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Synopsis
When it moves through a yield stress fluid, a solid object continuously reaches and liquefies new

solid regions, so that both flow in liquid regions and deformations in solid regions occur. In the

present work, we focus on the displacement of a plate through simple yield stress fluids (non-

thixotropic). Through force vs velocity and particle imaging velocimetry measurements with a

detailed analysis of the deformation history, we are able to identify the solid and liquid regions and

their respective role in the flow characteristics. It is shown that the displacement of a long object

through a yield stress fluid gives rise to the formation of a liquid boundary layer (BL) of uniform

thickness at short distance from the leading edge, while the rest of the material remains solid. The

original result is that the thickness of this boundary layer, which is of the order of 10mm, only

slightly increases with velocity and does not tend to zero when the velocity tends to zero, in contrast

with usual flows of yield stress fluids along solid surfaces. Moreover, it does not change for

significant variations of the rheological characteristics of the fluid in its liquid regime. We show that

these specific characteristics of the liquid layer are mainly governed by the progressive transition

from an elastic solid to a liquid, starting slightly ahead of the leading edge of the plate.VC 2012 The
Society of Rheology. [http://dx.doi.org/10.1122/1.4720387]

I. INTRODUCTION

Various materials, such as drilling muds, fresh concrete, toothpastes, paints, foams,

emulsions, are solid at rest and become liquid when submitted to a sufficiently large

stress: they are yield stress fluids. The rheological behavior of these materials has been

widely studied in recent years [see Coussot (2005)]. For simple (nonthixotropic) yield

stress fluids such as foams, emulsions, and physical gels, a relatively good knowledge
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has now emerged from a mechanical point of view. This is shown by the good agreement

observed between theoretical predictions from conventional (macroscopic) rheometry

and local flow characteristics in simple (conduit, coaxial cylinders) or more complex geo-

metries [Coussot et al. (2009); Ovarlez et al. (2008); Ovarlez et al. (2010); Rabideau

et al. (2010)]. Here, we will not consider thixotropic materials for which the situation is

more complex [Ragouilliaux et al. (2007); Ovarlez et al. (2009); Coussot and Ovarlez

(2010)]. The current knowledge of the rheological behavior of simple yield stress fluids

may be used in a straightforward way to describe real flows of industrial importance such

as casting, pumping, coating, and spreading. In these cases, the fluid flows along solid

boundaries under a given driving force.

Another class of flow problems concerns the displacement of solid objects through a

yield stress fluid. These phenomena have a wide practical impact. Sedimentation of

coarse particles in fresh concrete must be limited in order to avoid the development of

structure heterogeneities. Drilling fluids must be able to transport rock sediments in sus-

pension. The stability of various products, such as detergent, cosmetic, sauce, depends on

the ability of bubbles, droplets, or particles of larger or smaller density than the surround-

ing fluid, to remain in suspension. Besides, in various processes involved in the prepara-

tion or use of pasty materials (mixing, cooking, and eating) a tool is introduced and

moved through the material initially at rest in a container. This has led to the set up of a

practical test for characterizing the mechanical strength of pastes which is widely used in

food or building material industry, with a tool called penetrometer. It is used in a lot of

standard tests such as the ASTM D217, for a variety of pasty materials such as skin

creams, paints, edible fats, greases, and mortars. In this test, a solid cylinder, cone, nee-

dle, or perforated disk, is pushed under a given force through the material until stoppage.

The penetration depth is considered as a “rheological” characteristic of the material. No

doubt it is related to the effective rheological properties of the material but our knowl-

edge of the flow characteristics is so far so poor that a complete relation is not yet estab-

lished. At least it can reasonably be used to estimate the yield stress [Uhlherr et al.

(2002); Lootens et al. (2009)]. Such a test is also used in soil mechanics or civil engineer-

ing to characterize the materials. In that case, the tool is either pushed at a constant rate

or driven by repeated hammer-blows [Lowery and Morrison (2002)]. The fall cone test is

also sometimes used to estimate the so-called Atterberg liquid limit of clayey soils: here

this limit is defined as the water fraction allowing a cone to penetrate of 20mm in 5 s

under its own weight. At last the displacement of an object in a fluid as a result of thermal

agitation is now used in microrheology for evaluating the rheological characteristics of

soft-jammed systems [Habdas et al. (2004); Oppong et al. (2008); Oppong and de Bruyn

(2011)]. At a larger scale, it has been used in view of determining the (macroscopic)

stress tensor from the observation of bubble deformations [Dollet and Graner (2007)].

The questions to be addressed concerning the displacement of an object through a

yield stress fluid are basically the force vs velocity relation and the deformation field, i.e.,

what is the extent of the perturbation induced by the object motion, as a function of the

object shape and the rheological characteristics of the material. Actually this flow type

poses a serious theoretical problem. In simple geometries (Couette, straight conduit, and

open-channel flow) for which the stress distribution is given, the solid-liquid interface is

fixed after some time of flow, and the distribution of the material in the liquid and solid

regions does not change any more during the flow. For the displacement of an object,

even a long plate, there is a change of paradigm: as the object advances, even in steady

motion new solid regions are continuously reached and liquefied. This means that new

deformations of the material in the solid regime continuously occur around the object

and might play a significant role in the process.
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This problem has so far been mainly studied in the case of a compact object. The dis-

placement of a sphere or a cylinder moving through a yield stress fluid has been studied in

depth via theory and simulations [Ansley and Smith (1967); Beris et al. (1985); Blackery

and Mistoulis (1997); Beaulne and Mitsoulis (1997); Tokpavi et al. (2008); Putz and Frig-

aard (2010)]. Force vs velocity expressions have been deduced and partly confirmed exper-

imentally (although some unexplained discrepancies remain) [Atapattu et al. (1995); Jossic

and Magnin (2001); Merbak et al. (2006); Tabuteau et al. (2007)]. Basically the force fol-

lows a Herschel–Bulkley (HB) type expression with an apparent shear rate equal to the ra-

tio of the velocity to an “apparent” sheared thickness proportional to the sphere radius.

Only a few works aimed at measuring directly the flow field around the object. Atapattu

et al. (1995) were the first to measure the tangential velocity profiles around a sphere. Gue-

slin et al. (2009) provided an in-depth study of the velocity field but this concerned a thixo-

tropic material for which there can be a further, and maybe dramatic, impact of the intense

shear rate close to the object surface. Finally, Putz et al. (2008) (for spheres) and Tokpavi

et al. (2009) (for cylinders) provided a new detailed data concerning the velocity field

around an object moving through a yield stress fluid. They found a significant discrepancy

of the velocity field with that found from simulations. In particular, they remarked an asym-

metry on the flow field, the extent of the sheared zone ahead of the object being larger than

expected from theory. A significant flow asymmetry was also observed in 2D foam flow

around an obstacle [Dollet and Graner (2007)] which was attributed to elastic effects. We

suspect that an issue in these works, which nevertheless does not necessarily explain the

observed asymmetry, is the following: although they are generally considered as the flow

characteristics of the fluid in the liquid regime, the measurements concern the apparent

velocity field which could include both flow in the liquid regime and deformations in the

solid regime. Indeed, we will see that in our case the deformations in the solid regime

ahead of the object are significant.

