
HAL Id: hal-00787916
https://enpc.hal.science/hal-00787916

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Permutation estimation and minimax rates of
identifiability

Olivier Collier, Arnak S. Dalalyan

To cite this version:
Olivier Collier, Arnak S. Dalalyan. Permutation estimation and minimax rates of identifiability.
JMLR, 2013, 31, pp.10-19. �hal-00787916�

https://enpc.hal.science/hal-00787916
https://hal.archives-ouvertes.fr


Permutation estimation and minimax rates of identifiability

Olivier Collier Arnak Dalalyan
IMAGINE, Université Paris-Est CREST, ENSAE

Abstract

The problem of matching two sets of features
appears in various tasks of computer vision
and can be often formalized as a problem
of permutation estimation. We address this
problem from a statistical point of view and
provide a theoretical analysis of the accuracy
of several natural estimators. To this end, the
notion of the minimax rate of identifiability
is introduced and its expression is obtained
as a function of the sample size, noise level
and dimensionality. We consider the cases of
homoscedastic and heteroscedastic noise and
carry out, in each case, upper bounds on the
identifiability threshold of several estimators.
This upper bounds are shown to be unim-
provable in the homoscedastic setting. We
also discuss the computational aspects of the
estimators and provide empirical evidence of
their consistency on synthetic data.

1 Introduction

In this paper, we present a rigorous statistical analysis
of the problem of permutation estimation and multi-
ple feature matching from noisy observations. More
precisely, let {X1, . . . , Xn} and {X#

1 , . . . , X
#
m} be two

sets of vectors from Rd containing many matching ele-
ments. That is, for many Xis there is a X#

j such that
Xi and X#

j coincide up to an observation noise (or
measurement error). Our goal is to estimate an appli-
cation π∗ : {1, . . . , n} → {1, . . . ,m} for which each Xi

matches with X#
π∗(i) and to provide tight conditions

ensuring the identifiability of π∗.

In order to define a statistical framework making it
possible to compare different estimators of π∗, we con-
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fine1 our attention to the case n = m, that is when
the two sets of noisy features have equal sizes. Fur-
thermore, we assume that there exists a unique per-
mutation of {1, . . . , n}, denoted π∗, leading to pairs
of features (Xi, X

#
π∗(i)) that match up to a measure-

ment error. In such a situation, it is clearly impossible
to identify the true permutation π∗ if some features
within the set {X1, . . . , Xn} are too close. Based on
this observation, we propose to measure the quality of
a procedure of permutation estimation by the minimal
distance between pairs of different features for which
the given procedure is still consistent. This quantity
will be called identifiability threshold and will be the
main concept of interest in the present study.

1.1 A motivating example : feature matching
in computer vision

Many tasks of computer vision, such as object recog-
nition, motion tracking or structure from motion, are
currently carried out using algorithms that contain a
step of feature matching, cf. [11, 5]. The features are
usually local descriptors that serve to summarize the
images. The most famous examples of such features
are perhaps SIFT [9] and SURF [1]. Once the features
have been computed for each image, an algorithm is
applied to match features of one image to those of
another one. The matching pairs are then used for es-
timating the deformation of the object, for detecting
the new position of the followed object, for creating
a panorama, etc. In this paper, we are interested in
simultaneous matching of a large number of features.
The main focus is on the case when the two sets of
features are extracted from the images that represent
the same scene with a large overlap, and therefore the
sets of features are (nearly) of the same size and every
feature in the first image is also present in the second
one. This problem is made more difficult by the pres-
ence of noise in the images, and thus in the features
as well.

1These assumptions are imposed for the purpose of get-
ting transparent theoretical results and are in no way nec-
essary for the validity of the considered estimation proce-
dures, as discussed later in the paper.
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1.2 Main contributions

We consider four procedures of permutation estima-
tion: a greedy procedure that sequentially assigns to
each feature Xi the closest feature X#

j among those
features that have not been assigned at an earlier step
and three estimators defined as minimizers of the log-
likelihood under three different modeling assumptions.
These three modeling assumptions are that the noise
level is constant across all the features (homoscedastic
noise), that the noise level is variable (heteroscedastic
noise) but known and that the noise level is variable
and unknown. The corresponding estimators are re-
spectively called least sum of squares (LSS) estimator,
least sum of normalized squares (LSNS) estimator and
least sum of logarithms (LSL) estimator.

We first consider the homoscedastic setting and show
that all the considered estimators are consistent under
similar conditions on the minimal distance between
distinct features κ. These conditions state that κ is
larger than some function of the dimension d, the noise
level σ and the sample size n. This function is the same
for the four aforementioned procedures and is given, up
to a multiplicative factor, by

κ∗(d, σ, n) = σmax((log n)1/2, (d log n)1/4).

