and the 275 

kinematic wave model is used to route the flows on the slopes and through the network 276 

of river reaches. The CINECAR model has been calibrated and validated based on the 277 

discharge time series available on 12 watersheds over the period 2000-2005. Because of 278 

the lack of available radar data, OHM-CV kriged data was used for these procedures. 279 

The performance of the model was evaluated on several rainfall events with a total 280 

rainfall exceeding 100mm available on this period. Acceptable results were obtained 281 

(average Nash criterion value of 0.3) that looked comparable to those obtained in 282 

similar studies (Borga, 2008). Based on this study, it has been considered the 283 

CINECAR model depends on only two parameters: widths of the rectangular sections 284 

representing the rivers that can be fixed a priori and adjusted during the storm 285 

depending on the flood magnitude, and the CN that can be also determined a priori 286 

from an expert judgment.  287 

 288 
2.3.3 Risk levels 289 

Finally, every road intersection is characterized by a susceptibility category and is 290 

connected to a river reach where the discharge is simulated. These discharges are 291 

compared at each time step with the theoretical return period thresholds for two, ten, 292 

and fifty years: Q2, Q10 and Q50. These theoretical return periods are approximated using 293 

a regional discharge quantile estimation method, the Crupedix method Cemagref, 1980, 294 

adjusted for France. Inundation risk levels are defined based on the susceptibility 295 

category and the discharge magnitude, or only on the discharge magnitude if 296 

susceptibility analysis is not used (see Table 1). Three levels of risk are assigned: high 297 

submersion risk (HSR), significant risk (SR), and moderate risk (MR). A warning is 298 

issued when one of the thresholds is exceeded.  299 

 300 
3- Application of the RIWS and protocol assessment 301 

3-1 The case of the 29-30 September 2007 302 

The rainfall event happened during the night between the 29 and 30 September 2007 303 

and was one of the most important that occurred in the Vistre and Vidourle watersheds 304 
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over the last years. A stationary storm with a “V” shape moved from the west to the east 305 

and intensive precipitations fell on the central part of the watersheds between 22:00 and 306 

00:00. Between 80 and 120 mm were measured on both watersheds and locally more 307 

than 200 mm. At 2:30 the Vidourle river overflowed in Sommières. Rainfall forecasts 308 

preventing this event and issued by the French meteorological agency Meteo France 309 

were quite accurate. At the beginning of the storm (20:00), they issued a moderate 310 

warning reporting “heavy rainfall storm” during the night. An average rainfall of 50 mm 311 

was forecasted on the region around Nîmes and locally more than 150 mm. Road 312 

management and rescue services were advised of possible troubles during the night. 313 

Finally, important damages occurred during this event. Some houses and garages were 314 

submerged, and the road network was particularly affected. Nineteen roads were closed 315 

during the night by the regional services and reopened one after the other the next day. 316 

It made rescue operations difficult and has represented a major threat to lives. The fire 317 

brigade and the regional service of rescue recognized about fifty interventions due to the 318 

inundations. Despite the advice he has been given, a motorist crossed the Vidourle and 319 

was swept away by the important flow.  320 

 321 
3-2 Methodology 322 
The objective is to assess the use of the quantitative precipitation estimates and 323 

forecasts by the RIWS. First, a direct analysis of the QPE/QPF will be conducted to 324 

evaluate the quality of the RIWS input. Then, the RIWS has to be transferred and 325 

applied on the South part of the Gard region where it has not been calibrated. That 326 

means both susceptibility analysis and hydrological model will be assessed on a new 327 

landscape with another road network configuration. Their results will be compared to 328 

those obtained on the calibration area. Finally, RIWS will be applied on the 29-30 329 

September 2007 storm and its results will be analysed comparing the warnings it 330 

delivers to the actually inundated roads. The three steps, direct QPE/QPF analysis, the 331 

RIWS transfer and the RIWS assessments with QPE and QPF are described thereafter. 332 

 333 

3.2.1 Direct analysis of precipitation  334 

Both QPE and QPF produced by both services (MF and SPC) will be compared and 335 

evaluated. Particular attention will be given to the spatio-temporal variability of the 336 

rainfall distribution. Both hyetograms and rainfall accumulation maps will be analysed 337 
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at the watershed scale for the Vistre and the Vidourle basins. These data will be 338 

compared to kriging interpolation-based, used as reference. It is assumed that kriged 339 

data correctly represent the temporal variability of the precipitation at such large spatial 340 

and temporal scale. The local heterogeneities of rainfall that are not captured by the rain 341 

gauge network should have a relative low impact on the mean estimated rainfall. 342 

Moreover, kriged data were processed after the storms and do not include any errors 343 

associated with real time data (as QPE and QPF can do). In order to study the different 344 

QPE at a smaller scale more representative of small ungauged watersheds, comparison 345 

between radar-based kriged data and QPE accumulations will be also drawn at the cell 346 

scale (1km2). 347 

 348 

3.2.2 Road Inundation Warning System transfer 349 

First, the susceptibility rating method is applied. Based on geographical information 350 

(local slope and altitude, watershed area), the river road intersections of the Vistre and 351 