Here, we focus on the case of a long straight object moving along its main axis

through a fluid macroscopically at rest. This is an interesting alternative to compact

objects as it leaves more time for observing the local flow characteristics: here, the solid

region cannot close up after the passage of the object tip. We thus expect to be able to

properly distinguish the solid and liquid regions.

This situation has some analogy with the classical boundary layer (BL) problem in

fluid mechanics: a fluid flow around a long static object, the flow being uniform far from

the object. This problem has relatively simple solutions for Newtonian fluids at large

Reynolds number: the flow is localized along the plate in a thin layer of thickness

increasing with the distance from the plate tip [Schlichting (1968)]. For low Reynolds

number no analytical solution exists [White (1991)] but we at least know that the flow is

perturbed far from the plate, typically at a distance of the order of the plate length.

On the other hand, when a plate is pushed through a simple solid material, it first indu-

ces elastic deformations which can extend far from the object [Johnson (1985)]. Then,

the plate starts to penetrate the material beyond the elastic limit and plastic deformations

occur. In some cases, the induced deformations are strongly localized along the plate and

lead to a separation of the sample into two parts. This process is at the origin of the prin-

ciple of the butter slicer. However, as far as we know there does not exist a theory

describing such processes in the field of solid materials. We suggest that the flow charac-

teristics and their dependence as a function of the detailed rheological characteristics of

the material might be approached from a comprehensive description of the flow charac-

teristics for a simple yield stress fluid.

Finally, the BL for a yield stress fluid is expected to borrow some characteristics from

both the BL with simple solids and the BL with simple liquids. It should thus include
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some deformation of a solid region far from the object and a tendency to flow like a liq-

uid around the object.

The only theoretical approaches of this problem have been developed successively by

Oldroyd (1947) and Piau (2002) for a Bingham fluid and for a HB fluid [Piau and

Debiane (2004)]. Piau’s theory has the advantage to take into account some aspects of

the impact of the deformation of the solid region on the flow characteristics in the liquid

region. It predicts a BL with a lens-shape of maximum thickness increasing with the

length and velocity of the plate, and with the inverse of the yield stress (see Sec. II). In

particular, this theory predicts that this thickness tends toward zero when the velocity

tends toward zero.

Here, we study experimentally the flow characteristics around a plate penetrating in a

yield stress fluid. We find that in contrast with the existing theoretical predictions the BL

is independent of the plate length and the rheological characteristics of the fluid in our ex-

perimental ranges, and slightly increases with the plate velocity. The BL finally appears

to be a channel of almost uniform and constant thickness formed through the material in

its solid regime, which contrasts with flows through straight conduits where the liquid

region tends to disappear at vanishing velocities. More generally, by following the defor-

mation history at a local scale our results provide for the first time a clear distinction of

the solid and liquid regions in a complex flow, and a general understanding of the flow

characteristics during a penetrometer test.

In the first, Sec. II we review the problem from a theoretical point of view and the pre-

dictions of existing works. Section III presents the materials and methods. In Sec. IV, we

describe the general characteristics of the flow including the trajectories and deforma-

tions. An in-depth analysis of the data makes it possible to distinguish the solid and the

liquid regions. In Sec. V, we focus on the velocity profiles in the liquid region and its var-

iations as a function of the plate velocity. Section VI deals with the force vs velocity

measurements and we discuss their consistency with the internal observations. On the ba-

sis of all the collected information, we present a final discussion and analysis of the prob-

lem in Sec. VII.

II. THEORY

A. Basics

The problem we consider here is the displacement of a two-dimensional infinite vol-

ume of a yield stress material along the direction x around a thin solid plate situated at

x > 0 and y ¼ 0 (the plate thickness is supposed to be negligible). In practice, we can

assume that far from the plate (x ! �1), the material is pushed at a uniform velocity V.

At least at its arrival around the plate it is somewhat deviated and sheared around the

plate.

In the solid regime, we assume an elastic behavior. The solid-liquid transition is

obtained when the second invariant of the deviatoric part of the stress tensor (TII) is such

that

ffiffiffiffiffiffiffiffiffi

�TII
p

¼ sc; (1)

where sc is the yield stress. Note that with such a behavior the liquid regime is reached at

a critical deformation which nevertheless depends on the exact initial state of the

material.

In the liquid regime, we assume a HB behavior type
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R ¼ �pIþ sc
D
ffiffiffiffiffiffiffiffiffiffi

�DII

p þ 2nk �DIIð Þðn�1Þ=2D; (2)

where R and D are the stress and strain rate tensors, p is the pressure, I is the unit tensor,
and k and n are fluid parameters. The resulting behavior in simple shear is

s < sc ) _c ¼ 0; s > sc ) s ¼ sc þ k _cn; (3)

with s and _c are the shear stress and shear rate amplitudes, respectively.

Note that yield stress fluids such as Carbopol solutions can exhibit some viscoelastic

effects and in particular could keep, in the liquid regime, a part of the elastic energy

stored in the solid regime, even if the constitutive equation is of the above form. The ex-

perimental data showing precisely the impact of elastic effects on the rheological behav-

ior are scarce and anyway difficult to interpret around the solid-liquid transition. It is

usually assumed as a first approximate that a constitutive equation like Eq. (2) accurately

describes the behavior of the material in the liquid regime.

Here, for the simplicity of the presentation, we will consider the flow only along the side

y > 0, the flow characteristics on the other hand are obviously symmetrical. Far from the plate

the material velocity is uniform so that the material is in its solid regime. We assume that there

is no slip along the plate. This implies that for x > 0, the velocity decreases from zero at

y ¼ 0 to V at y ! 1. The material elements in contact with the plate are continuously

sheared so that they necessarily become liquid after some time of flow. In contrast, far from

the plate the material is negligibly deformed. As a consequence for a stationary flow there

exists a given liquid region around the plate, while the rest of the material remains solid.

B. The uniform BL flow

We start by considering the (ideal) situation of a uniform BL of constant thickness d in

the liquid regime and flowing along the plate. In that case, the only nonzero velocity

component (u) is along x and only depends on the distance from the plate y. This is a sim-

ple shear, for which the only nonzero tangential component of the stress is sxy ¼ sðyÞ,
and from Eq. (2) we find that the normal stress components of the deviatoric part of the

stress tensor are equal to zero. The momentum equation is thus

0 ¼ � @p

@x
þ @s

@y
; (4a)

0 ¼ � @p

@y
; (4b)

with the boundary conditions: uðy ¼ 0Þ ¼ 0 and uðy ! 1Þ ¼ V. From these equations,

we deduce that the pressure is constant in each plane x¼Cst. and that the pressure gradi-

ent along x is constant. Integrating equation (4a) between 0 and d, we get

sðyÞ ¼ sw � sw � scð Þ y
d
for 0 < y < d; (5)

where sw ¼ sðy ¼ 0Þ is the shear stress at the wall and

d ¼ � sw � sc

@p=@x
: (6)
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For y > d, sðyÞ is smaller than sc but undetermined. Equating the shear stress with that

given by the HB constitutive equation of the material in the liquid regime (3) we find an

expression for the shear rate _c ¼ du=dy which may be integrated to give the velocity

profile

u ¼ V � V 1� y=dð Þ1þ1=n
for 0 < y < d: (7)

