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Abstract This paper presents a fully three-dimensional plastic constitutive
modeling framework suitable for the prediction of cyclic loading at large num-
ber of cycles. It can require only one yield surface and it is motivated by a
simple rheological model where a restoration of the kinematic hardening is
introduced. The classical kinematic hardening rules are then simply adapted
leading to time-dependent evolution laws that are consistent with continuum
thermodynamics requirements. The resulting behavior is physically motivated
by many man-made materials of engineering interest such as bituminous mate-
rial. This framework allows all types of yield functions to be easily implemented
numerically. This is first illustrated with algorithmic details through a simple
associative pressure-insensitive model example of the von Mises type. Then a
more elaborated model is given where the present framework is applied to the
description of bituminous materials submitted to triaxial static creep and to
large number of cyclic loadings. Of particular interest is the ratcheting and
the mean stress relaxation. The responses agree well with some experimental
test results found in the literature.

Keywords Kinematic hardening restoration · Viscoplasticity · Continuum
thermodynamics · Large number cylic loading · Numerical implementation

D.T. Nguyen
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1 Introduction

Plastic accumulation is one of the major distresses of materials and structures
under cyclic loadings. This phenomenon designates in general the apparition
and accumulation of permanent deformations with the increasing number of
loading cycles. For many materials, this accumulation may not cease until
fracture. In the particular domain of pavement engineering, the ratcheting of
asphalt concrete is the origin of the rutting phenomenon, an important distress
mode under repeated traffic loading.

During the last years, many efforts have been devoted to model the ratch-
eting responses of various materials. These works concentrated especially on
metal-like materials, see for example [7,11,12,20] among many others. In gen-
eral, these models postulate single surface elastic domain with complex non-
linear kinematic and isotropic hardening rules and have proven their relevance
on the modeling of such metal-like materials. On the other hand, the multi-
mechanisms and multi-criteria type models, generalized by Mandel in [8], are
also able to reproduce complex phenomena under cyclic loadings. Here again,
the relevance of these approaches has been clearly demonstrated, for instance
in [2,6,10] to mention a few. However, the application of multi-surface models
to complex problems is not obvious, mostly because of the numerical difficul-
ties due to singular points when multiple pressure-sensitive yield criteria are
used. This was experienced for instance by the authors in [9,10]. Note that, in
general, the use of pressure-sensitive yield criteria is necessary when modeling
geomaterials, concretes or bituminous materials. In particular for these latters,
advances have been reported by a number of authors, see for example [14–16,
19] among others. The relevant long literature has contributed significantly
to the understanding of the mechanisms influencing the asphalt concrete per-
formance as well, and most of the proposed models are more adapted to the
predictive material responses under monotonic loadings. A model that is able
to predict at the same time the material responses under monotonic and large
number cyclic loadings is still a challenging task.

The constitutive modeling framework proposed in this paper is precisely
motivated by physical observations on bituminous materials. In such mixtures,
the permanent deformations occur as a result of slight movements between
the aggregates at the meso-scale. These movements are accompanied by the
viscous flow of the asphalt binder. As a consequence, the material response
is viscoplastic at the macroscopic level. Moreover, it is also observed that the
viscous flow of the binder relaxes the auto-stresses due to the incompatibility
of the plastic deformations. This relaxation phenomenon constitutes the point
of departure of the present formulation resulting in the so-called concept of
kinematic hardening restoration. That is, the kinematic hardening stresses
(the back-stresses in the continuum thermodynamics terminology) still relax
even when the plastic straining ceases. The relaxation process developed in
this work is based on a differential evolution equation not resorting to history
variables, as that was the case in earlier models found in the literature. In fact,
the concept of kinematic hardening restoration is not new. It has already been
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used for metals, precisely, by using history variable models, see for instance [7].
The framework we develop in this paper may be applied not only to bituminous
materials, but also to other materials such as polymers and even for metals as
well.

An outline of the remainder of the paper is as follows. In section 2, the for-
mulation is firstly motivated by a simple rheological model where the governing
equations are derived by elementary considerations. Of particular interest, it
is shown that this model is able to exhibit plastic accumulation under both
static and cyclic loadings. A straightforward three-dimensional generalization
is given in Section 3 following the basic concepts of the continuum thermo-
dynamics. Then, in section 4, a simple J2 flow-like model example of the von
Mises type is detailed from the theoretical and numerical points of view to
show how plastic accumulations at large number of cycles can be simply im-
plemented by standard numerical schemes. In section 5, a more elaborated
model is briefly presented. This latter is adapted to bituminous materials and
a set of numerical results are compared with some experimental responses of
[1]. Finally, conclusions and perspectives are drawn in section 6. Noteworthy
remarks and comments are given throughout this paper.