Vidourle watersheds will be spread in the four categories of susceptibility (high, 352 

medium, low and safe). The verification will consist in analysing the susceptibility 353 

category of the road sections effectively submerged during the 29-30 September 2007 354 

storm. Locally, where intersections are subjected to the same rainfall hazard, the most 355 

susceptible intersections should be flooded in priority. As the susceptibility rating 356 

method has been calibrated on a region quiet different from the studied watersheds, its 357 

extrapolation could be inappropriate without any adjustments.  358 

The transfer of the hydrological model has also to be assessed. Once the watersheds 359 

have been desegregated as a network of river reaches connected to sub-basins, the 360 

parameters have to be evaluated a priori. The widths of the river reaches have been 361 

fixed to those representing a moderate discharge at the beginning of the event, and can 362 

be modified during the storm according to the discharge magnitude. The key parameter 363 

is the CN because it represents the evolution of the runoff coefficient value during the 364 

storm taking into account the initial condition. Based on the work realized in Versini et 365 

al., 2010a), an a priori range of CN will be used. The simulated discharges will be 366 

compared to the observations available for the stream gauges of the Vistre and Vidourle 367 

watersheds. In order to test the viability of this calibration a priori, simulated discharges 368 

at the gauge stations will be also calculated using a value especially calibrated for this 369 
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event (CNcal). The simulation achieved with CNcal will represent the best performance 370 

we can expect from the hydrological model at the gauged basin scale. Every simulation 371 

will be evaluated using the Nash efficiency (Nash, 1969): 372 

Nash = 1 −
Qobs

i
− Qsim

i( )
2

i=1

n

∑

Qobs
i
− Qobs⎛

⎝
⎞
⎠

2

i=1

n

∑
       (3) 373 

Where Qsimi represent the simulated discharges, Qobsi the observed discharges, 

� 

Qobs  374 

the average observed discharge during the storm, and n the number of time steps. 375 

 376 

3.2.3 RIWS assessment using radar-based QPE and QPF   377 

The skill of the RIWS is assessed using a classical contingency statistical analysis. An 378 

efficient RIWS should be able to identify a large proportion of the actually observed 379 

inundations and limit the number of “false alarms” - predicted inundations that are not 380 

observed. Four criteria are therefore used to assess the performance of the proposed 381 

RIWS using the available information on the actually observed inundations:  382 

- Probability of Detection (POD) calculated as the ratio between the number of 383 

inundated sections where a warning has been issued (Correct Warnings) and the 384 

total number of inundated road sections:  385 

POD =
#Correct Warnings
# Inundated roads

    (4) 386 

- False alarm ratio (FAR) calculated as the ratio between the number of non-387 

inundated sections where a warning has been issued (false warnings) and the 388 

total number of warnings delivered by the RIWS: 389 

FAR =
#False alarms
# Warnings

    (5) 390 

- Correct negative (COR) represents the ratio between the number of non-391 

inundated sections where a no warning has been issued (Safe) and the total 392 

number of misses: 393 
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COR =
#Safe

#Safe + #Misses
    (6) 394 

These very intuitive skill scores are computed using rainfall estimates for both services 395 

in a framework reproducing operational conditions. Four lead times (15, 30, 45, and 60 396 

minutes) are used to test the accuracy of this data and its possible degradation over time. 397 

In addition, the false positive rate (FPR), which is the ratio between false alarms and the 398 

number of effective non-inundated road sections (Non inundated roads), is computed. 399 

Coupled with the maximum value of POD over the event, it is used to plot ROC 400 

(Receiver Operating Characteristic) curves and evaluate the sensibility of the two-class 401 

prediction problem (flooded – not flooded). It will be particularly useful to compare the 402 

results with those obtained on the calibration area, using or not the susceptibility 403 

analysis: 404 

FPR =
#False alarms

#Non inundated roads
    (7) 405 

 406 
4- Results 407 
 408 
4-1 Radar-based QPE and QPF direct analysis 409 

Rainfall accumulations during the entire storm have been computed in a window 410 

including both Vistre and Vidourle watersheds for every type of data (OHM-CV 411 

kriging, QPE and QPF from MF and SPC). They are presented in Figure 2. Scatter plots 412 

comparing radar-based QPE with kriged data are illustrated on Figure 3. Hyetograms 413 

representing mean areal intensity (with 15 minutes time step) at the watershed scale for 414 

both Vidourle and Vistre watersheds are also presented for every rainfall data in Figure 415 

4.  416 

 417 

4.1.1 Quantitative Precipitation Estimates 418 

First, the spatial distribution of rainfall is studied. Despite the location of the storm core 419 

is the same for the three estimations, a marked difference in rainfall amount can be 420 

noted. The maximum accumulation exceeds 250 mm for the SPC estimates whereas it 421 

only exceeds 150 mm for MF data, respectively 200 mm for the kriging. This is also 422 

corroborated by Vic-Le-Fesq rain gauge data located where the most intense 423 
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precipitation occurred. A total amount of 175 mm was locally measured whereas 215 424 

mm were estimated by SPC QPE, respectively 130 mm for MF QPE. It is also 425 

confirmed by scatter plots on Figure 3. At the 1km2 scale, MF QPE have a tendency to 426 

underestimate the most intense precipitation. On the other hand, SPC QPE overestimate 427 

some of the highest accumulations measured on the Vidourle watershed, but the highest 428 

differences with kriging are located on the cells where the precipitation in interpolated. 429 

The numerous underestimations for the lowest values correspond to the Vistre 430 

watershed. As it has been shown above, SPC data is calibrated for two different 431 

geographical windows on the Vidourle and Vistre watersheds. This is strongly visible 432 

on the accumulation map with local intensities higher than 250 mm measured on the 433 

Vidourle window neighbouring a value three times lesser on the Vistre window. A short 434 

band is shared by both windows where both estimated rainfall can be compared. A 435 

significant difference around 35% is noted. It can be assumed that the FCs used during 436 

the storm tend to overestimate rainfall on the Vidourle window and/or to underestimate 437 

on the Vistre one.  438 

Second, temporal distribution of rainfall is analysed on both watersheds. Looking at the 439 

hyetograms (Fig. 4), precipitation estimates appear to be very different from a data to 440 

another on the Vidourle basin. For example, at 22:00 the kriging interpolation-based 441 

displays a maximum intensity of 15 mm/h. It is well reproduced by the SPC estimates 442 