We then prove that this expression provides the op-
timal rate of the identifiability threshold in the sense
that for some absolute constant c if κ ≤ cκ∗(d, σ, n)
then there is no procedure capable of consistently es-
timating π∗.

In the heteroscedastic case, we provide an upper bound
on the identifiability threshold ensuring the consis-
tency of the LSNS and LSL estimators. This result
shows that the ignorance of the noise level does not se-
riously affect the quality of estimation. Furthermore,
the LSL estimator is easy to adapt to the case n 6= m
and is robust to the presence of outliers in the features.
We carried out a small experimental evaluation that
confirms that in the heteroscedastic setting the LSL
estimator is as good as the LSNS (pseudo-) estimator
and that they outperform the two other estimators:
the greedy estimator and the least sum of squares. We
also show that the three estimators stemming from the
maximum likelihood methodology are efficiently com-
putable by linear programming.

2 Notation and problem formulation

We consider that n = m ≥ 2 and the two sets of fea-
tures {X1, . . . , Xn} and {X#

1 , . . . , X
#
n } are randomly

generated from the model{
Xi = θi + σiξi ,

X#
i = θπ∗(i) + σ#

i ξ
#
i ,

i = 1, . . . , n (1)

where

• θ = {θ1, . . . , θn} is a collection of distinct vectors
from Rd, corresponding to the original features,
which are unavailable,

• σ1, . . . , σn, σ
#
1 , . . . , σ

#
n are positive real numbers

corresponding to the levels of noise contaminating
each feature,

• ξ1, . . . , ξn and ξ#
1 , . . . , ξ

#
n are two independent sets

of i.i.d. random vectors drawn from the Gaussian
distribution with zero mean and identity covari-
ance matrix,

• π∗ is a permutation of {1, . . . , n}.

In this formulation, there are three (sets of) unknown
parameters: θ, σ = {σi, σ#

i }i=1,...,n and π∗. How-
ever, we will focus our attention on the problem es-
timating the parameter π∗ only, considering θ and σ
as nuisance parameters. In what follows, we denote
by Pθ,σ,π∗ the probability distribution of the vector
(X1, . . . , Xn, X

#
1 , . . . , X

#
n ) defined by (1). The set of

all permutations of {1, . . . , n} will be denoted by Sn.

Let us denote by κ(θ) the smallest Euclidean distance
between two distinct features:

κ(θ) , min
i 6=j
‖θi − θj‖. (2)

It is clear that if κ(θ) = 0, then the parameter π∗
is nonidentifiable, in the sense that there exist two
different permutations π∗1 and π∗2 such that the dis-
tributions Pθ,σ,π∗1

and Pθ,σ,π∗2
coincide. Therefore,

the condition κ(θ) > 0 is necessary for the existence
of consistent estimators of π∗. Furthermore, good es-
timators are those consistently estimating π∗ even if
κ(θ) is small. To give a precise sense to these con-
siderations, let α ∈ (0, 1) be a prescribed tolerance
level and let us call identifiability threshold of a given
estimation procedure π̂ the quantity

κα,σ,n,d(π̂) = inf
{
κ > 0 : sup

θ:κ(θ)>κ
π∈Sn

Pθ,σ,π(π̂ 6= π) ≤ α
}
.

In the next section, we establish nonasymptotic upper
bounds on the identifiability threshold of several nat-
ural estimators. We then define the minimax rate of
identifiability as

κα,σ,n,d = inf
π̂
κα,σ,n,d(π̂),

where the inf is taken over all possible estimators of π∗.
In the homoscedastic case, we will show that the afore-
mentioned upper bounds coincide with the minimax
rate of identifiability up to a multiplicative constant.
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3 Theoretical results

3.1 Estimation procedures

As already mentioned, we will consider four es-
timators. The simplest one, called greedy algo-
rithm and denoted by πgr is defined as follows:
πgr(1) = arg minj∈{1,...,n} ‖Xj − X#

1 ‖ and, for every
i ∈ {2, . . . , n}, recursively define

πgr(i) = arg min
j 6∈{πgr(1),...,πgr(i−1)}

‖Xj −X#
i ‖. (3)

A drawback of this estimator is that it is not symmet-
ric: the resulting permutation depends on the initial
numbering of the features. However, we will show that
in the homoscedastic setting this estimator possesses
nice optimality properties.