2 Motivation: a one-dimensional rheological model

We first illustrate the basic idea behind the present modeling framework
through a one-dimensional study. For this, let us examine the different rheo-
logical models depicted in Figure 1.

• The classical Prager model of Figure 1(a) is the simplest one that is capable
to produce time-independent permanent strains with kinematic hardening.
It consists of a spring of constant E > 0 in series with a plastic device
composed by a friction element with constant σy > 0 in parallel with a
spring of constant H > 0 (the kinematic hardening modulus in our case).

• In Figure 1(b), a parallel dashpot of constant η > 0 is added to the last
plastic device. The resulting model is then no more than an extension of
the Prager model that renders the plastic evolution time-dependent.

• Finally, in the model depicted in Figure 1(c), we simply replace the last
spring of constant H by a Maxwell element. That is, the stress in the
spring of constant H is relaxed by a dashpot of constant ηX > 0. Notice
that this replacement can also be done on the Prager model of Figure 1(a),
i.e. without the dashpot of constant η. In all cases, the global constitutive
behavior will always be time-dependent by construction.

Now the governing equations for the rheological model of Figure 1(c) are
derived by completely elementary considerations. Let σ denotes the total stress
acting on it, ε the total strain, and εp the plastic strain. Moreover, let α be the
strain in the spring of constant H, and β the strain in the dashpot of constant
ηX . One has then:

σ = E(ε− εp), X = Hα, εp = α+ β (1)
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Fig. 1 One-dimensional rheological models: (a) the Prager model, (b) the Bingham model,
(c) the model for the present formulation.

where the (back-)stress X represents the kinematic hardening. The elastic
domain f , represented by the friction element of constant σy, is here written
as f = |σ −X| − σy, and the plastic flow is given by:

ε̇p = γ
∂f

∂σ
(2)

where the scalar γ can be given by a viscoplastic regularization equation of
the Perzyna type [13]:

γ =
〈f〉

η
(3)

where 〈.〉 defines the positive part function as 〈f〉 = 1
2
(f+ |f |). Now, assuming

a linear relation connecting the stress X with its corresponding strain rates β̇,
i.e. X = ηX β̇, the evolution of the strain-like variable α is obtained from the
rate form of Equation. (1)3:

α̇ = ε̇p −
X

ηX
(4)

Analyzing the above evolution equations, it follows that for situations
where loadings are such that f ≤ 0, Equation (3) gives γ = 0 leading to
ε̇p = 0 by Equation (2), and Equation (4) becomes then:

α̇ = −
X

ηX
(5)



Cyclic plasticity 5

That is, the kinematic hardening continues to evolve even when the stress
state belongs to the interior of the elastic domain, i.e. with f ≤ 0. In this
case, the back-stress X is restored through the following evolution equation
obtained by combining Equation (5) with rate form of the constitutive relation
(1)2:

Ẋ +
H

ηX
X = 0 (6)

Remark 1. If the dashpot of constant η is removed from the rheological
model of Figure 1(c), the scalar γ in Equation (2) becomes a plastic multiplier
determined by the classical Kuhn-Tucker loading/unloading conditions: γ ≥ 0,
f ≤ 0 and γf = 0, together with the consistency condition γḟ = 0. In this
case the evolution equations (4)-(6) remain the same. ⊓⊔

As an illustration, Figure 2 shows the results of a static and a cyclic creep
semi-analytical computations obtained with the constitutive equations (1) −
(4). The used material parameters are: E = 3000MPa, σy = 0.1MPa, H =
80MPa, η = 2500MPas and ηX = 106MPas.

For the static creep of Figure 2(a), a stress of value σ = 0.25MPa has
been quickly applied at time t = 0 and then maintained. One can observe
that the plastic strain εp continue growing with time. And in Figure 2(b), a
sinusoidal loading has been applied with an amplitude of σmax = 0.25MPa
at a frequency of 1Hz. The evolution of the plastic strain εp is plotted versus
the number of cycles. One can observe that the plastic accumulation grows
contiuously even at very large number of cycles.

Hence, both the static and cyclic creep are simultaneously described by the
same rheological model where the kinematic hardening restoration is in turn
controlled by the viscous parameter ηX through the evolution equation (4).