(17 mm/h), but widely underestimated by MF ones (10 mm/h). On the other hand, the 443 

Vistre case shows a coherent rain amount between both services and the kriged data. 444 

The maximum intensity of 38 mm/h arises between 23:00 and 00:00 on the three 445 

observed hyetograms. The large overestimation highlighted on SPC rainfall 446 

accumulation map is only slightly reflected on both hyetograms because the highest 447 

precipitations fell outside the studied watersheds.  448 

 449 
 450 
4.1.2 Quantitative Precipitation Forecasts 451 

QPF provided by MF and SPC are very heterogeneous depending on the studied 452 

watershed, but they all have a strong tendency to underestimate the storm intensity for 453 

the largest lead times. On the Vistre watershed, where rainfall was the highest, SPC 454 

forecasts can lose up to 30% of the maximum intensity while MF more than 60% (see 455 

Fig. 4). This time, SPC QPF show a coherent merging between both zones because the 456 
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same FC equal to 1 is used (Fig. 2). Nevertheless, despite the storm stationarity is well 457 

represented, they have a tendency to underestimate precipitation with time, especially 458 

for the highest intensities. It should be interesting to obtain additional information on 459 

the SPC QPF production to interpret them more thoroughly.  460 

MF QPF appear to be more uncertain. Accumulation maps (Fig. 2) show a tendency to 461 

transfer the convective system to the east part of the Vistre watershed. This situation 462 

corresponds to the typical case of a regenerative system over several hours, whom the 463 

system velocity is different from the cells velocities composing the system. During a 464 

certain time, the system velocity is almost equal to zero and the storm is nearly 465 

stationary while the cells -with a lifetime shorter- are moving eastward. The method 466 

used to extrapolate motion field in operational mode capture the movement of small 467 

scale structures, typically the scale of the convective cells. In most cases this diagnosis 468 

is appropriate. Here, the displacement obtained suggests a movement towards the east, 469 

which evacuates the system too quickly and does not restore the stationarity of the 470 

regenerative system. As the forecasted system is moved to the east, it always crosses the 471 

Vistre watershed and few affect the predictions on this basin. A slight overestimation is 472 

noted for the 30 minutes forecast. Conversely, the forecasts on the Vidourle watershed 473 

are highly affected by this error. The precipitation peak that occurred at 22:00 is 474 

strongly underestimated and almost absent in the one hour forecast.  475 

 476 

4-2 Road Inundation Warning System transfer 477 
4-2-1 Susceptibility analysis 478 

The road susceptibility rating method has been applied on both Vidourle and Vistre 479 

watersheds. 468 river road intersections were identified using existing river and road 480 

network GIS layers. These road intersections have been classified into the 4 categories 481 

defined above. The high susceptible category contains 12% of the river crossings; 482 

respectively 20%, 50% and 18% for the medium, low and safe categories. Susceptibility 483 

repartition of Vistre and Vidourle intersections is very similar to those obtained on the 484 

North part of the Gard where the method was calibrated (see Table 2). Although the 485 

density of linear road is quite the same (1511km/km2 in the calibration area vs 486 

1433km/km2 on the study area), the density of river intersections is different: 0.87 487 

intersections/km2 vs 0.44 intersections/km2. The river network is less dense on the South 488 

part of the region and the number of intersections with the road network is also lower. 489 
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This is due to the geographical characteristics of the region: flatter and more urbanised 490 

and domesticated.  491 

Concerning the twenty-three river road intersections responsible for the 19 flooded 492 

roads during the 29-30 September 2007 storm, five of them are located upstream very 493 

small watersheds (<1 km2), and seven are located upstream small watersheds (<10 km2). 494 

For these watersheds, the concentration time is very short, lesser than 15 minutes for the 495 

smallest ones, making difficult interventions between rainfall and its possible 496 

consequences. Among the 468 river crossings identified in the study area, the twenty-497 

three inundated crossing structures are characterized by rather high levels of 498 

susceptibility (see Table 2). Eight of them (35%) are included in the high susceptibility 499 

category and seven (30%) in the medium one. Seven (30%) are in the low category and 500 

one (5%) in the safe category. As they are characterized by a distribution of level of 501 

susceptibility focused on the highest values, submerged crossing structures seem to be 502 

related with the susceptibility categories defined in the calibration area (yet 503 

geographically and topographically different). Considering this only event and the small 504 

size of classes, it is not possible to be more conclusive.  505 

4-2-2 Hydrological model 506 

Out of the eight stream gauges located on both Vistre and Vidourle watersheds, only 507 

four have registered a peak of discharge during the studied storm. All gauges of the 508 

upstream part of the Vidourle catchment did not receive sufficient water to measure 509 

such an increase. This is particularly true for the three dams for which the output 510 

discharge remained constant during the entire storm. Finally, discharge peaks were 511 

registered only at Vic-Le-Fesq (505km2), Sommières (620 km2), Marsillargues (798 512 

km2) and Le Cailar (440 km2); respectively 25.8 m3/s (0.051 m3/s/km2), 232.5 m3/s 513 