For y > d, uðyÞ ¼ V. Note that in the frame of reference linked to the fluid situated at

large distance, the amplitude of the velocity is v ¼ V � u. Here, the shear rate and shear

stress at the wall are

_cw ¼ du

dy

� �

y¼0

¼ m
V

d
¼ V

k
; (8)

sw ¼ sc þ k _cnw ¼ sc 1þ aBi�1
� �

; (9)

in which we used k ¼ d=m, m ¼ 1þ 1=n, and a ¼ mn and introduced the Bingham

number

Bi ¼ sc

k

V

d

� ��n

: (10)

Using the above results we find the expression for the pressure gradient as a function of

the BL thickness and the velocity

@p

@x
¼ �a

sc

d
Bi�1: (11)

This flow field corresponds to that found by Oldroyd (1947) in the case of a flow of a

Bingham fluid (n ¼ 1) along an infinitely long solid wall under the assumption of a pres-

sure independent of y in the liquid region. It also corresponds to that found by Piau and

Debiane (2004) within the frame of his general BL theory for a HB fluid under the

assumption of a BL of uniform thickness. Our analysis above shows that this result can

be obtained in a straightforward way from simple assumptions.

If the pressure gradient is imposed by some external conditions, the problem is solved:

the BL thickness is determined from Eq. (11) and the velocity field from Eq. (7). This is,

for example, the case if there is another plate parallel to the first one and situated at a dis-

tance 2L. At some distance from the entrance, the flow is uniform and the above solution

corresponds to the usual Poiseuille flow solution with

@p

@x
¼ � sc

L� d
: (12)

Equating (12) with Eq. (11), we can now express d as a function of the velocity and the

rheological properties of the material in the liquid regime. For large Bingham number

(Bi >> 1), we have

d � akVnL

sc

� �1=ð1þnÞ
; (13)
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which tends to zero when Bi ! 1. When Bi << 1, d is of the order of L. Thus, here a BL

problem in the sense of a sheared layer of small thickness compared to the characteristic

length of the system is observed for sufficiently large Bingham numbers. We can also

remark that the lengthscale which makes it possible to define d is the separating distance

between the plates. In the following, we will see that taking into account some specific-

ities of the flow around a plate leads to a BL depending on other lengths.

The fundamental problem is that @p=@x is a given external constant which is unknown

so that d is unknown too. When the BL thickness varies along the direction x, the velocity

field is more complex and in particular includes a nonzero component along y, but the

problem of the unknown pressure gradient remains the same. The existing theoretical

approaches (see Sec. II C) provided some solutions to this problem under specific

assumptions, leading to explicit expressions for d as a function of velocity and rheologi-

cal parameters.

C. BL problem

Let us consider now the case of a liquid region (y < dðxÞ) of increasing thickness

(d0ðxÞ > 0) along the plate (see example in Fig. 1). The momentum equations must now

be solved in pressure and velocity which vary as a function of x and y. We assume suffi-

ciently slow variations of d with x so that we will describe only the main velocity compo-

nent, u, parallel to the plate.

As for the uniform layer case, the complete solution can be found only if the pressure

gradient along the solid-liquid interface is known. Oldroyd (1947) assumed a pressure

varying in the form p0 þ 2bscd
0ðxÞ in which p0 and b are two constants, and found

d ¼ j
kVx

sc

� �1=2

; (14)

with j ¼ 3ð2ð1þ 3bÞÞ�1=2
, and

_cw ¼ 6b

1þ 3b

� �

V

d
: (15)

Unfortunately, in this approach, the thickness of the BL significantly depends on the

value of b, which is unknown and may significantly depend on flow and material

characteristics.

In order to solve this problem Piau (2002) attempted to explicitly take into account the

behavior of the material in both the solid and the liquid regions. In that aim he assumed

that the stress distribution in the solid region can be found from the solution for a plate of

FIG. 1. Scheme of the BL problem: a uniform flow of a yield stress material at some distance from the leading

edge of a solid plate; formation of a liquid region along the plate while the rest of the material remains in its

solid regime.
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finite length 2a immersed in an elastic medium and imposing to the fluid a shear stress

equal to the yield stress along its main direction. He found that the pressure gradient may

be approximated by a constant value

rp ¼ � 2sc

pa
: (16)

It is important to remark that here the pressure gradient, and consequently all the flow

characteristics, depends on the plate length, which contrasts with Oldroyd’s results [Eqs.

(14) and (15)] only depending on the distance from the leading edge of the plate. It also

contrasts with the pressure gradient for the uniform flow between two parallel plates only

depending on the distance between the plates. This is due to the fact that the solution of

the above elastic problem indeed depends on the whole surface of solid in contact with

the material.

Piau (2002) for a Bingham fluid and Piau and Debiane (2004) for a HB fluid then

solved the momentum equation and found that in the limit of large Bingham numbers

[note that he computed this number using half the plate length a instead of d in Eq. (10)]

the solution can be well approximated by a lens-shape a priori starting from the leading

edge. Far from the plate edges, the flow is almost uniform, the velocity is given by

Eq. (7) and the shear rate at the wall by Eq. (8), and an explicit expression for BL thick-

ness is found by equating (16) and (11)

d � a p=2ð ÞkVna

sc

� �1=ð1þnÞ
: (17)

This approach marks a significant improvement and clearly shows that the BL problem in

a yield stress fluid cannot be solved without taking into account the material behavior

both in the solid and the liquid regimes. However, the basic underlying assumption of

this approach is questionable: it is not clear why the pressure distribution found in the

purely elastic regime (before yielding) could be used for describing the pressure distribu-

tion in a solid region coexisting with a liquid region. In particular, we can expect that as

soon as a liquid region has formed in the region of largest strains, i.e., at the leading

edge, there might be some significant rearrangement of the stress distribution around,

which then could evolve quite differently from that found in the purely elastic regime

even in the solid region. Our results below will precisely show that the characteristics of

the BL shape are essentially determined around the leading edge, which means that the

BL is in fact independent of the solution in the elastic regime for the whole plate. It is

worth emphasizing that none of the above approaches explicitly describes the solid-liquid

transition as it may occur around the tip when the critical deformation is reached.

III. MATERIALS AND PROCEDURES

A. Materials

We used solutions of Carbopol (Carbopol U10) in water, whose structure is essentially

that of a “glass comprised of individual elastic microsponges” with a typical element size

of 2–20lm [Piau (2007)]. Three different concentrations (weight percent): 0.3%, 0.4%,

and 0.5% were used. The preparation of Carbopol solution begins with a Heidolpf plastic

agitator being added to a glass container filled with the appropriate amount of water and

set at a rate of 1000 rpm. The appropriate amount of raw Carbopol powder was then
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slowly added to the stirring water and allowed to incorporate. Sodium hydroxide is

quickly added to the solution thus increasing the pH of the acidic solution, while displac-

ing the agitator throughout the entire container to ensure homogenous incorporation. For

a complete homogenization, the Carbopol solution is then mixed for approximately 24 h

in a mortar mixer.