The three other estimators, termed least sum of
squares, least sum of normalized squares and least sum
of logarithms, are defined as

πLSS = arg min
π∈Sn

n∑
i=1

‖Xπ(i) −X#
i ‖

2, (4)

πLSNS = arg min
π∈Sn

n∑
i=1

‖Xπ(i) −X#
i ‖2

σ2
π(i) + σ#

i

2 , (5)

πLSL = arg min
π∈Sn

n∑
i=1

log ‖Xπ(i) −X#
i ‖

2. (6)

A first remark concerning these three estimators is that
the LSS and the LSL are adaptive with respect to the
noise level σ, while the computation of the LSNS re-
quires the knowledge of σ. A second remark is that
these estimators can be seen as maximum likelihood
(ML) estimators under different settings. The LSS cor-
responds to the ML-estimator when σi = σ#

i = σ for
every i (homoscedastic noise). The LSNS corresponds
to the ML-estimator when the noise is not necessarily
homoscedastic, but the noise level σ is known. More
interestingly, and this is less obvious, the LSL cor-
responds to the ML-estimator when the noise is het-
eroscedastic with unknown noise level σ satisfying the
relation σ#

i = σπ∗(i) for every i. Finally, a third ob-
servation deserving to be mentioned is that the com-
putation of these three estimators can be done effi-
ciently by linear programming, and the complexity of
this computation is comparable to that of the greedy
algorithm.

3.2 Minimax rates of identifiability

The purpose of this section is to present our main theo-
retical results providing guarantees for the consistency
of the aforementioned estimators in terms of upper
bounds on their identifiability threshold. This makes

it possible to compare different procedures and to eval-
uate how far they are from the optimal ones. We start
by considering the homoscedastic case, in which upper
and lower bounds matching up to a constant are ob-
tained. Note that in this setting the LSNS estimator
coincides with the LSS estimator.

Theorem 1. Let α ∈ (0, 1) be a tolerance level and let
the noise level σ be a constant vector: σi = σ#

i = σ
for all i ∈ {1, . . . , n}. Then, if π̂ denotes either one of
the estimators (3)-(6), we have

κα,σ,n,d(π̂) ≤ 8σmax
{(

log
8n2

α

)1/2

,
(
d log

4n2

α

)1/4}
.

An equivalent way of stating this result is that if

κ = 8σmax
{(

log
8n2

α

)1/2

,
(
d log

4n2

α

)1/4}
and Θκ is the set of all θ ∈ Rn×d such that κ(θ) ≥ κ,
then

sup
θ∈Θκ

max
π∗∈Sn

Pθ,π∗(π̂ 6= π∗) ≤ α

for all the estimators defined in the previous subsec-
tion. The strength of this result is that it is nonasymp-
totic and holds for any vector θ and any tolerance level
α. Roughly speaking, it tells us that the identifiability
threshold of the procedures under consideration is at
most of the order of

σmax
{

(log n)1/2, (d log n)1/4
}
. (7)

However, this result does not allow us to deduce any
hierarchy between the four estimators, since it provides
the same upper bound for all of them. Furthermore,
as stated in the next theorem, this bound is optimal
up to a multiplicative constant.

Theorem 2. Assume that n ≥ 4. There exist two
absolute constants c > 0 and C > 0 such that if

κ ≤ σ

4
max

{
(log n)1/2, c(d log n)1/4

}
,

then,

inf
π̂

sup
θ∈Θκ

max
π∗∈Sn

Pθ,σ,π∗
(
π̂ 6= π∗

)
> C,

where the infimum is taken over all permutation esti-
mators.

We switch now to the heteroscedastic setting, which
allows us to discriminate between the four procedures.
One remarks immediately that the greedy algorithm,
the LSS and the LSL have a serious advantage with
respect to the LSNS in that they can be computed
without knowing the noise level σ.
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The identifiability threshold here is slightly redefined
in order to better reflect the variability of the noise
level. We assume that for every i = 1, . . . , n, σ#

i =
σπ∗(i) and define

κ̃(θ) , min
i 6=j

‖θi − θj‖√
σ2
i + σ2

j

.

Theorem 3. Consider a real α in (0, 1). Set

κ̃ = 4 max
{(

2 log
8n2

α

)1/2

,
(
d log

4n2

α

)1/4}
and denote by Θκ̃ the set of all θ ∈ Rn×d such that
κ̃(θ) ≥ κ̃. Then, if π̂ is either πLSNS (if the noise
levels σi, σ

#
i are known) or πLSL (when the noise levels

are unknown), we have

sup
θ∈Θκ̃

max
π∗∈Sn

Pθ,π∗(π̂ 6= π∗) ≤ α.

It follows from this theorem that the identifiability
thresholds of the LSNS and LSL estimators are up-
per bounded by

4 max
i 6=j

(σ2
i + σ2

j )1/2
{(

2 log
8n2

α

)1/2∨(
d log

4n2

α

)1/4}
,

which coincides with the upper bound stated in The-
orem 1 in the case of constant noise level. We believe
that this expression provides the optimal rate of iden-
tifiability in the heteroscedastic setting, but we do not
have the rigorous proof of this claim.

Note also that Theorem 3 does not tell anything about
the theoretical properties of the greedy algorithm and
the LSS under heteroscedasticity. In fact, the iden-
tifiability thresholds of these two procedures are sig-
nificantly worse than those of the LSNS and the LSL
especially for large dimensions d. We state the cor-
responding result for the greedy algorithm, a similar
conclusion being true for the LSS as well. The su-
periority of the LSNS and LSL is also confirmed by
numerical simulations presented in Section 6 below.