(0.375 m3/s/km2), 235.0 m3/s (0.294 m3/s/km2), and 58 m3/s (0.132 m3/s/km2). As the 514 

discharge peak measured at Vic-Le-Fesq is very low –a specific discharge bellow 0.1 is 515 

hardly represented by the hydrological model- only the three remaining gauges have 516 

been kept to assess the model simulations.  517 

First, these observations have been compared to the discharges obtained by the CNs 518 

selected a priori and used in an operational mode. In the calibration process, Versini et 519 

al., 2010a) have proposed a range of two CN values related to the date and the 520 

antecedent rainfall amount. The beginning of the autumn season combining with a total 521 
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amount of antecedent precipitation lesser than 100 mm carries to use both 40 and 50 CN 522 

values. Second, a calibrated CN (CNcal) has been estimated in a dichotomous way, 523 

calibrating a first CN for all the sub-basins located upstream Sommières, a second CN 524 

for the sub-basins between Sommières and Marsillargues, and a third one for the Vistre 525 

sub-basins. The objective of this calibration is to assess the hydrological model’s ability 526 

to reproduce correctly the studied storm and to have an idea on the spatial distribution 527 

of the CN. These simulations have been carried out using OHM-CV kriged data, and 528 

both SPC and MF estimates. The different hydrographs and the Nash efficiencies 529 

evaluating the simulation performance are presented in Figure 5 and Table 3.  530 

The simulations obtained with the CNs selected a priori appear to be acceptable and 531 

similar to those obtained on the calibration area (see Versini et al., 2010a). They are 532 

particularly reliable on Sommières watershed where the peak of the hydrograph is well 533 

represented (Figure 5-a). As for Le Cailar basin, discharges calculated with CNcal are 534 

almost all enclosed between both discharges calculated with the a priori CNs, 535 

suggesting the hydrological model is well calibrated on these parts of the study area. 536 

Note that the shape of Le Cailar hydrograph is not well reproduced due to the complex 537 

structure of the basin through highly urbanized and irrigated. Conversely, at 538 

Marsillargues (Figure 5-b), the CNcal values are systematically outside the range 539 

defined by both a priori CNs. The CN=50 tends to underestimate the discharge for the 540 

MF estimates whereas the CN=40 tends to overestimate the discharge using SPC data. 541 

Simulated discharges obtained with the calibrated values show the simulations could 542 

seriously be improved. 543 

It is clear the results depend on the type of precipitation data used. The previously 544 

presented differences in rainfall estimates represent a factor explaining the results of 545 

hydrological modelling simulations. The calibrated CNcal corrects the difference 546 

between both radar-based QPE (MF and SPC) and illustrates QPE are far from perfect. 547 

An underestimation of rainfall is offset by a larger CN, and reciprocally. Although 548 

rainfall amount based on kriging seems to be well represented at the watershed scale 549 

(Fig. 4), the corresponding simulations appear to be the worst (lowest Nash efficiency). 550 

In these cases, the simulated hydrographs are late in comparison with the observed ones, 551 

and this problem of synchronization drastically affects the Nash efficiency computation 552 

(Table 3). This can be explained by the low spatio-temporal resolution of this data, but 553 

also by the rainfall-runoff model structure and calibration. The river widths that conduct 554 
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the transfer have been fixed and may be not adequate in this case. SPC and MF 555 

estimates delivered in real time seem to better simulate the discharge. Once the bias is 556 

corrected (compensated by the value of CN), the radar leads to a well representation of 557 

the flood dynamics. 558 

Further conclusions cannot be issued about the quality of the different QPEs because of 559 

the simplicity of the hydrological model. As CINECAR only represents surface runoff, 560 

it does not take into account sub-surface processes for instance. This component can be 561 

significant for large basin as illustrated by the shape of the observed hydrographs. Its 562 

simplification may overestimate direct runoff; that will conduct to overestimate 563 

discharge on small basins where this process is prominent.  564 

Nevertheless, the objective of this calibration procedure was to assess the hydrological 565 

model’s ability to reproduce the observed discharge and to define optimised CN for 566 

each QPE. These CNcal values will be applied on the sub-basins located upstream the 567 

stream gauges. They represent the best performance we can expect from the model at 568 

the gauged basin scale. On the other sub-basins of the studied area (downstream 569 

Marsillargues and Le Cailar basins), where no stream gauge is located, CNcal has been 570 

extrapolated from the values previously calibrated on the Vistre watershed. CNcal 571 

calculated with the Le Cailar stream gauge have been implemented on these sub-basins 572 

for two reasons: (i) proximity because almost all these sub-basins are located in the 573 

Vistre watershed, (ii) geographical similarity because they are characterized by the same 574 

CN value estimated by the USDA method (USDA, 1985) using land occupation and soil 575 

infiltration capacities, It is finally assumed the hydrological model with its restrictions 576 

can be applied on the entire study area. 577 

 578 

  579 
 580 
 581 
4-3 RIWS assessment using radar-based QPE and QPF  582 

The RIWS has been applied in a framework reproducing operational conditions during 583 

the night of the 29 and 30 September 2007. For each time step ti, warnings have been 584 

computed using radar estimates available on real time (for both SPC and MF services) 585 

from the beginning of the storm until time step ti, but also kriged data. To prevent from 586 

the floodings that can occur in the near future, rainfall forecasts associated with both 587 
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radar-based QPE have been used for the four following lead times: 15, 30, 45, and 60 588 

minutes. To assess the pertinence of using radar-based QPE and QPF, the RIWS has 589 

been employed by testing different options: i) the susceptibility analysis has been turned 590 

on and off, ii) the hydrological model has been used with a priori values of CN=40 and 591 