A transparent emulsion with a rheological behavior qualitatively similar to that of the

Carbopol solutions [Goyon et al. (2010)] was also prepared only for purpose of direct

qualitative observations: it is made of silicon oil droplets (volume fraction: 82.5%) in a

water-glycerin mixture (50% weight fraction) stabilized by a surfactant (trimethyl (tetra-

decyl) ammonium bromide 20 g/l). The preparation of this material starts by dissolving

the surfactant in the water-glycerin mixture to obtain a homogeneous solution without

lumps. Then, the oil is added gradually and dispersed in aqueous phase by mixing the

system with a Silverson mixer at 600 rpm for a first period then at 6000 rpm for 10min.

In order to ensure homogeneity of the final mixture, the apparatus is displaced in the con-

tainer from top to bottom during mixing. Before using this preparation, it is centrifuged

to get rid of air bubbles formed during mixing.

Rheological tests were performed with a Malvern Kinexus-stress-controlled rheometer

equipped with two circular, rough plates (diameter, 6 cm; waterproof sandpaper of aver-

age particle diameter 70 lm). Stress ramp tests were carried out, wherein the stress was

increased logarithmically in time at a constant rate (for 3min) and then decreased loga-

rithmically in time for the same time. Typical data of that type have already been pub-

lished many times [see, for example, Coussot (2005)]. We kept the data in the decreasing

ramp as reflecting the material behavior in steady state. We then took into account the

heterogeneity of shear rate along the radial direction inherent in this geometry, which

implies a slight correction [see Coussot (2005)] to finally deduce the effective flow curve

of the material.

All these materials appeared to behave as simple yield stress fluids (without significant

thixotropy) and their flow curve could be very well fitted over four decades in shear rate

10�2; 102s�1½ � by a HB model (see Fig. 2). For such materials, it was shown from mag-

netic resonance imaging (MRI) measurements that, in contrast with more complex yield

stress fluids which can, in particular, display shear-banding at apparent shear rates up to a

FIG. 2. Flow curves of Carbopol gels at different concentrations: (from bottom to top) 0.3%; 0.4%; and 0.5%.

The continuous lines correspond to a HB model [Eq. (3)] fitted to data with the following parameters

(n ¼ 0:38): (0.3%) sc ¼ 25 Pa and k ¼ 10 Pa:s�n, (0.4%) sc ¼ 40:7 Pa and k ¼ 16:1 Pa:s�n, (0.5%) sc ¼ 59:5 Pa
and k ¼ 23:6 Pa:s�n.
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shear rate of the order of 10s�1 (see Sec. I), this (HB) macroscopic constitutive equation

effectively corresponds to their local rheological behavior (inside the bulk) in the range

10�2; 102s�1½ � [Coussot et al. (2009)].
In order to estimate the critical deformation separating the solid and the liquid

regimes, we carried out creep tests under different stress values. After a short preshear

and 20 s at rest the stress was imposed and we recorded the deformation in time (see

Fig. 3). Then, the sample was removed, another sample was set up and the above proce-

dure was started again for a different stress values. In that case, after some time we can

rather well distinguish the solid and the liquid regimes. Below some critical stress (the

yield stress), the deformation tends to saturate, it reaches a plateau, this situation corre-

sponds to the solid regime. Note however that over long time some creep flow suggesting

aging effects may be observed [see Coussot et al. (2006)]. For higher stresses, after some

time the deformation increases at a constant rate, which indicates that a steady flow in the

liquid regime has been reached. The critical deformation is associated with the plateau

level reached for the highest stress below the yield stress. Note that for very low shear

rates various effects such as some slippage or solid creep can make the analysis difficult.

Moreover, it is difficult to properly control the initial stress distribution in the material,

i.e., there might be some residual stresses even after a preshear and some rest. Leaving

apart these problems which can hardly be controlled properly here our data suggest that

the critical deformation is 0:66 0:2 for all our Carbopol solutions.

We also carried out start up flow tests at low shear rates. In that case, the shear-

dependent term of the shear stress in Eq. (3) is small so that we observed a shear stress

progressively increasing toward a plateau close to the yield stress (see inset of Fig. 3) and

associated with a slow steady flow in the liquid regime. The deformation at which the

plateau is reached is expected to be the critical deformation cc marking the transition

from the solid to the liquid regime. Once again this measurement is approximate, in par-

ticular, because we can hardly control properly the initial stress state of the material, but

we again obtain a value between 0.4 and 0.8, consistent with the value obtained from

creep tests.

FIG. 3. Creep tests for the 0.5% Carbopol solution at different stress levels (from bottom to top): 8, 15, 46, 54,

77, 108, and 154 Pa. The dashed line corresponds to a slope 1. The dotted line corresponds to a deformation 0.6.

The inset shows the stress variation as a function of deformation under constant shear rate: 0:01 s�1 (bottom),

0:1 s�1 (top).
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B. Plate displacement

We studied the BL problem by displacing vertically at a velocity Va thin plate through

a fluid bath in a container at rest (see Fig. 4). The vertical plate is linked to the plate of a

dual-column testing system (Instron 3365) which controls the position with a resolution

of 0.1 lm. The apparatus is equipped with a 10N static load able to measure the force to

within a relative value 610�6 of the maximum value. We estimated the buoyancy force

from similar experiments with a Newtonian fluid at very low velocities (so that viscous

effects were negligible) and a correction for the effective density of the yield stress fluid.

This buoyancy force was then withdrawn from the recorded force to get the force F

strictly associated with the fluid resistance to the plate displacement. In our tests, the ratio

of the buoyancy force per unit length to the typical viscous force per unit length (the yield

stress times twice the plate width) takes value between 10 and 30% depending on mate-

rial characteristics.

Note that the question of the buoyancy expression for a yield stress is somewhat open

but if we assume as usual that the constitutive equation in the solid or the liquid regime

may be expressed in the form of the stress tensor function of the history of the deforma-

tion, and if the fluid is incompressible, the usual buoyancy expression (qgX) is valid.

Indeed, in that case a usual pressure term can be identified in the stress tensor, and if we

have found the solution for the stress tensor in the absence of gravity effects the solution

with gravity effects is simply found by adding a hydrostatic pressure distribution to

the solution obtained in the absence of gravity, which leads to the usual buoyancy

expression.

We choose the geometry of the system in order to be as close as possible to the two-

dimensional flow problem considered in the theoretical part. We can expect that with a

sufficiently small ratio of thickness (e) to plate width (l), and a small ratio of the plate

thickness to the distance (ðL� lÞ=2) between the plate edges and the container sides,

edge effects will be negligible. Also, we can expect that with a sufficiently small ratio of

the plate thickness to the distance (D) between the plate and the container, and a small ra-

tio of the plate section (el) to the container section (2LD), the container walls will not

play a significant role on the flow characteristics. We could partly check the validity of

these assumptions from force measurements with various geometrical characteristics. In

FIG. 4. Scheme of the experiment: the dark plate moves vertically through the fluid in a container.
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particular, the force does not change significantly as long as e=D is smaller than 1/20,

and as long as e=l is smaller than 1/25. However, a more systematic study with the help

of imaging is needed in order to know the effective impact of the geometry on the flow

characteristics. In the present study, we chose to focus on the detailed flow characteristics

in a specific case falling in the range for which we can consider to have a 2D flow:

e ¼ 1:5mm, l ¼ 7 cm, L ¼ 10 cm, and D ¼ 7:5 cm.