3 Three-dimensional generalization and continuum

thermodynamics

The extension of the precedent one-dimensional developments to the three-
dimensional constitutive modeling is straightforward. As usual in the infinites-
imal theory, the total strain tensor ε is additively split into an elastic part εe

and a plastic part εp: ε = εe + εp. From the continuum thermodynamics
point of view, the state of the material is characterized by its free energy
function denoted here by ψ. In our context, this latter is chosen of the form
ψ ≡ ψ(εe = ε − εp,α) where the tensor quantity α is the strain-like internal
variable related to kinematic hardening. Without loss of generality, isotropic
hardening will not be considered for the sake of clarity. This latter can in fact
be included in the formulation in a usual manner.

In the simplest case, the elastic domain E is defined by a single-surface
yield criterion of the form

E = {(σ,X) / f(σ,X) ≤ 0} (7)
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Fig. 2 Responses of the rheological model of Figure 1(c): (a) static creep, (b) cyclic creep.

where f is a convex function, σ is the stress tensor, and X denotes the stress-
like internal variable conjugated to α in the sense that

X =
∂ψ

∂α
(8)

this latter being in fact the set of back-stress tensors. By taking the time
derivative of ψ, inserting the result into the Clausius-Duhem inequality, i.e.
D = σ : ε̇ − ψ̇ ≥ 0, and making use of standard arguments in continuum
thermodynamics [5], one obtains the classical state law

σ =
∂ψ

∂εe
(9)

together with the reduced dissipation inequality

D = σ : ε̇p −X : α̇ ≥ 0 (10)

where the symbol : denotes the double contraction, i.e. A : B = tr [ABT ] ≡
AijBij (summation on repeated indices is assumed), and tr[.] designates the
trace operator.

Now motivated by the rheological model of Figure 1(c), the plastic strain
rate is in turn additively split in the form ε̇p = α̇+ β̇ where β̇ is the viscous
kinematic hardening strain rate tensor. The inequality (10) becomes then:

D = (σ −X) : ε̇p +X : β̇ ≥ 0 (11)
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In view of the expression of the first term in (11), the yield surface defining
the elastic domain in (7) is restricted to the general form f ≡ f(σ −X). For
the kinematic hardening restoration, we assume the existence of a potential
denoted by Ωr(X), i.e. a convex and positive function such that Ωr = 0 ⇔
X = 0. Then, the evolution equations can be given by







ε̇p = γ
∂f

∂(σ −X)
≡ γ

∂f

∂σ

β̇ =
∂Ωr

∂X
=⇒ α̇ = ε̇p −

∂Ωr

∂X

(12)

With this flow rule, the thermodynamic requirement (11) is satisfied for any
admissible process thanks to the convexity of the functions f and Ωr together
with the positiveness of the multiplier γ. The evolution equation (12)1 is the
three-dimensional extension of its one-dimensional counterpart given in (2).
Likewise, with a quadratic potential Ωr = X : X/2ηX , (12)2 extends (4) to
three-dimensions.

4 A J2-flow model example

To make matters as concrete as possible, we consider in detail a simple plastic
model of the von Mises type with a pressure insensitive yield criterion. We
denote by s and e the deviatoric stress and strain tensors, respectively

s = σ − p1, e = ε−
1

3
tr[ε]1 (13)

where 1 denotes the second order unit tensor and p = 1
3
tr[σ] the hydrostatic

stress. Considering again only kinematic plastic hardening, the yield criterion
is chosen as

f(σ,X) = ||s−X|| −

√

2

3
σy (14)

with σy being the flow stress and where the norm of a second order tensor is
defined as ||.|| = [(.) : (.)]1/2. By construction, the back-stress tensor is purely
deviatoric, i.e. tr[X] = 0. The constitutive relations (8)− (9) are given by

σ = C : (ε− εp), X = Hα (15)

where C is the rank four Hooke’s elasticity tensor (λ and µ being the Lamé
coefficients), and the scalar H is the plastic kinematic hardening modulus
considered constant in this example. In other words, the free energy function
ψ is given by the simple quadratic form

ψ =
1

2
εe : C : εe +

1

2
Hα : α (16)
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The model is completed by appending the evolution equations of the form
given by (12) for the internal variables:

ε̇p = γ
s−X

||s−X||
︸ ︷︷ ︸

= n̂

α̇ = γ n̂−
X

ηX

(17)

where n̂ is the unit normal to the yield surface, and where again the potential
Ωr(X) = X : X/2ηX has been used. In view of the numerical resolution,
instead to deal with the evolution equation (17)2, we prefer its equivalent
conjugate form by use of the rate form of the constitutive relation (15)2:

Ẋ = γHn̂−
H

ηX
X (18)

4.1 Numerical approximation

The algorithmic approximation of the local evolution equations (17)1 and
(18) is based on the nowadays well-known elastic predictor/plastic corrector
scheme. From the finite element point of view, this procedure is accomplished
locally at each integration point.