CN=50, and also with the calibrated values (CNcal) defined in Section 4.2.2. The results 592 

have been evaluated using the different skill scores and compared with those obtained in 593 

the calibration area. They are summarized in Table 4 and the most significant are 594 

represented on Figures 6.  595 

4.3.1 On the use of radar-based QPE 596 

The results obtained with kriged data are very often worse than those obtained with 597 

radar-based QPE (see Table 4). Almost no inundated roads (POD=14%) are detected by 598 

the RIWS with CN equal to 40. The use of the calibrated CNcal can get the best 599 

discharge simulations at the location of the stream gauge, but fails in reproducing the 600 

exceedance warning thresholds, especially for the intersections not located on a major 601 

stream (where most of the inundations occurred). Moreover, COR scores are always 602 

worse than those computed with radar-based QPE. Looking at the results in details, 603 

these bad scores are due to a higher number of misses and a lower number of correct 604 

warnings. The number of false alarms –similar to that obtained for radar-based QPE - 605 

indicates that an underestimation of the precipitation is not solely responsible for the 606 

non-detection of the inundations; otherwise, the total number of false alarms should be 607 

lower. At small scale, the kriging-based interpolation of rain gauge measurements is not 608 

able to represent the spatio-temporal variability of rainfall, which is essential in this 609 

study. Moreover, it can be seen that the evolution of the different skill scores suffers a 610 

delay of at least one hour compared to those computed from the others QPE (see Figure 611 

6). This is due to the under-estimation of the first rainfall peaks (see Figure 4), and the 612 

uniform distribution of the hourly data on the four 15 minutes time steps because the 613 

most intense rainfall occurred at the beginning of an hour (18:00).  614 

Using SPC QPE, around 80% of the flooded roads are detected with the CNcal – for 615 

which the simulated discharges were the best – (see Figure 6). The scores obtained for 616 

CN=50 are very similar to those calculated with CNcal and decrease when CN=40 is 617 

used (POD drops to 60%). As most of the floodings were located downstream the 618 

gauged basins, the detection is clearly influenced by the choice made to extrapolate the 619 
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CN values. The use of the CN adjusted on Le Cailar basin (the high value of 46) leads 620 

to simulate significant discharges, high enough to exceed the warning thresholds.  621 

In this best case, the remaining 20% missed floodings are located on the Vistre 622 

watershed. This should not be related to a possible under-estimated precipitation on the 623 

Vistre window because the RIWS applied with MF or kriged data is also not able to 624 

detect these floodings (Figure 6). As the hydrological model seems to be able to 625 

reproduce correctly observed discharge at the Vistre gauge station, it has to be assumed 626 

that the use of an average CN, distributed on the entire Vistre watershed, is not adapted. 627 

The model should be influenced by the heterogeneous precipitation distribution on this 628 

watershed whose downstream part was particularly affected by the most intense rainfall. 629 

A better description of the spatial distribution of CN is probably required.  630 

Using SPC QPE, the numbers of false alarms is very high. Indeed, they represent 631 

between 90% and 100% of the warnings delivered at the beginning of the storm, then 632 

they drop to 85% during the night. Although this ratio may seem important, the number 633 

of COR is high (close to 99%). That means despite a significant number of false alarms, 634 

the RIWS is able to rate the safe roads at the watershed scale. In order to have an 635 

overview on the whole road network, the warnings issued by the RIWS during all the 636 

storm are represented on Figure 7. 149 of the 468 existing intersections are identified as 637 

inundated sections at some point in the night (but not simultaneously). Among them, 13 638 

correspond to effective submersions which 12 are characterized by high and significant 639 

risk. All the warnings are concentrated in areas particularly risky. That means the RIWS 640 

can capture the spatial repartition of floodings when accurate QPE are used.  641 

Finally, the results obtained with MF QPE are less satisfactory than those obtained with 642 

SPC QPE. With a maximum of 50% for POD, the RIWS detections appear not to be 643 

satisfactory. The use of CN=40 does not permit the RIWS to deliver warnings during 644 

the night. The simulated discharges are probably too low. As rainfall estimates from MF 645 

are lower than those produced by SPC, CN has to be higher to simulate discharges 646 

susceptible to exceed the different thresholds. Setting the CN equal to 50, it is not yet 647 

sufficient and the results obtained with kriged data are still better. Only the optimised 648 

CNcal –higher than 50- gives acceptable skill scores (Fig. 6). The detected inundated 649 

roads are those located around Sommières where the estimates were the most intensive. 650 

The other inundations located a little South of Sommières and detected by the RIWS 651 

using SPC data are not identified here. As seen in Figure 2, SPC estimates tend to 652 
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extend the intense rainfall core to the North part of the region – as it can be confirmed 653 

by kriged data, and this is not reproduced by MF data. 654 

Using the three best cases (calibrated CN for MF, SPC and kriging data), the warning 655 

thresholds have been reduced in order to detect all the floodings (POD=100%). It has to 656 

be noticed that a reduction of 90% of the threshold was necessary to detect every 657 

flooded roads, because one of the floodings was located in an area little affected by the 658 

intense precipitation (see Section 4.3.3). The evolution of POD and FAR skill scores are 659 

represented on Figure 8. One more time, it seems that detections using radar-based QPE 660 

are more efficient that those using kriging data. For a same value of POD, FAR score is 661 

always slightly lower for both MF and SPC data. Moreover, only kriging-based QPE 662 

has issued 100% of false alarms, while the other QPE always issue effective warnings. 663 

It could confirm that radar-based QPE better represent the spatio-temporal structure of 664 

precipitation. 665 

4.3.2 On the improvement brought by QPF 666 

The use of QPF seems to be interesting in road submersion forecasting. All the results 667 

offer a significant anticipation (between 15 to 45 minutes), at least during the crucial 668 

steps of the event when POD highly increases, between 22:00 and 00:00. This 669 

anticipation is extended to the previous time steps depending on the accuracy of the 670 