The material was poured in the container and left at rest for some time in order to

ensure residual stress relaxation. In order to avoid wall slip effects we covered the solid

surfaces of the plates with waterproof sandpaper of average particle diameter 70 lm, giv-

ing an effective roughness of a few tenths of microns, a thickness much larger than the

elements of the materials used in this study. The plate was first coated with material then

the material in excess of the roughness was removed (cleaning operation) before immers-

ing the plate for the first test; afterward it was simply cleaned between two successive

tests. All measurements were performed at room temperature (23�C).

C. Displacement measurement

We measured the velocity profiles in Carbopol solutions with particle imaging veloc-

imetry (PIV). Polystyrene beads (diameter: 80 lm), which served as markers were dis-

persed in the fluid at a mass weight fraction of 0.2%. Their density was very close to that

of the fluid so that sedimentation was negligible. We checked that they negligibly

affected the rheological behavior of the mixture.

A fluid sheet perpendicular to the plate and crossing it along its central axis was illumi-

nated by a continuous red laser of 20 mW (see Fig. 4). The particle displacements in this

sheet were filmed with a CCD camera which was fixed relatively to the container. The

window of observation (see Fig. 4) was 5 cm� 6:5 cm (height per width) and situated

5 cm below the free surface. We started to take pictures when the plate tip appeared in that

window and followed the fluid displacements during a further plate motion of 15 cm.

For the data analysis, we used the commercial software DAVIS. The technique is based

on the estimation of the particle velocity from a correlation analysis of two successive

pictures (our maximum number of images per second was 16). Each picture is divided in

correlation squares (of about 1mm2) which are compared through their Fourier trans-

form. The displacement of the peak in the resulting curve between the two successive

times provides an estimate of the particle velocity in the square. Considering the signifi-

cant size and low concentration of the markers, it appeared necessary to have a minimum

displacement of the plate of 1mm in order to get relevant data. We thus obtained a veloc-

ity field defined as ðv ¼ vxðxi; yjÞ; vyðxi; yjÞÞ, in which xi and yj are the coordinates of the

different elementary volumes in a 1mm2 mesh.

Actually, in order to reduce further the noise on the data for the analysis of transient

effects we chose to average the results over ten successive pictures, which means that the

plate has moved over a distance of d¼ 1 cm during a time Dt. We thus get a series of

moving averaged velocity fields defined in the same mesh. Then, for the analysis, in order

to focus on relevant data (avoiding any overlap of the periods of averaging) we kept the

corresponding velocity fields observed at successive times associated with a displacement

of 1 cm. Typical velocity distributions obtained in this way are shown in Fig. 5.

A typical profile of the velocity along the plate direction as a function of the distance

from the plate (vðyÞ) extracted from such data exhibits an almost perfect plateau at some

distance, say, for y >15mm (see Fig. 6). The velocity of this plateau (DV) is negative

and much smaller than the plate velocity: �DV << V. In the data analyzed here

DV=V ¼ 36 0:5%. This slight upward motion obviously finds its origin in the downward
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motion of the plate through the fluid and the mass conservation (assuming that the fluid is

incompressible). However, the simple upward displacement of a fluid volume equal to the

plate volume moving downward cannot explain such a value for DV=V. Indeed, in that

case we would expect DV=V � el=2LD, i.e., about 0.2%. The larger value that we found

results from the downward displacement of a significant volume of fluid around the moving

plate. If we roughly assume that the average velocity of this (boundary) layer is half the

plate velocity we find that its total thickness (including both sides of the plate) should be of

FIG. 5. Velocity field averaged over a plate displacement of 1 cm (Sec. III C) for V ¼ 1mm:s�1 as directly

obtained from PIV measurements for two different positions of the plate with regards to the window of observa-

tion: (left) plate tip at 3 cm above the window bottom, (b) plate tip at 10 cm below the window bottom. The av-

erage plate position is represented by the grey area.

FIG. 6. Effective velocity profile (in the frame of the container) along the plate direction during the penetration

through a Carbopol gel (0.5%) at V ¼ 1mm=s at x ¼ 6 cm. The dotted line corresponds to v ¼ �0:03mm=s.
The plate is situated at y ¼ 0 and the container wall at y ¼ 7:4 cm.
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the order of e� ¼ 14e � 25mm, a value which will appear quite consistent with the meas-

urements presented below. Then, we would indeed obtain DV=V � e�l=2LD � 3%.

In the following, we will consider that the effective plate displacement relatively to

the fluid occurs at V� ¼ V þ DV, slightly larger than V. For the consistency of the analy-

sis in all the data presented below we shifted the velocity profiles in order to have an

apparent plateau velocity equal to zero, which means that the effective relative velocity

is V�, and for the scaling by the plate velocity we used V�. Nevertheless, for the simplic-

ity of the presentation we will write V in the text and the graphs.

IV. GENERAL ASPECTS OF THE FLOW

A. Qualitative trends

The basic trends of the flow during the displacement of a plate through yield stress

fluid are showed up from a test with a colored material in a specific configuration: here,

the plate and the container had the same width (perpendicularly to the image) so that the

deformation field was mostly two-dimensional. Moreover, we used a transparent emul-

sion colored differently (by mixing it with different inks) and successively poured the dif-

ferent materials to get approximately horizontal parallel layers. We took pictures

(without the laser sheet) of the apparent deformation of these layers from the side of the

container (see Fig. 7). The mostly 2D character of the deformation in that case is con-

firmed by the fact that the interfaces between these layers remain rather sharp, whereas

they would likely appear diffuse for a more complex 3D shape.

From such a picture (see Fig. 7) we get a qualitative view of the strain field resulting

from plate displacement through the deformations of the initial approximately straight

layers. A similar picture of the strain field is obtained at any time during the plate motion

through the fluid, which suggests that the flow is stationary. Beyond some distance (along y)

from the plate, the shape of the interface between the different layers appears to remain

almost constant, which suggests that the material is only weakly deformed. On the contrary,

a region close to the plate is continuously and widely deformed as the plate advances: there

the colored regions are widely stretched. This suggests that there is a flowing liquid region

along the plate, while the rest of the fluid is in its solid regime.

B. Flow stationarity

Now using PIV data we start by looking at the evolution of the velocity profile at a

given distance (x) from the plate tip. Due to our window size and the fixed position of the

FIG. 7. Side view of the shape of colored layers of a transparent emulsion after plate penetration (Sec. IVA).

The real figure height is 4.5 cm.
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camera with regards to the container we were able to observe this evolution over a 5 cm

displacement of the plate. We found that at least after a penetration of 5 cm, for any fixed

value of x in the range �4 to 16 cm, the velocity profiles over 5 cm of displacement of

the plate were identical (see typical example of Fig. 8). This means that in our range of

observation, the flow in the direction x is stationary in the frame of reference of the

plane.

An important consequence of this stationarity of the flow is that a single picture of the

velocity field provides at the same time the spatial velocity distribution and the flow his-

tory of fluid elements in the picture.

C. Trajectories

On the basis of our observations concerning the flow stationarity we can use a single

PIV picture of the velocity field to deduce the trajectories of fluid elements defined in

1mm2 areas. Using the velocity of one of these fluid elements as determined by the aver-

aging procedure described in Sec. III C, we compute the resulting displacement of this

element during a plate displacement of 1 cm. We thus reach a new position where the

new velocity leads to a further displacement and so on.