Theorem 4. Let d ≥ 225 log 6 and n = 2. Consider
the heteroscedastic setting described above with σ2

1 = 3
and σ2

2 = 1. Then, if κ̃ < 0.1(2d)1/2, we have

sup
θ∈Θκ̃

Pθ,id(πgr 6= id) ≥ 1/2.

This theorem shows that if d is large, the condition
necessary for πgr to be consistent is much stronger
than the one obtained for πLSL in Theorem 3. In-
deed, for the consistency of πgr, κ̃ needs to be at least
of the order of d1/2, whereas d1/4 is sufficient for the
consistency of πLSL.

4 Computational aspects

At first sight, the computation of the estimators (4)-
(6) requires to perform an exhaustive search over the
set of all possible permutations, the number of which,
n!, is prohibitively large. This is in practice impossi-
ble as soon as n ≥ 20. In this section, we show how
to compute these (maximum likelihood) estimators in
polynomial time using linear programming2.

For instance, let us consider the LSS estimator

πLSS = arg min
π∈Sn

n∑
i=1

‖Xπ(i) −X#
i ‖

2.

For every permutation π, we denote by Pπ the n × n
(permutation) matrix with coefficients Pπij = 1{j=π(i)}.
Then it is equivalent to compute the estimator

πLSS = arg min
π∈Sn

tr
(
MPπ

)
, (8)

where M is the matrix with coefficient ‖Xi−X#
j ‖2 at

the ith row and jth column. The cornerstone of our
next argument is the Birkhoff-von Neumann theorem
stated below.
Theorem 5 (cf., for instance, Budish et al. [2]). Let
P be the set of all doubly stochastic matrices of size n,
i.e., the matrices whose entries are nonnegative and
sum up to 1 in every row and every column. Then,
every matrix in P is a convex combination of matrices
{Pπ : π ∈ Sn}. Furthermore, permutation matrices
are the vertices of the simplex P.

In view of this result, the combinatorial optimization
problem (8) is equivalent to the following problem of
continuous optimization:

PLSS = arg min
P∈P

tr
(
MP

)
, (9)

in the sense that if π is a solution to (8), then Pπ is a
solution to (9). To prove this claim, let us remark that
for every P ∈ P there exist coefficients α1, . . . , αn! in
(0, 1) such that

P =

n!∑
i=1

αiP
πi and

n!∑
i=1

αi = 1.

Therefore,

tr
(
MP

)
=

n!∑
i=1

αitr
(
MPπi

)
≥ min
π∈Sn

tr
(
MPπ

)
and

tr
(
MPLSS

)
≥ tr

(
MPπ

LSS)
.

2This idea has been already used in the literature; see,
for instance, Jebara [7]
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The great advantage of (9) is that it concerns the min-
imization of a linear function under linear constraints
and, therefore, is a problem of linear programming
that can be efficiently solved even for large values of
n. It is clear that the same arguments apply to the
estimators πLSNS and πLSL (only the matrix M needs
to be changed).

5 Possible extensions

When considering the problem of permutation estima-
tion, it may be relevant to define the risk of an algo-
rithm π̂ as the average rate of incorrect matches pro-
vided by the algorithm:

R(π̂, π∗) = Eθ,σ,π∗

( 1

n

n∑
i=1

1{π̂(i) 6=π∗(i)}

)
,

instead of the probability of failing to correctly esti-
mate the whole permutation π∗. All the results pre-
sented in previous sections carry over this setting with
minor modifications. Because of space limitations,
these results are not contained in this paper but will
be included in its extended version which is in prepa-
ration.

Another interesting extension concerns the case of ar-
rangement estimation, i.e., the case m 6= n. In such
a situation, without loss of generality, one can as-
sume that n < m and look for an injective function
π∗ : {1, . . . , n} → {1, . . . ,m}. All the estimators pre-
sented in Section 3.1 admit natural counterparts in
this “rectangular” setting. Furthermore, the computa-
tional tricks described in the previous section are valid
in this setting as well, and are justified by the extension
of the Birkhoff-von Neumann theorem recently proved
by Budish et al. [2]. In this case, the minimization
should be carried out over the set of all n×m matrices
P such that Pi,j ≥ 0,

∑n
i=1 Pi,j ≤ 1 and

∑m
j=1 Pi,j = 1

for every (i, j) ∈ {1, . . . , n} × {1, . . . ,m}.

From a practical point of view, it is also important
to consider the issue of robustness with respect to the
presence of outliers, i.e., when for some i there is no
X#
j matching with Xi. The detailed exploration of

this problem being out of scope of the present paper,
let us just underline that the LSL-estimator seems to
be well suited for such a situation because of the ro-
bustness of the logarithmic function.