QPE-based detection. Indeed, the contribution of forecasts looks being correlated with 671 

the quality of the detection noticed using QPE. A better anticipation resulting from the 672 

RIWS occurs when using SPC QPF, and among them, those obtained with the 673 

calibrated CN (see Figure 6). When small values of CN (40) are used, SPC QPF data 674 

provide less significant information. MF QPF appears to be useful only between 22:30 675 

and 23:30, when they allow preventing from inundations with a lead-time of 30 676 

minutes. During this short period, COR and FAR are better. Despite the propagation of 677 

the convective system to the east, the use of MF QPF appears to improve the skill 678 

scores, especially when the most intense precipitation occurred.   679 

Regarding the best case (calibrated CN for SPC data), radar-based QPF can help to 680 

detect in advance the floodings during the entire storm. Skill scores obtained with 681 

QPF15 are very similar to those obtained with QPE but with an anticipation of 15 682 

minutes, meaning the quality of the rainfall forecast is quite good. The use of QPF30, 683 

QPF45 and QPF60 allow to detect the submersions with an advance comprised between 684 
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15 and 45 minutes, reflecting the quality of forecasts deteriorates with lead time. 685 

Regarding the response time of the concerned small watersheds (around 30 minutes), 686 

this anticipation of 45 minutes appears to be very important. In this case, the 687 

anticipation offered by simulations based on QPE is too limited to prevent from the 688 

submersion. Note the inundations detected during this anticipation time follow strictly 689 

the order of the inundations detected with the only QPE and that really occurred: 690 

starting from the submersions located on the west part on the study area until the 691 

inundations that occurred downstream the Vidourle watershed.  692 

 693 

4.3.3 On the RIWS transfer and the use of the susceptibility analysis 694 

Overall, the results provided for this particular storm are quite similar to those obtained 695 

for the three storms studied during the calibration step (see Versini et al., 2010a) that are 696 

summarized in Table 4 and Figure 9. On the calibration area, the good results obtained 697 

in terms of flooding detection were due to the use of the susceptibility analysis. It 698 

allowed to focus in priority the RIWS on the most vulnerable road sections without 699 

having detailed rainfall estimate. The POD score was generally higher than 85% with a 700 

COR score very close to 100%. Nevertheless, the number of false alarms was yet 701 

significant with more than 60% of the warnings issued. Without the susceptibility 702 

analysis, the accuracy of the RIWS dropped significantly with POD around to 70% and 703 

higher FAR score, reaching 100% during the event. When comparing the results 704 

obtained on calibration and current areas in ROC space, it appears that the use of 705 

susceptibility analysis in calibration area allowed to improve the number of detections 706 

while decreasing the number of false alarms. It is not the case on the Vistre/Vidourle 707 

area, where the use of the susceptibility analysis seems to not be so significant and only 708 

leads to decrease the total number of issued warnings (both correct warning and false 709 

alarms scores are lower). Although they are not represented here, the skill scores have 710 

almost the same distribution if the susceptibility analysis is used or not to characterize 711 

the road intersections (see Table 4). The good scores provided by the best case 712 

(calibrated CN for SPC data) may result from the use of spatially distributed QPE. Here, 713 

the RIWS is focus in priority on the locations where the precipitation was the most 714 

intense. Two points can be noted to explain the limit of the susceptibility analysis 715 

transfer.  716 
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When the susceptibility analysis is used, intersections characterized by a high 717 

susceptibility can be hit by a warning without the two years return period being 718 

exceeded. Most of the intersections characterized by the highest level of susceptibility 719 

are located downstream of the Vistre and Vidourle watersheds, where subcatchments 720 

are, in general, bigger and flatter. Fortunately, this part of the territory was affected by 721 

intense rainfall, and many warnings were also reported, reaching 100% of false alarms 722 

at the beginning of the event. If the storm had been further north, the results would have 723 

probably been different. Second, the flooded road classified in the safe category is not 724 

identified as potentially inundated section when the susceptibility analysis is used. It is 725 

located downstream a very small catchment of 0.95 km2 in the upper North part of the 726 

Vidourle watershed. Here, rainfall was heavy but not sufficient to exceed the fifty years 727 

return period discharge threshold required to deliver a warning. Indeed, the simulated 728 

discharge is characterized by a two years return period. We can hypothesize that local 729 

structural problem (under-dimensioning, jam, falling tree…) could have been 730 

responsible for the flooding.  731 

 732 
 733 
5- Conclusion 734 
 735 
The Road Inundation Warning System developed for flash flood prone areas, and 736 

recently calibrated on the North part of the Gard region, has been applied on the South 737 

part of the Gard. Working in a framework simulating operational conditions, the RIWS 738 

has been tested to predict the inundated roads during the 29-30 September 2007 event. 739 

These results obtained for this specific storm event are very similar to those obtained in 740 

the calibration area (Versini et al., 2010b). They are promising and encourage the use of 741 

radar based spatial rainfall data. This convective storm with important spatial variability 742 

is particularly interesting to legitimate the use of the weather radar. The prototype is 743 

able to rate the inundation risk with an acceptable level of accuracy: despite many false 744 

alerts, it has a relatively high probability of detection (proportion of actually flooded 745 

points affected by a significant risk level around 80% in the best case), and a good 746 

detection of non-flooded roads (correct negative higher than 98%). From these results, 747 

some conclusions can be made on the transfer of the RIWS on a region it has not been 748 

calibrated, and on the use of radar-based QPE and QPF delivered by both services in 749 

charge of hydro-meteorological risk management.  750 



 24 

The use of weather radar QPE, a priori more representative of the spatio-temporal 751 

variability of rainfall than kriged rainfall fields based on rain gauge measurements, 752 

seem to provide better results when they are not too biased. By using a simple rainfall-753 

runoff model, simulated discharges at the stream gauges have been improved by taking 754 

into account the spatio-temporal distribution of rainfall as depicted from radar data. 755 