The resulting trajectories in the frame of reference of the plate are shown in Fig. 9.

The uneven character of some of these trajectories is likely due to the uncertainty on

data. The robust observations are as follows:

(i) Around the level of the leading edge of the plate, the fluid tends to move laterally

of a distance of the order of 3mm; this effect occurs in a similar way over several

centimeters along the direction y.

(ii) After this lateral motion, the fluid elements tend to slightly go back toward the

plate (typically of about 1mm) then roughly follow straight vertical lines; actually

in Fig. 9 there is still some slight motion toward the plate at about 8 cm from the

tip but the stabilization of the velocity profile shape beyond 8 cm described in

Sec. V will clearly demonstrate that farther from the plate tip the trajectories are

effectively parallel to the plate.

FIG. 8. Velocity profiles along the plate direction during the penetration through a Carbopol gel (0.5%) at

V ¼ 1mm=s at a given distance d from the plate tip (5 cm) and successive times (ti): 0 s (squares), 10 s (cross-

squares), 20 s (circles), 30 s (stars), 40 s (crosses).
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D. Deformations

We can also appreciate the deformations in the material from the above information

concerning the trajectories. A typical example is shown in Fig. 10 where we follow the

successive shapes and positions of an initially horizontal line of elements. The lateral dis-

placement around the plate tip here appears from the displacement of the first point on

the right of the lines. It is remarkable that the deformation of the material seems to be

rather small before it has reached the level of the plate tip. Another point is that there

seems to be still significant deformation (see upper lines in Fig. 10) even at several centi-

meters from the plate and for lines at several centimeters above the plate tip.

FIG. 9. Trajectories of fluid elements (named by letters from A to P) initially situated at different distances

from the plate along a horizontal line at x ¼ �25mm in the frame of reference of the plate (grey area on the

right) for a penetration through a Carbopol gel (0.5%) at V ¼ 1mm=s. The arrow indicates the general direction

of motion of the elements along their trajectories. Note the different lengthscales used for x and y axes.

FIG. 10. Evolutions at successive times in the frame of reference of the plate of a horizontal line in the fluid ini-

tially situated at x ¼ �25mm for the same test as described in Fig. 5: (from bottom to top) every 10 s from 0 to

120 s. The arrow indicates the direction along which the line is successively deformed.
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These observations provide a global appreciation of the flow characteristics, but they

do not provide any clear view of the distribution of liquid and solid regions in time. In

order to address this issue we need to effectively compute the deformation of the ele-

ments along their trajectories. If the residual stresses inside the material after its prepara-

tion and set up in the container are negligible we can expect, according to Eq. (1), that a

fluid element initially solid will become liquid when the total deformation it has under-

gone is larger than the critical deformation (cc).

In that aim we computed the components of the 2D deformation gradient F in each el-

ementary volume of our mesh after each incremental displacement of the plate from the

following expressions of its components:

Fxxðxi; yjÞðtÞ ¼ 1=2dð Þ uxðxiþ1; yjÞ � uxðxi�1; yjÞ
� �

þ 1;

Fxyðxi; yjÞðtÞ ¼ 1=2dð Þ uxðxi; yjþ1Þ � uxðxi; yj�1Þ
� �

;

Fyxðxi; yjÞðtÞ ¼ 1=2dð Þ uyðxiþ1; yjÞ � uyðxi�1; yjÞ
� �

;

Fyyðxi; yjÞðtÞ ¼ 1=2dð Þ uyðxi; yjþ1Þ � uyðxi; yj�1Þ
� �

þ 1;

(18)

in which ux ¼ vxDt and uy ¼ vyDt are the local displacements over the time Dt. We then

computed the Green–Lagrange strain tensor e undergone by the elements along their tra-

jectory and the corresponding second invariant of this deformation
ffiffiffiffiffiffiffiffiffi�eII

p
. Note that the-

oretically for a simple shear this invariant simply reads c=2. As a consequence for a

steady-state simple shear this second invariant is proportional to the flow duration.

Let us follow the total deformation undergone by fluid elements initially on the hori-

zontal line situated at 25mm below the plate tip. For elements initially close to the plate,

say, at a distance smaller than 7mm (i.e., points A to G), beyond some critical deforma-

tion the total deformation increases linearly with time: the points fall along a line of slope

1 in a logarithmic scale (see Fig. 11). This suggests that these elements are in the liquid

regime and finally undergo a steady-state simple shear. On the contrary, for elements ini-

tially situated at distances larger than 8mm (i.e., points H to P) the total deformation

only slightly increases beyond the critical deformation, there is almost a deformation pla-

teau. [Note that for the fluid element initially situated at 8.1mm (point H) this plateau

seems to develop slightly later than the other elements.] This suggests that these elements

do not get out of their solid regime. A similar behavior is observed for a series of creep

tests in simple shear at different shear stress values (see Sec. III A), a procedure which

precisely allowed us to measure the yield stress and the critical deformation of the

material.

Finally, these observations make it possible to determine the shape of the solid and the

liquid regions around the plate tip. In that aim, for each trajectory of an element initially

close to the plate we estimate from Fig. 11 the time at which the apparent critical defor-

mation separating the two regimes (dashed line) has been overcome. We then consider

that the liquid regime appears at the point on the trajectory (see Fig. 9) associated with

this time. Thus, we get the shape of the liquid region around the plate tip (see Fig. 12).

Some material is liquefied just below the tip but most of the material is liquefied around

the level of the tip.

V. VELOCITY PROFILES

Since after 2 cm behind the plate tip the trajectories (see Fig. 9) are mostly parallel to

the plate we can now focus at the detailed characteristics of the velocity component (v)
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along the plate axis (x) as a function of time, position and plate velocity for given geo-

metrical conditions.

A. Flow profile variation from the plate tip

Let us follow the evolution of the apparent velocity profile along the plate. Here, we

look at the velocity profiles as directly measured from PIV along horizontal lines situated

at different distances from the plate tip. The first velocity profiles (situated at a vertical

distance from the plate tip larger than or equal to 2 cm) exhibit a slight slope which is

almost constant over large distance from the plate (see Fig. 13). The velocity profiles

closer to or above the plate tip are made of one part along the plate in which the shear is

strong and one part at larger distance in which the velocity slowly decreases. Then, the

FIG. 11. Total deformation as a function of time for the elements of Fig. 9 initially along the bottom line at dif-

ferent distances from the plate axis: the symbols follow an alternation of filled squares, empty squares, and

cross-squares, and are associated with the trajectory letters of Fig. 9. The dashed line is situated at the level of

the apparent critical deformation of the material. The dotted line has a slope 1.

FIG. 12. Deformation of an initially horizontal line of elements (same data as in Fig. 10) and liquid-solid

boundary (Sec. IVD). Note the different lengthscales used for x and y axes.
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thicknesses of each of these regions tend to reach a steady value for larger distances from

the plate tip. Finally, in the last velocity profiles of Fig. 13 (in continuous blue lines) a

steady-state regime seems to have been reached and there is no second part of the profile

extending at large distance.