6 Experimental results

We have implemented all the procedures in Matlab
and carried out a certain number of numerical experi-
ments on synthetic data. To simplify, we have used the
general-purpose solver SeDuMi [10] for solving linear

programs. We believe that it is possible to speed-up
the computations by using more adapted first-order
optimization algorithms, such as coordinate gradient
descent. However, even with this simple implementa-
tion, the running times are reasonable: for a problem
with n = 500 features, it takes about 6 seconds to
compute a solution to (9) on a standard PC.
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Figure 1: Average error rate of the four estimating proce-
dures in the experiment with homoscedastic noise as a func-
tion of the minimal distance κ between distinct features.
One can observe that the LSS, LSNS and LSL procedures
are indistinguishable and, a bit surprisingly, perform much
better than the greedy algorithm.

Homoscedastic noise We chose n = d = 200 and
randomly generated a n×d matrix θ with i.i.d. entries
uniformly distributed on [0, τ ], with several values of
τ varying between 1.4 and 3.5. Then, we randomly
chose a permutation π∗ (uniformly from Sn) and gen-
erated the sets {Xi} and {X#

i } according to (1) with
σi = σ#

i = 1. Using these sets as data, we computed
the four estimators of π∗ and evaluated the average er-
ror rate 1

n

∑n
i=1 1(π̂(i) 6= π∗(i)). The result, averaged

over 500 independent trials, is plotted in Fig. 1.

One can clearly observe that the three estimators origi-
nating from the maximum likelihood methodology lead
to the same estimators, while the greedy algorithm
provides an estimator which is much worse when the
parameter κ is small.

Heteroscedastic noise This experiment is similar
to the previous one, but the noise level is not constant.
We still chose n = d = 200 and defined θ = τId, where
Id is the identity matrix and τ varies between 4 and 10.
Then, we randomly chose a permutation π∗ (uniformly
from Sn) and generated the sets {Xi} and {X#

i } ac-
cording to (1) with σi = σ#

π∗(i) = 1 for 10 randomly

chosen values of i and σi = σ#
π∗(i) = 0.5 for the oth-

ers. Using these sets as data, we computed the four
estimators of π∗ and evaluated the average error rate
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Figure 2: Top: Average error rate of the four estimating
procedures in the experiment with heteroscedastic noise as
a function of the minimal distance κ between distinct fea-
tures. Bottom: zoom on the same plots. One can observe
that the LSNS and LSL are almost indistinguishable and,
as predicted by the theory, perform better than the LSS
and the greedy algorithm.

1
n

∑n
i=1 1(π̂(i) 6= π∗(i)). The result, averaged over 500

independent trials, is plotted in Fig. 2.

One can observe that among the noise-level-adaptive
estimators, LSL outperforms the two others and is as
accurate as (and even slightly better than) the LSNS
(pseudo)-estimator.

7 Conclusion

Motivated by the problem of feature matching, we pro-
posed a rigorous framework for studying the problem
of permutation estimation from a minimax point of
view. The key notion in our framework is the mini-
max rate of identification, which plays the same role
as the minimax rate of separation in the statistical hy-
potheses testing theory [6]. We established theoretical
guarantees for several natural estimators and proved
the optimality of some of them. The results appeared
to be quite different in the homoscedastic and in the
heteroscedastic case. However, we have shown that

the least sum of logarithms estimator outperforms the
other procedures either theoretically or empirically.

8 Proofs of Theorems

In this section we collect the proofs of the theorems
stated in Section 3.2. We start with the proof of The-
orem 3, since it concerns the more general setting and
the proof of Theorem 1 follows from that of Theorem 3
by simple arguments. We then prove Theorem 2 and
postpone the proofs of some technical lemmas to the
appendix.

8.1 Proof of Theorem 3

To ease notation and without loss of generality, we
assume that π∗ is the identity permutation denoted
by id . Furthermore, since there is no risk of confusion,
we write P instead of Pθ,σ,π∗ . We wish to bound the
probability of the event Ω = {π̂ 6= π∗}.

Let us first denote by π̂ the maximum likelihood esti-
mator πLSL defined by (6). We have

Ω =
⋃
π 6=id

Ωπ,

where

Ωπ =
{ n∑
i=1

log
‖Xi −X#

i ‖2

‖Xπ(i) −X#
i ‖2

> 0
}

=
{ ∑
i:π(i)6=i

log
‖Xi −X#

i ‖2

‖Xπ(i) −X#
i ‖2

> 0
}
.

On the one hand, for every permutation π, using the
concavity of the logarithm we get∑
π(i) 6=i

log
( 2σ2

i

σ2
i+σ2

π(i)

)
=

n∑
i=1

(
log(2σ2

i )− log(σ2
i + σ2

π(i))
)

=

n∑
i=1

log(2σ2
i ) + log(2σ2

π(i))

2
− log(σ2

i + σ2
π(i))

≤ 0.