Conversely, simulations using rough spatio-temporal resolution of kriged data are less 756 

satisfactory. This tends to confirm the spatial variability represents a major source of 757 

temporal variability in hydrological simulation (Obled et al., 1994; Sempere-Torres et 758 

al., 1999). Second, the use of radar-based QPE has improved the detection of road 759 

inundations. Skill scores are almost always better than those obtained with kriged data. 760 

As expected, radar-based QPE allow to better represent the structure of rainfall on small 761 

watersheds. When only kriged data are used, most of the non-detected inundations are 762 

located downstream small watersheds with an area smaller than 10 km2. It has been 763 

noted that both services (SPC and MF) do not provide radar-based QPE with the same 764 

accuracy for this particular case of the 29-30 September 2007 storm. While SPC QPE 765 

show a trend to overestimate rainfall on the Vidourle watershed, both services seem to 766 

describe correctly rainfall on the Vistre watershed. This conclusion is specific of this 767 

particular case study and should be different for another storm.   768 

Adding radar-based QPF in real time can also improve the detection of inundations, 769 

especially for the cases where radar-based QPE already produced good results. In the 770 

best cases, the use of QPF can anticipate the inundations with up to 45 minutes ahead. 771 

This can represent valuable information from a practical point of view. Knowing that a 772 

severe storm will occur (a warning has been issued few hours before the beginning of 773 

intense rainfall) the road management and rescue services are prepared to intervene. If 774 

they receive the information where the roads could be flooded 30 or 45 minutes before 775 

it happen, they will have the opportunity to communicate and optimize the deployment 776 

of its teams. For now, the RIWS prototype should therefore not be considered as a 777 

decision support system but rather as a useful source of information - possibly 778 

completed by field observations - that can help the emergency services during a flood 779 

event to improve their decision.  780 

The RIWS has shown a significant sensibility to precipitation input and rainfall-runoff 781 

model calibration. Using accurate radar-based QPE, the RIWS could be used to assess 782 

the results of the selected hydrological model and/or the definition of discharge 783 
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thresholds on ungauged basins. The results have demonstrated that the detection of 784 

flooding is very sensitive to the CN values (skill scores are usually better when CN is 785 

higher). The value of CN implemented on the ungauged area can also be discussed. 786 

Moreover, despite the difference between both SPC and MF estimates, almost all the 787 

inundated roads located on small streams of the Vistre watershed are missed, because 788 

the simulated discharges did not exceed any warning thresholds. One explanation could 789 

be that the average CN calibrated to simulate discharge on the main stream of the Vistre 790 

basin is not sufficient to reproduce correctly the discharges (underestimated) on small 791 

internal watersheds. The method proposed by Versini et al., 2010a) and calibrated on 792 

the North rural part of the Gard region to estimate a priori a range of two CN values 793 

may be unadapted here. CN values could probably be modified to take into account 794 

better the specificity of the land cover (very urbanized with the presence of the city of 795 

Nîmes) and the initial soil moisture. Another alternative is that theoretical return period 796 

thresholds, adjusted from a large-scale study, are here overestimated. Despite the 797 

intense rainfall and an acceptable simulation at Le Cailar, too few two years return 798 

period threshold are exceeded. As illustrated in the study, one way to estimate new 799 

discharge thresholds could be to adjust them in order to enable the RIWS to issue 800 

warnings for the submerged roads that occurred in this watershed. In general, the 801 

adjustment of new CN and threshold values will need additional events causing 802 

floodings in this area. Particular attention should be made on the real cause of the 803 

submersions in order to not to force the detection of a flooded road due to local 804 

structural problem. 805 

Finally, the susceptibility analysis that has been previously developed on the North part 806 

of the Gard region has appeared to not be very satisfactory, for this particular event, on 807 

the South part, flatter and more urbanized. Despite inundated roads are classified in the 808 

highest susceptibility categories, numerous false alarms have been issued at the 809 

beginning of the event by the RIWS. This is due to the location of intense precipitation 810 

where intersections characterized by the highest level of susceptibility are concentrated. 811 

In the downstream part, too many intersections are comprised in this category, meaning 812 

discharges characterized by return periods shorter or equal to two years are sufficient to 813 

flood roads. Of course it is not true, but as a consequence too many road sections are 814 

identified as flooded. On the other hand, the presence of a submerged road in the safe 815 

category illustrates the method could not be adapted to this part of the Gard region. 816 
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Additional future events and submerged roads should be also necessary to grow the size 817 

of the different susceptibility categories and be more conclusive. This method could be 818 

modified in function of the specific configuration of the environment, but also be 819 

completed by post-field investigations (Gaume and Borga, 2008). The characterization 820 

of susceptibly, as discharge thresholds definition, could be improved with time and 821 

accumulation of damage data.  822 

Nowadays, the RIWS seems to have potentials for capturing timing, magnitude, and 823 

spatial repartition of the flooding risk. Using accurate QPE and QPF, it gives indications 824 

about the areas where the roads are flooded, but inside theses areas, a lot of false alarms 825 

are issued. That is why the susceptibility analysis represents a key part of the RIWS and 826 

should be improved. A good susceptibility analysis will allow to focus on the most 827 

vulnerable road sections and capture effectively the magnitude of the risk. Since no 828 

information is available on the time of inundation, we cannot conclude on the ability to 829 

capture the timing for now. The complementarity between the timing, the spatial 830 

repartition and the magnitude of the warning will make the RIWS reliable to define safe 831 

itineraries and/or prepare interventions from an operational point of view. 832 
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Figure captions 975 