These observations are globally consistent with those concerning the deformation field

(see Sec. IV). At some distance from the plate tip, the material is essentially deformed

elastically, which explains that the velocity profile slowly decreases with distance. Closer

to or above the plate tip the velocity profile is expected to be made of one part associated

with a liquid flow and one part associated with further deformations in the solid regime.

In order to look at the evolution of the velocity profile in time strictly in the liquid re-

gime we can use the above results (see Sec. IV) concerning the position (dðxÞ) of the
solid-liquid boundary. Between 0 and d the material should be liquid, and beyond

(y > dðxÞ) it should be solid. Let us withdraw, from each velocity profile, the value of the

velocity reached at the distance of the solid-liquid limit (vðdÞ). This apparent velocity,

which as all our PIV measurements in fact corresponds to a displacement over some spe-

cific time, results from the deformation of the whole solid region during that time. We

can remark (see inset of Fig. 13) a slight evolution of the curvature of the velocity profile

toward the apparently steady-state shape associated with the blue lines in Fig. 13. How-

ever, it is worth emphasizing that now, except for the two first ones, all the velocity pro-

files almost fall along the same curve. This means that the velocity profile in the liquid

regime is rapidly established around the plate tip, while the apparent variations of the

effective velocity are essentially due to residual deformations in the solid regime. Finally,

the inset of Fig. 13 provides a direct measurement of the velocity profile inside the liquid

BL.

Note that in fact now the maximum velocity is not constant since the velocity induced

by deformation in the solid regime has been withdrawn, it progressively increases. The

superposition of the velocity profiles remarkably occurs despite this variation, but we

have no explanation for that. In addition, it is worth emphasizing that even for the first

FIG. 13. Velocity profiles along horizontal lines in the material for the test presented in Fig. 5 at different dis-

tances x (separated by 1 cm) from the plate tip: �3 to 2 cm (red dotted lines), 3–11 cm (dashed lines), 12–17 cm

(continuous blue lines). Inset presents the same data (except for the lines at �3 and �2 cm) after withdrawing

the maximum velocity of the solid part.

1101BOUNDARY LAYER IN YIELD STRESS FLUIDS



two profiles the slope of the velocity profile along the plate is constant. This means that

the shear rate along the plate is almost immediately established, which implies that the

shear stress along the plate, given from the constitutive equation in the liquid regime,

should rapidly become constant.

B. Flow profile variation as a function of plate velocity

We measured the steady-state velocity profiles at a large distance from the plate tip

(blue region of Fig. 13) for different plate velocities. A first striking result is that the

thickness of the flowing region does not change much with velocity: in our range of

velocities d ranges from 7.5 to 10.3mm (see inset of Fig. 14). This result strongly con-

trasts with the theoretical approaches described in Sec. II which predict that d should

tend to zero when V tends to zero.

Another striking result is that, if as a first approximate we leave apart this slight

increase of d, over almost three decades of plate velocities the profiles scaled by the plate

velocity are almost similar (see Fig. 14). This similarity of the velocity profiles when

scaled by the plate velocity suggests that the process by which the BL develops is essen-

tially related to the deformation of the material: indeed, as a first approximate a similar

deformation is obtained for a similar displacement of the plate whatever the plate

velocity.

Let us now focus on the shape of these velocity profiles. At first sight (from Fig. 14),

the shear rate, given by the slope of the profile, does not seem to vary significantly in the

flowing region, i.e., from 0 to d. This could suggest a shear-banding effect analogous to

those observed with other materials [Ovarlez et al. (2009)] and associated with a critical

shear rate, a rheological parameter of the material. However, since here the velocity pro-

files are similar if rescaled by the plate velocity the critical shear rate at the liquid-solid

transition would widely increase with the plate velocity. This is not consistent with the

usual view of shear-banding effect which, as long as the shear-band thickness is much

larger than the size of the material elements, predicts a constant critical shear rate at the

FIG. 14. Scaled velocity profiles at a distance of 15 cm from the plate tip as a function of the distance from the

plate for a Carbopol suspension (0.5%) and different plate velocities: 0.03 (squares), 0.1 (open circles), 0.3 (trian-

gles), 1 (stars), 3 (crosses), 5 (cross-squares), 10mm/s (filled stars). The continuous line corresponds to Eq. (7)

with d ¼ 14:4mm. The dotted line shows the slope of the velocity profile along the plate for k ¼ 4mm. Inset:

same data in a logarithmic scale, with an inset showing the estimated BL thickness as a function of the velocity.
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interface. Here, d is of the order of 500 times the material element size. At last it does not

seem either that our data can be explained by the transient shear-banding effects observed

with Carbopol gels [Divoux et al. (2010)] in smooth Couette geometries.

Actually a deeper insight in these velocity profiles shows that the shear rate in the liq-

uid region is not constant. We computed directly the apparent shear rate along these pro-

files from the slope between two successive points and we removed data fluctuating

around zero. As expected from the similarity of the scaled velocity profiles we obtained a

global similarity of the shear rate profiles, with a clearer difference at the approach of the

solid region associated with the slight increase of d with the plate velocity (see Fig. 15).

The theoretical velocity profile given by Eq. (7) is able to roughly represent the variations

of the velocity or the shear rate in the liquid region (see Figs. 14 and 15). However, many

other models predicting a progressive decrease of the velocity with the distance and tend-

ing to zero when y ! d would also be able to fit the data. The main discrepancy between

the model and the data seems to be the fact that in reality the shear rate very slowly

decreases over a significant distance from the plate (say, 5–6mm) and then rapidly

decreases to zero (see dotted lines of Fig. 15).

A last, since the scaled velocity profiles very well superimpose close to the plate we

can write the shear rate along the plate V=k, in which k is a characteristic length of the

flow associated with the slope of the velocity profiles along the plate (see Fig. 14). As a

consequence, from the simple shear constitutive equation of the material in the liquid re-

gime (3) the shear stress sw along the plate is expected to simply write

sw=sc ¼ 1þ Bi�1; (19)

in which Bi�1 ¼ k=scð Þ V=kð Þn.

VI. FORCE VELOCITY MEASUREMENTS

We recorded the force F as a function of the depth h of penetration of the plate

through the material. Note that due to some surface tension and elasticity effects there is

FIG. 15. Local shear rate as a function of the distance from the plate for the data of Fig. 14 with the same sym-

bols. The continuous line corresponds to the model given by Eq. (7) with the parameters of Fig. 14. The dotted

lines are guides for the eyes.
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a slight initial deformation of the free surface after the first contact which leads to a shift

between the measured and effective values for h but here we will neglect it here. The

force vs depth appears to increase almost linearly until the plate is fully immersed then

the force remains constant and finally starts to slightly increase when the plate tip

approaches the container bottom. This force variation with the immersed depth suggests

that the viscous resistance acting on the plate is simply proportional to the immersed

depth. As a consequence, except during the first stage of penetration the shear stress (sw)

obtained by dividing the force by the surface of contact is almost perfectly constant.

Remark that this result is in agreement with our above PIV observation that a uniform

flow readily develops behind the leading edge of the plate.

A typical curve of sw vs V is shown in Fig. 16. These curves appear to have shapes

very similar to the flow curves of yield stress fluids, i.e., with a stress plateau at low shear

rates and a slow increase of the stress with increasing shear rate. More precisely the shape

of the sw vs V curve for a given material appears to be very similar to that of the flow

curve of this material obtained from conventional rheometry. It even appears that the

flow curve (s vs _c) can be approximately obtained by shifting horizontally the sw vs

Vcurve by a factor k (see Fig. 16).