Therefore,

Ωπ ⊂
{ ∑
i:π(i)6=i

log
‖Xi−X#

i ‖
2/(2σ2

i )

‖Xπ(i)−X#
i ‖2/(σ2

i+σ2
π(i)

)
> 0
}

⊂
n⋃
i=1

⋃
i 6=j

{‖Xi −X#
i ‖2

2σ2
i

>
‖Xj −X#

i ‖2

σ2
j + σ2

i

}
.

This readily yields Ω ⊂ Ω̄, where

Ω̄ =

n⋃
i=1

⋃
i 6=j

{‖Xi −X#
i ‖2

2σ2
i

≥ ‖Xj −X#
i ‖2

σ2
j + σ2

i

}
. (10)
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Furthermore, the same inclusion is obviously true for
the LSNS estimator as well. Therefore, the rest of the
proof is common for the estimators LSNS and LSL.

Let us denote

ζ1 = max
i 6=j

∣∣∣ (θi−θj)>(σiξi−σjξ#j )

‖θi−θj‖
√
σ2
i+σ2

j

∣∣∣,
ζ2 = d−1/2 max

i,j

∣∣∣∥∥∥σiξi−σjξ#j√
σ2
i+σ2

j

∥∥∥2

− d
∣∣∣.

Since π∗ = id , for every i ∈ {1, . . . , n}, it holds that

‖Xi −X#
i ‖

2 = σ2
i ‖ξi − ξ

#
i ‖

2 ≤ 2σ2
i (d+

√
dζ2).

Similarly, for every j 6= i,

‖Xj −X#
i ‖

2 = ‖θj − θi‖2 + ‖σjξj − σiξ#
i ‖

2

+ 2(θj − θi)>(σjξj − σiξ#
i ).

Therefore,

‖Xj −X#
i ‖

2 ≥ ‖θj − θi‖2 + (σ2
i + σ2

j )(d−
√
dζ2)

− 2‖θj − θi‖
√
σ2
i + σ2

j ζ1.

This implies that on the event Ω1 = {κ̃(θ) ≥ ζ1} it
holds that

‖Xj −X#
i ‖2

σ2
i + σ2

j

≥ κ̃(θ)2 − 2κ̃(θ)ζ1 + d−
√
dζ2.

Combining these bounds, we get that Ω ∩ Ω1 ⊂
{
d +

√
dζ2 > κ̃(θ)2 − 2κ̃(θ)ζ1 + d −

√
dζ2

}
, which implies

that

P(Ω) ≤ P(Ω{
1) + P

(
Ω ∩ Ω1

)
≤ P

(
ζ1 ≥ κ̃(θ)

)
+ P(2

√
dζ2 + 2κ̃(θ)ζ1 > κ̃(θ)2)

≤ 2P
(
ζ1 ≥ κ̃(θ)

4

)
+ P

(
ζ2 >

κ̃(θ)2

4
√
d

)
. (11)

Finally, one easily checks that for suitably chosen ran-
dom variables ζi,j drawn from the standard Gaussian
distribution, it holds that ζ1 = maxi 6=j |ζi,j |. There-
fore, using the well-known tail bound for the standard
Gaussian distribution in conjunction with the union
bound, we get

P
(
ζ1 ≥ 1

4 κ̃(θ)
)
≤
∑
i 6=j

P
(
|ζi,j | ≥ 1

4 κ̃(θ)
)

≤ 2n2e−
1
32 κ̃(θ)2 . (12)

Similarly, using the tail bound of Lemma 4 stated in
the supplementary material and borrowed from Lau-
rent and Massart [8], we get

P
(
ζ2 >

κ̃(θ)2

4
√
d

)
≤ 2n2e−

(κ̃(θ)/16)2

d (κ̃2(θ)∧8d). (13)

Combining inequalities (11)-(13), we obtain that as
soon as

κ̃(θ) ≥ 4
(√

2 log(8n2/α) ∨
(
d log(4n2/α)

)1/4)
,

we have P(π̂ 6= π∗) = P(Ω) ≤ α.

8.2 Proof of Theorem 1

It is evident that on the event

A =

n⋂
i=1

⋂
j 6=i

{
‖Xπ∗(i) −X#

i ‖ < ‖Xπ∗(i) −X#
j ‖
}

all the four estimators coincide with the true permu-
tation π∗. Therefore, we have

{π̂ 6= π∗} ⊆
n⋃
i=1

⋃
j 6=i

{
‖Xπ∗(i)−X#

i ‖ > ‖Xπ∗(i)−X#
j ‖
}
.

The latter event coincides with Ω̄ at the right-hand
side of (10), the probability of which has been already
evaluated in the previous proof. This completes the
proof.

8.3 Proof of Theorem 2

For two probability measures P and Q such that P
is absolutely continuous with respect to Q, we denote
by K(P,Q) the Kullback-Leibler divergence between
P and Q defined by

K(P,Q) =

∫
log

dP

dQ
dP.