Let [tn, tn+1] be a typical time interval. For an arbitrary material point, the
known (internal) variables {εpn,Xn} are considered as prescribed initial data.
Then, within the elastic predictor step, the trial state is obtained by freezing
the plastic flow ignoring the constraint placed by the plastic yield criterion.
The trial state is obtained by mere function evaluation as

strialn+1 = sn + 2µ∆en+1, ptrialn+1 = pn + κ∆εn+1 : 1 (19)

where κ = λ + 2
3
µ is the bulk modulus, ∆εn+1 is the total strain increment

and ∆en+1 its deviatoric part. The yield criterion is then evaluated as

f trialn+1 = ||strialn+1 −Xn|| −

√

2

3
σy (20)

• On the one hand, if f trialn+1 > 0, then γ > 0 and an incrementally plastic
straining process is taking place. A plastic correction has to be performed
to get the final solution as







sn+1 = strialn+1 − 2µ∆γ n̂n+1

Xn+1 = Xn +H∆γ n̂n+1 −
H

ηX
∆tXn+1

(21)
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where ∆γ = γ∆t with ∆t = tn+1−tn, and where an implicit backward Eu-
ler finite difference scheme has been employed for the evolution equations
(17)1 and (18). Equation (21)2 can be conveniently rewritten as

Xn+1

χ
= Xn +H ∆γ n̂n+1 with χ =

ηX
ηX +H∆t

(22)

Here the tensor n̂n+1 at the final state has the remarkable property that
it is also given by the known trial state as

n̂n+1 =
sn+1 −Xn+1

||sn+1 −Xn+1||
≡

strialn+1 − χXn

||strialn+1 − χXn||
(23)

Finally, the unknown multiplier∆γ is obtained by enforcing the consistency
condition written as fn+1 = (η/∆t)∆γ to avoid numerical difficulties when
η → 0, see for exemple [17]. It is explicitely given by

∆γ =
||strialn+1 − χXn|| −

√

2

3
σy

2µ+ χH +
η

∆t

(24)

where the relation ||sn+1 −Xn+1|| = ||strialn+1 − χXn|| −∆γ(2µ + χH) has
been used.

• On the other hand, if f trialn+1 ≤ 0, then γ = 0 and the trial state is the final
solution with also εpn+1 = εpn, except for the back-stress tensor where the
kinematic hardening restoration takes place through the following evolution
equation, see Equation (18):

Ẋ = −
H

ηX
X, with X|t=tn = Xn (25)

This latter can be approximated numerically by an exponential scheme as

Xn+1 = Xn exp

[

−
H

ηX
∆t

]

. (26)

For the sake of clarity, Table 1 summarizes the conceptual steps involved
during this local resolution procedure.

4.2 Representative numerical examples

As an illustration, we consider a (5 × 5 × 10)mm3 parallelepipedic sample
discretized with (4× 4× 4) classical 8-nodes hexahedral elements. The speci-
men is firstly submitted to a cyclic uniform pressure on the top face with an
amplitude of 200KPa at a period T = 40 s. The rest of the boundary condi-
tions are such that the bottom face is fixed vertically (along the e3 direction)
while leaving the displacements free on its plane, and the lateral faces of the
sample are completely free. Figure 3 shows the resulting stress-strain curves
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Table 1 Local algorithm for the plastic evolution.

1. Trial state: en+1 = εn+1 − 1
3
(εn+1 : 1)1

e
p
n = ε

p
n − 1

3
(εpn : 1)1 ≡ ε

p
n

strialn+1 = 2µ(en+1 − e
p
n)

ptrialn+1 = κ(εn+1 − ε
p
n) : 1 ≡ pn+1

f trial
n+1 = ||strialn+1 −Xn|| −

√

2
3
σy

2. Check the yield condition:

IF f trial
n+1 > 0 THEN let χ =

ηX

ηX +H ∆t

compute:



































n̂n+1 =
strialn+1 − χXn

||strialn+1 − χXn||

∆γ =
||strialn+1 − χXn|| −

√

2
3
σy

2µ+ χH +
η

∆t

update:















ε
p
n+1 = ε

p
n +∆γ n̂n+1

sn+1 = strialn+1 − 2µ∆γ n̂n+1

Xn+1 = χXn + χH ∆γ n̂n+1

go to step 3

ELSE IF f trial
n+1 ≤ 0 THEN

update:



















ε
p
n+1 = ε

p
n

sn+1 = strialn+1

Xn+1 = Xn exp

[

−
H

ηX
∆t

]

go to step 3
END IF

3. Compute the total stress tensor:
σn+1 = sn+1 + pn+11

(in the e3 direction) of two different computations: the first one with η = 0
and the second one with η = 750MPas. The common material parameters
used for both the computations are: E = 7500MPa, ν = 0.3, σy = 0.06MPa,
H = 250MPa and ηX = 45 103MPas.

Notice that even for η = 0, the material response is still time-dependent
through the kinematic hardening restoration process (see also the comments of
Remark 1). Irrespective to the value of the parameter η, plastic accumulation
grows with the number of cycles.

To show again the ability of the present model for more complex loading
conditions, a non-homogeneous cyclic loading is this time simulated on the
same sample. Here a pressure of amplitude 400KPa at a period T = 40 s is
applied on one fourth of the top face as shown in Figure 4. The same boundary
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Fig. 3 Homogeneous cyclic loading of amplitude 200KPa and period T = 40 s with: (a)
η = 0, and (b) η = 750MPas.

conditions on the other faces and the same material parameters as for the
precedent computations are used with η = 750MPas. Figure 4 depicts the
evolution of resultant force versus the maximum displacement of the upper
right nodes.

Remark 2. Notice that from all the preceding results, at constant loading am-
plitudes and periods, plastic accumulation evolves linearly with the number
of cycles and can therefore grow indefinitely. However, the materials of engi-
neering interest show that this is not the case at very large numbers of cycles.
For instance, one can add isotropic hardening to reach accomodation when a
certain plastic equivalent strain is reached. Another way is to sophisticate the
model by using non linear hardening rules. This latter is partly what is done
in the next application to model the behavior of bituminous materials. ⊓⊔

5 A model adapted to bituminous materials

In this section, a more elaborated model is proposed within the preceding
framework. Having in mind the behavior of bituminous materials, experimental
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Fig. 4 Non-homogeneous cyclic loading of amplitude 400KPa and period T = 40 s.

observations have shown that these latters are compressible and the permanent
deformations are usually caused by volumetric densification, specifically for
insufficiently compacted materials, followed by shearing at constant volume,
see for example [1,3]. Hence, a two-mechanisms model is proposed via two
distinct kinematic stress-like internal variables: a purely deviatoric tensor X1

for shearing and a scalar X2 for the volumetric plasticity.

We postulate the following yield criterion which takes the form of a Cam-
clay-like model adapted here for our purposes:

f =

√

||s−X1||
2
+

2

3
κ2 (p−X2 + δR0)

2
−

√

2

3
R0 (27)

This criterion has the form of an elliptic closed surface of which the initial
properties are entirely determined by the parameters R0, κ and δ. R0 is the
flow stress, κ characterizes the contribution of the confining stresses, and δ is
introduced in order to ensure the dissimmetry of the behavior between tension
and compression. For an illustration, Figure 5 shows this elastic domain at the
initial state where, in the (p, q) plane drawing, the quantity q is the so-called
von Mises equivalent stress.

0

σ1

σ2

σ3

p

q

Fig. 5 Initial elastic domain.

Associated plasticity is not suitable for geomaterials as it could not cor-
rectly capture the influence of the confining stresses on the volumetric strain
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evolution, see for example [4,21]. We postulate then a non-associated plasticity
by introducing a flow potential F given by

F =

√

||s−X1||
2
+

2

3
̟2 (p−X2 + δR0)

2

+ a ||s−X1||+ b |p−X2|

(28)

where ̟ is a newly introduced parameter for the confining stresse part, and
a and b are two parameters that control the nonlinearity of the kinematic
hardenings. The associated plasticity could be reached by setting ̟ = κ and
a = b = 0.

Finally, the kinematic hardening restoration is chosen to depend solely on
the (deviatoric) back-stress X1 via the following potential:

Ωr = (1−H(f))
1

2ηX
X1 : X1 (29)

where H(.) is the Heaviside function whose argument is the value of the yield
function (27). That is, Ωr = 0 when f ≥ 0, and when f < 0, Ωr is positive
and the restoration mechanism happens only for pure shear.

