

Domestic and international drivers of urban dynamics

Urbanization and low-carbon growth pathways Modeling the interactions between energy and real estate prices

Henri WAISMAN

(waisman@centre-cired.fr)

20 years of a surprising absence in energy-economy modeling

- □ What was "obvious" in the early nineties
 - Large competitive advantage of oil-based motor and fuels over substitutes (biofuels, electricity, hydrogen)
 - > Apparent low price elasticity of mobility and energy demand for transportation
 - ➤ Mobility and transportation are driven by other "signals" than energy prices
- ☐ What should have been done

A strong collaboration between energy, transportation and urban economists (Hourcade ,1993)

 \square What happened:

A methodological lock-in due to three converging intellectual dynamics:

- ➤ The 'Elephant and rabbit stew metaphor' legitimates to treat the energy sector independently from the rest of the economy (Hogan & Manne 1977)
- ➤ The TD/BU controversy about the energy efficiency gap focused the debate on technological efficiency
- Extrapolating electricity optimization models to the entire energy system
- → The overwhelming majority of energy-economy models adopt carbon price as the only driver of decarbonizing economies.

The Impasse of the « carbon price only » frameworks

- ☐ A carbon price at 50\$/tCO2
 - > doubles the cost of cement in India and hurts segments of the steel industry in the EU
 - > ...but hardly affects mobility demand (low price-elasticity)
- ☐ Consequences for cost assessment of climate policies
 - o *Underestimated*: an often ignored caveat of energy-economy modeling
 - « Most models use a global least cost approach to mitigation portfolios with universal emissions trading, assuming transparent markets, no transaction cost, and thus perfect implementation of mitigation measures throughout the 21st century. » (IPCC, AR4, WGIII)
 - o *Overestimated*: in absence of complementary policies in the transport sector
 - very high carbon prices are needed to curve down transport emissions (low elasticity of mobility demand to energy prices)
 - other determinants : non-energy prices and non price signals (real estate prices, risk-adjusted capital cost, infrastructure policies)
- Economic rationale behind the difficulties in making a deal around policy architectures built around a "pure" pricing of carbon

Intertwined methodological issues to be solved

☐ Modeling second- best economies with > Imperfect foresight ➤ Inertia of capital stocks ➤ Market imperfections (underutilization of production factors) ☐ Representing structural change driving the decoupling between growth and energy > Beyond pure energy efficiency, the fundamentals of the material content of the economy C-T-L (Hourcade 1993): Consumption styles (preferences) Technical potentials (resource and technology availability, asymptotes) Location patterns ☐ Capturing the interplay between energy prices, land prices and the growth engine (productivity, demography, savings) in an opened economy Endogenizing the urbanization process and location decisions in urban/rural areas

IMACLIM, a tool to investigate the interplay between Systems of Cities in Interaction and growth patterns

- ☐ Long term growth drivers vs. transitory disequilibrium
 - Demography + Labor productivity growth
 - > Imperfect markets & Partial use of production factors (unemployment, idle capacities)
 - ➤ Investments under imperfect foresight
 - > Trade and capital flows under exogenous assumption about debts
- □ A dialogue between engineering-based and economic analyses
 - > Hybrid matrixes in values, energy and « physical » content (Mtoe, pkm)
 - Explicit accounting of inertias on equipements, technical asymptotes and basic needs

IMACLIM, a tool to investigate the interplay between Systems of Cities in Interaction and growth patterns

- 1. Disaggregate the national economy into a System of Cities in Interaction
- 2. Represent the spatial dynamics among a number of urban agglomerations

The system of cities in interaction

- □ Spatial structure of cities
 - ➤ Monocentric and axisymmetrical
 - Firms clustered into the adimensionnal centre
 - > Spatial distribution of households
 - > tradeoff on housing/commuting costs

- Households/ Workers Firms 0 d_i
- ➤ Calibration in 2001: 74 OECD agglomerations
 - « Empirical data » : Population, Density, Production, Wage
- □ Multi-level interactions
 - ➤ Inter-city trade (iceberg structure)
 - ➤ Monopolistic competition & imperfect substitution among varieties
 - > Agglomeration effect on production
- ☐ Spatial dynamics
 - Differentiated attractiveness of cities (investment profitability)
 - Migration of investments towards the most attractive cities
 - Migration of firms and associated labor force

A consistent view of macreconomic and urban dynamics

Climate policy (450ppm-CO₂) and urban dynamics

Urban policy and CO2 emissions

Spatial policy at the city level to limit urban sprawl and constrained mobility = 0.1% of OECD GDP

Urban densification policy and costs of climate policies

	discount rate = 7%		discount rate = 1%	
	carbon price	carbon price &	carbon price	carbon price &
	only	urban policy	only	urban policy
Carbon price (\$/tCO ₂)	56.2	55.8	225.0	219.8
Oil price (\$/Barrel)	69.4	69.2	61.2	60.0
Land price (index 1 =baseline)	1.31	1.37	1.70	1.93
Total surplus variations (Billion \$)	-4.30	-4.27	-4.08	-3.46

Conclusion

IMACLIM, a methodological tool for consistency checks between expertises

- > material content of economic growth
- > transport, infrastructure policies and mitigation
- > endogenizing urban systems in a global energy-economy model

Quantification of the impact of urban policies on carbon and real estate prices

- important complement to carbon pricing for ambitious mitigation objectives
- > not only for carbon mitigation : political implementation, social dimensions (welfare effects, distributional issues)

On-going research:

- real estate markets and scarcity rents
- interplay between transport infrastructure, modal choice and the dynamics of real estate at the local level
- ➤ linkages between labor productivity and agglomeration effects