The critical stress s0c estimated from the plateau of these sw vs Vcurves, was shown to

be equal to sc within 10%, this uncertainty being likely due to the uncertainty on data

obtained from rheometry and plate displacement experiments. In the following, in order

to strictly focus on the velocity dependence of the stress we compared the data after scal-

ing the stress by the yield stress obtained in each case, which removes the impact of the

uncertainty on the latter parameter. We find that when representing the force vs velocity

data in terms of sw and V=k with a single value for k all the curves fall along (see

Fig. 17) the rheometrical flow curves of our Carbopol solutions at different concentra-

tions (which actually are similar when the stress is scaled by the yield stress).

The above result is fully consistent with our observations concerning the shear rate

along the plate at different velocities and leading to the stress expression (19). Moreover,

the possibility of rescaling the data with the same value for k shows that this parameter

does not vary significantly with the yield stress of the fluid (which here was varied from

25 to 60 Pa). This suggests that the thickness of the liquid region does not change much

either with the yield stress. Note that if we follow the theoretical prediction (7) we should

FIG. 16. Carbopol gel (0.4%): flow curve (triangles) and stress vs velocity curve from plate displacement in

steady state (squares).
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have a slight variation of k with the velocity considering that d appears to vary (see

Sec. V). However, the uncertainly on our force vs velocity and flow curve data do not

allow us to reach a definite conclusion on that point: using a constant value for k in our

velocity range seems as relevant as trying to vary it slightly.

VII. FINAL DISCUSSION AND CONCLUSION

In Fig. 18, we propose a summarized description of the process based on all the infor-

mation obtained in this work. Far ahead of the leading edge of the plate the material is

deformed in its solid regime. At a short distance (apparently of the order of d) from the

plate tip a solid-liquid transition occurs for the fluid elements along the plate axis, where

the deformation is the highest. The thickness of the liquid region (perpendicularly to the

plate) then increases rapidly backward along the plate. The BL thickness reaches its

steady value in a distance of the order of d. Thus, the transient characteristics of the BL

are essentially situated around the plate tip in a volume of diameter approximately equal

to 2d. Consistently, the stress vs displacement measurement reaches a constant value af-

ter a penetration depth of the order of d. Thus, the thickness of the BL is fixed rapidly af-

ter the beginning of the penetration and, in strong contrast with the previous theoretical

prediction [cf. Eq. (17)], does not depend at all on the plate length.

The flow characteristics within the uniform BL appear to be similar to the predictions

of the basic theory (see Sec. II): the velocity profiles can be reasonably well fitted by

Eq. (7) in which one has to adjust the value of d (see Fig. 14). There is also a general con-

sistency of the data with the theory through the wall stress expression as a function of the

velocity even using a single value of d for the different velocities, which is a reasonable

assumption considering its slight variation observed by PIV.

Actually one of the most important results of this study is the observation that in our

range of data d remains larger than a finite value (d0) and very slowly increases with the

velocity. This contrast with the natural expectation in line with the previous theoretical

prediction [cf. Eq. (17)], that the sheared layer along a solid wall will tend to zero when

the relative velocity of the fluid and the wall tend to zero, or more precisely when the

shear-dependent term in the stress is much smaller than the yielding term (i.e., large

FIG. 17. Flow curves of Carbopol gels (continuous lines) at different concentrations and shear stress as a func-

tion of the velocity scaled with k ¼ 4mm for the plate displacement data: 0.3% (squares), 0.4% (circles), and

0.5% (stars). In each case, the stress has been scaled by the yielding value determined from the flow curve as

described in the text.
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Bingham number). It is also remarkable that this thickness cannot easily be linked to a mi-

croscopic or macroscopic lengthscale. Nevertheless, it would be useful to be able to predict

its value from independent fluid characteristics. Indeed, our data have shown the similarity

of the force vs depth curve with the material flow curve. A knowledge of the BL thickness

would allow the direct determination of the flow curve of a yield stress fluid from the sim-

ple penetration of a plate, an interesting, practical approach for various industrial materials.

A consequence of this minimum finite value for d is that according to Eq. (11)

@p=@x ! 0 tends to zero when V ! 0 since ðsw � scÞ ! 0. Such a result completely dif-

fers from any flow of a yield stress fluid through a simple geometry. In that case, as for a

flow between two fixed plates (see Sec. II), the momentum balance leads to

@p=@x ¼ sw=L in which L is a characteristic length of the geometry, which implies that

@p=@x is finite when the velocity tends to zero, i.e., when ðsw � scÞ ! 0. Thus, the liquid

region progressively vanishes as the velocity tends to zero. In the present case (flow

around a plate), the liquid region keeps an almost constant size whatever the velocity.

This means that the BL behaves as if its shape was essentially governed, not by the flow

characteristics within this region, but by the conditions around it, namely, the deforma-

tions of the solid region and the induced pressure gradient. Remark that this suggestion is

consistent with our observations that the velocity profiles scaled by the plate velocity are

approximately similar, which led us to conclude that the material deformations are

roughly the same after a similar plate displacement at different velocities.

Finally, the general picture we get from these considerations is as follows: when the

plate penetrates the material it first deforms it in its solid regime then the liquid region

develops where the critical deformation is reached. Under these conditions the deforma-

tion field in the solid regime plays a critical role in the determination of liquid region.

The thickness of the liquid region is also determined during this period, and the liquid

material then flows along the plate behind. This is finally a coupling between the proper-

ties in the solid and the liquid regimes which govern the thickness of the BL.

The coupling of solid and liquid behavior at the origin of the BL is likely at the origin

of the complete discrepancy of our data with existing theoretical predictions: this

FIG. 18. Schematic aspect of the deformations in the solid region and of the shape of the solid-liquid boundary

during the displacement of a plate (orange) through a yield stress fluid (liquid: dark blue, solid: light grey).
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coupling must be taken into account in the formation of the BL and one cannot simply

approach the stress distribution in the solid regime separately. A proper theoretical pre-

diction of the BL seems to require a treatment taking into account all the aspects of the

material behavior. Considering the difficulty of predicting similar processes in solid

mechanics as a function of the detailed behavior of the materials [Johnson (1985)], the

present task for yield stress fluids appears difficult but interesting as it might provide a

way for approaching the behavior of elastoplastic materials under such flow conditions.

More generally our results show that, in contrast with the usual approach so far, the

flow characteristics around an object moving through a yield stress significantly depend

both on the flow in the liquid region and on the successive deformations of new regions

in the solid state. This, for example, likely differs from the situation encountered in a dry

granular material [Seguin et al. (2011)] which is unable to store significant elastic energy.

In particular, the apparent velocity field around the plate tip finally includes both some

deformations in the solid regime and some flow in the liquid regime but measurements

relying on successive images of the positions of material elements cannot readily be

interpreted in terms of flow in the liquid regime. It is likely that properly modeling this

flow type requires a complete modeling of viscous and elastic effects and their couplings

at any time such as the approach recently developed by Saramito (2009) and successfully

applied to the flow around an obstacle [Cheddadi et al. (2011)].
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