 976 
Figure 1. The Vidourle and Vistre watersheds 977 
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 979 
Figure 2. Rainfall accumulation: (a) MF QPE, (b) MF QPF30, (c) MF QPF60, (d) 980 
Kriging, (e) SPC QPE, (f) SPC QPF30,  (g) SPC QPF60 981 
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 983 
Figure 3. Scatter plots of precipitation accumulation at 1 km2, (a) comparison between 984 
kriged data and SPC QPE, (b) comparison between kriged data and MF QPE. The red 985 
diamonds correspond to the rain gauge cells where the measure was made.  986 
 987 
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 988 
Figure 4. Rainfall hyetogram and total amount of precipitation on the Vidourle 989 
watershed (a) and on the Vistre watershed (b), for MF data (1) and SPC data (2). 990 
Precipitation estimate is represented by full line, 30 minutes forecast data by spaced 991 
dotted line, 60 minutes forecast data by small dotted line, and reference kriging data by 992 
large full line. 993 
 994 
 995 
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 996 
Figure 5. Discharge simulations on Sommières watershed (a), on Marsillargues 997 
watershed (b), and on Le Cailar watershed (c), using MF data (1), SPC data (2), and 998 
kriging data (3). Observations are represented by full large black line, simulations based 999 
on a priori CN (40 and 50) by small and spaced dotted line, and calibrated CN (the 1000 
value of CNcal is written in parentheses) by full red line.    1001 
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 1003 
Figure 6. Skill scores for SPC data (top) and MF data (bottom) with calibrated CN. QPE 1004 
represents the skill score calculated with the only estimations, QPF15 those with the 15 1005 
minutes forecast added, respectively QPF30, QPF45, QPF60 with the 30, 45, and 60 1006 
minutes forecasts added. Finally, Krig represents the skill score computed using kriged 1007 
data 1008 
 1009 
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 1010 
Figure 7. Warnings issued by the RIWS during all the event using SPC QPE, CNcal and 1011 
the susceptibility analysis 1012 
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 1014 
Figure 8. Evolution of FAR and POD skill scores reducing the warning threshold for 1015 
kriging, MF and SPC QPE using the calibrated CN. 1016 
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 1018 
Figure 9. Inundation forecasts represented in the ROC space. The results obtained for 1019 
the 3 calibration events  (Cal1, Cal2 and Cal3) are compared to those computed with 1020 
SPC, MF, and Krig QPEs. POD and FPR values are calculated using the total number of 1021 
correct warnings and false alarms issued during the event.  1022 
 1023 
Table captions 1024 
 1025 
 Q2/2<Qsim<Q2 Q2<Qsim<Q10 Q10<Qsim<Q50 Qsim>Q50 
Susceptibility High SR HSR HSR HSR 
Susceptibility Medium MR SR SR HSR 
Susceptibility Low No risk MR MR SR 
Safe No risk No risk No risk MR 
No susceptibility analysis No risk MR SR HSR 
 1026 
Table 1. Risk levels based on exceeded discharge thresholds – with susceptibility 1027 
category or without 1028 
 1029 
Category of susceptibility Calibration area Study area Submerged intersections 
High 8% 12% 35% 
Medium 22% 20% 30% 
Low 54% 50% 30% 
Safe 16% 18% 5% 
 1030 
Table 2. Repartition of the road sections between the four susceptibility categories using 1031 
the road susceptibility rating method applied on the previous calibration area, on the 1032 
Vistre and Vidourle area and on the 29-30 September 2007 storm flooded road 1033 
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 1034 
 SPC40 SPC50 SPCcal MF40 MF50 MFcal Krig40 Krig50 Krigcal 
Sommières 0.81 -0.65 0.81 -0.18 0.44 0.73 0.00 -0.13 0.28 
Marsillargues 0.19 -4.05 0.70 -0.32 0.40 0.67 0.18 -0.19 0.35 
Le Cailar 0.03 -0.06 0.39 -0.26 0.43 0.43 0.10 -0.24 0.37 
 1035 
Table 3. Nash efficiency for discharge estimation using CN=40, CN=50 and CNcal for 1036 
the following watersheds: Sommières (a), Marsillargues (b), and Le Cailar (c)  1037 
 1038 

 SPC MF Krig Cal 
 40 50 Cal. 40 50 Cal. 40 50 Cal.  
POD 60.2/56.5 82.6/78.3 82.6/69.6 0/0 34.8/17.4 47.8/30.4 14.0/0 58.3/50.1 39.1/34.8 76.0/96.0 
COR 97.8/97.6 98.8/98.6 98.8/98.2 95.2/95.4 96.5/95.7 97.1/96.2 95.5/0 97.3/97.1 96.3/96.3 96.3/98.2 
FAR 90.2/75.5 87.3/84.8 87.2/78.4 0/0 86.7/90.0 86.1/85.4 86/100 87.3/89.5 93.7/87.7 63.0/73.0 

 1039 
Table 4. Summary of the RIWS maximum skill scores for the different types of QPE 1040 
(SPC, MF and kriged data) and different CN values. The left value is computed without 1041 
considering the susceptibility analysis, the right one considering the susceptibility. The 1042 
last column contains the average results obtained in the calibration area for 5 events. 1043 
 1044 