In our proof, we decided to separate the cases when

max
{

(log n)1/2, c(d log n)1/4
}

= (log n)1/2

and when

max
{

(log n)1/2, c(d log n)1/4
}

= c(d log n)1/4.

Besides, we will repeatedly use the fact that for n ≥ 4,
log(n/2) ≥ 1

2 log n and, to ease notation, we will omit
the subscript σ in Pθ,σ,π.

First part: κ ≤ (σ/4)
√

log n
Notice that in this first case κ ≤ (σ/

√
8)
√

log(n/2),
which is the bound we will use from now on.

We choose θ0 ∈ Rn×d such that θ0,i = (i ×
κ, 0, . . . , 0)> ∈ Rd for every i ∈ {1, . . . , n}. We re-
duce our problem from considering Θκ to considering
only θ0 ∈ Θκ:

inf
π̂

sup
θ∈Θκ

max
π∗∈Sn

Pθ,π∗
(
π̂ 6= π∗

)
≥ inf

π̂
max
π∗∈Sn

Pθ0,π∗
(
π̂ 6= π∗

)
.

A lower bound for this quantity can be obtained from
the following lemma:
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Lemma 1 (Tsybakov [12]). LetM be an integer larger
than 2. Assume that there exist distinct permutations
π0, . . . , πM ∈ Sn and mutually absolutely continuous
probability measures Q0, . . . ,QM such that

1

M

M∑
j=1

K(Qj ,Q0) ≤ 1

8
logM,

then

inf
π̃

max
j=0,...,M

Qj(π̃ 6= πj) ≥
√
M√

M + 1

(3

4
− 1

2
√

logM

)
,

where the infimum is taken over all permutation esti-
mators.

We will apply this lemma with M = n − 1 and, for
i = 1, . . . , n, πi being the permutation which leaves all
j ∈ {1, . . . , n} \ {i, i+ 1} invariant and switches i and
i+ 1. Then, we have

K
(
Qi,Q0

)
=

1

2σ2

n∑
k=1

‖θ0,πi(k) − θ0,k‖2 ≤
κ2

σ2
.

Thus, if n ≥ 3 and κ ≤ (σ/
√

8)
√

log(n/2), then

1

M

M∑
i=1

K
(
Qi,Q0

)
=

1

8
log(n/2) ≤ 1

8
logM

and Lemma 1 yields the desired result.

Second part: κ ≤ (cσ/4)(d log n)1/4

In this second part, we suppose that c ≤ 1, so that
κ ≤ (σ/4)

(
d log n

)1/4, which is the bound we need to
prove the result. Furthermore, the hypothesis made
on the maximum implies that

d ≥ 1

c4
log n ≥ log n.

Now, let µ be a (prior) probability measure on
Rn×d. Define the (posterior) probability Pµ,π =∫
Rnd Pθ,π µ(dθ). It holds that

sup
θ∈Θκ

max
π∗∈Sn

Pθ,π∗
(
π̂ 6= π∗

)
≥ max
π∗∈{id}∪Π

∫
Θκ

Pθ,π∗
(
π̂ 6= π

) µ(dθ)

µ(Θκ)

≥ max
π∗∈{id}∪Π

Pµ,π∗
(
π̂ 6= πj

)
− µ(Rnd\Θκ).

We will use Lemma 1 again with
M = n,

π0 = id and π1, . . . , πM M distinct transpositions,
∀i ∈ {0, . . . ,M},Qi = Pµ,πi .

To this end, we state the following lemma, that al-
lows us to bound the Kullback-Leibler divergence from
above.

Lemma 2. Let ε be a positive real number with ε ≤
σ/2 and let µ be the uniform distribution on {±ε}n×d.
Then, for any transposition π, we have

K(Pµ,π,Pµ,id) ≤ 8dε4

σ4
.

Furthermore, if ε = κ/
√
d, then

µ(Rnd\Θκ) ≤ n(n− 1)

2
e−d/8.

Using the prior µ and the value of ε ≤ σ/2 defined in
the previous lemma, we get

1

M

M∑
i=1

K(Qi,Q0) ≤ 8dε4

σ4
=

8κ4

dσ4
≤ 1

8
log n.

This implies that the minimum risk is larger than
√

3√
3 + 1

(3

4
− 1

2
√

log 3

)
− n2

2
e−d/8.

Finally, remembering that d ≥ 1
c4 log n, we have

(n2/2)e−d/8 ≤ 1

2
n2−1/8c4 .

Taking c small enough, we get the desired result.

8.4 Proof of Theorem 4

It is clear that {πgr 6= π∗} ⊃ {‖X1 −X#
1 ‖2 > ‖X1 −

X#
2 ‖2} := Ω2. In the following, we lower bound the

probability of the event Ω2. Let us choose any θ from
Rn×d satisfying ‖θ1 − θ2‖ = 2κ̃.

One easily checks that for suitably chosen random vari-
ables η1 ∼ χ2

d, η2 ∼ χ2
d and ζ3 ∼ N (0, 1) it holds that

‖X1−X#
1 ‖2−‖X1−X#

2 ‖2 = 6η1− 4κ̃2− 8κ̃ζ3− 4η2.

According to Lemma 4 stated in the supplementary
material, for every x > 0, each one of the following
three inequalities holds true with probability at least
1− e−x2

:

η1 ≥ d− 2
√
dx,

η2 ≤ d+ 2
√
dx+ 2x2,

ζ3 ≤
√

2x.

This implies that with probability at least 1 − 3e−x
2

,
we have

‖X1 −X#
1 ‖2 − ‖X1 −X#

2 ‖2

≥ 2d− 20
√
dx− 4(κ̃+

√
2x)2.

If x =
√

log 6, then the conditions imposed in The-
orem 4 on κ̃ and d ensure that the right-hand side
of the last inequality is positive. Therefore, P(Ω̄) ≥
1− 3e−x

2

= 1/2.
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Appendix

Lemma 3. For every x ∈ R, it holds that

x2

2
− x4

12
≤ log cosh(x) ≤ x2

2
.

Lemma 4 (Laurent and Massart [8]). Let Y ∼
χ2(D), where D ∈ N∗. Then, for every x > 0, P

(
Y −D ≤ −2

√
Dx
)
≤ e−x,

P
(
Y −D ≥ 2

√
Dx+ 2x

)
≤ e−x.

As a consequence, for every y > 0,

P
(
D−1/2|Y −D| ≥ y

)
≤ 2 exp

{
− 1

8y(y ∧
√
D)
}
.

Proof of Lemma 2. Let π be the transposition
(i, j). Let θ = (θ1, . . . , θn) be randomly drawn from
µ. We define θ′ by θ′i = θ′j = 0 and θ′k = θk
if k 6∈ {i, j}. Let us denote by µ̃ the probability
distribution of this random matrix on Rn×d and set
Pµ̃,π =

∫
Θ
Pθ,π µ̃(dθ).

We first compute the likelihood ratio of Pµ,π
and Pµ,id . We get, for every (X,Y ) =
(X1, . . . , Xn, Y1, . . . , Yn) in Rnd,

dPµ,π
dPµ,id

(X,Y ) =
dPµ,π
dPµ̃

(X,Y )×
(dPµ,id
dPµ̃

(X,Y )
)−1

= Eµ

[
dPθi
dP0

(Xi)
dPθj
dP0

(Xj)
dPθj
dP0

(Yi)
dPθi
dP0

(Yj)

]

×E−1
µ

[
dPθi
dP0

(Xi)
dPθj
dP0

(Xj)
dPθi
dP0

(Yi)
dPθj
dP0

(Yj)

]
.

Now, reminding that for example

dPθi
dP0

(Xi) = e−
ε2d
2σ2

+ 1
σ2

(Xi,θi),

we get that

dPµ,π
dPµ,id

(X,Y ) =

d∏
k=1

cosh
(
ε
σ2 (X

(k)
i + Y

(k)
j )

)
cosh

(
ε
σ2 (X

(k)
i + Y

(k)
i )

)
×

d∏
k=1

cosh
(
ε
σ2 (X

(k)
j + Y

(k)
i )

)
cosh

(
ε
σ2 (X

(k)
j + Y

(k)
j )

) .
Then, we compute the Kullback-Leibler divergence,

K(Pµ,π,Pµ,id) =

∫
log
( dPµ,π
dPµ,id

)
dPµ,π

= 2

d∑
k=1

Eµ

[ ∫
log cosh

ε

σ2
(2θi,k + σ

√
2X)dQ

]
− 2

d∑
k=1

Eµ

[ ∫
log cosh

ε

σ2
(θi,k + θj,k + σ

√
2X)dQ

]
,

where Q is a standard Gaussian distribution. Using
Lemma 3, we get that the general term in the first sum
is smaller than ε2

σ2 +2 ε
4

σ4 , while the second general term
is larger than ε2

σ2 − 2 ε
6

σ6 − 2
3
ε8

σ8 , whence

K(Pµ,π,Pµ,id) ≤ 4d
ε4

σ4
+ 4d

ε6

σ6
+

4d

3

ε8

σ8
≤ 8dε4

σ4
.

Finally, to upper bound µ(Rnd\Θκ), we notice that

µ(Rnd\Θκ) ≤ n(n−1)
2 µ

(
‖θ1 − θ2‖2 < κ2

)
≤ n(n−1)

2 µ
( d∑
j=1

(ζ
(j)
1 − ζ(j)

2 )2 < κ2

ε2 = d
)
.

The Hoeffding inequality completes the proof.