The local evolution of the internal variables are then given by the following
flow rules of the Perzyna type:







ε̇p =
〈f〉

η

∂F

∂σ

Ẋ1 = H1 ė
p −H1

∂Ωr

∂X1

Ẋ2 =
H2

3
tr[ε̇p]

(30)

where use has been made of the decomposition εp = ep + tr[εp]1. H1 and H2

are the kinematic hardening moduli for the deviatoric and volumetric parts,
respectively.

• For f > 0, we have Ωr = 0 from Equation (29), and the precedent evolution
equations has a classical form.

• For f ≤ 0, the local evolution equations (30) reduce to

ε̇p = 0, Ẋ1 +
H1

ηX
X1 = 0, Ẋ2 = 0 (31)

For the sake of clarity, details about the numerical discretization are here
omitted for this model, see for this [9]. Its finite element implementation follows
the main steps adopted for the model example of Section 4.
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5.1 A numerical parametric study

In order to demonstrate the performance of the present model and to justify
the choices for the material parameters, a set of simple numerical examples
are presented below. For this, we consider a cylindrical sample under triaxial
loading with lateral confining pressure:

σ =





σa
σc
σc



 (32)

where σa and σc are respectively the axial and the confining stresses. The
volumetric plastic strain εpv and the shear plastic strain εps are then computed
as follows:

εp =





εpa
εpc
εpc



 , εpv = tr[εp], εps =
2

3
(εpa − εpc ) (33)

The material parameters are chosen as follows: the Young’s modulus E =
3000MPa, the Poisson ratio ν = 0.35, and for the yield criterion (30), R0 =
0.1MPa, κ = 0.9 and δ = 0.75.

Both static and cyclic creep tests are considered. The volumetric and
shear plastic strains as functions of the loading durations (time or number
of loading cycles) are studied. For the static creep, the applied stresses are
σa = 0.267MPa and σc = 0.167MPa. And for the cyclic creep, the precedent
values are the amplitudes at a frequency of 1Hz (that is, the mean stresses
are σa = 0.133MPa and σc = 0.083MPa).

Figure 6 shows the responses for two particular cases of kinematic harden-
ing: case 1 with H1 = 0 and H2 = 80MPa, and case 2 with H1 = 65MPa and
H2 = 0. In both cases, the parameters appearing in the plastic potential F in
Equation (28) are ̟ = 1.15, a = b = 0, the viscous parameters are η = 0 and
ηX = 2.65 102MPas. We observe that when activating only one kinematic
hardening, the model is unable to maintain simultaneously the evolution of
volumetric and shear strains under static as well as under cyclic creep load-
ings. The introduction of both of the two kinematic hardening mechanisms is
then necessary for the modeling.

On the other hand, fixing the values of the kinematic hardening moduli H1

and H2 (here with H1 = 65MPa and H2 = 80MPa), the nonlinearities of
both of the kinematic hardenings are required. This is proved by the responses
of Figure 7 for particular cases of the parameters a and b, i.e. the two param-
eters controlling the nonlinear evolutions of X1 and X2, respectively (again
see Equation (28)).

One can observe as well from Figure 7 that these nonlinearities induce a
linear evolution of the permanent strain versus the loading duration. But this
evolution trend is not conform to the experimental observations in general. It
is then necessary to introduce one or several parameters which evolve with the
loading history. As the permanent strain rates are inversely proportional to the
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viscous parameter η, η is thus chosen to depend on the cumulative permanent
strain ēp which is widely used to characterize the plastic strain history, see for
example [17,18]:

η = η0 (1 + η1ē
p exp[η2ē

p]) , ēp(t) =

∫ t

τ=0

√

3

2
ε̇p : ε̇p dτ (34)

where η0 is the initial viscous parameter, η1 and η2 are positive parameters.
Along with loading duration, ēp increases, η increases too leading then to
the decrease of the permanent strain rates. Likewise, to control the evolution
of cyclic permanent strains, we also postulate a progressive change for the
restoration parameter ηX as follows:

ηX = ηX0
(1 + ηX1

(exp[ηX2
ēp]− 1)) (35)

where ηX0
, ηX1

and ηX2
are positive parameters. We use these new enhance-

ments in the next modeling example.

5.2 Parameter identification

Of concern in this section, some indications of how the various material param-
eters can be identified. By first noticing that the three parameters R0, κ and
δ characterize the elastic domain, see Figure 5, they can then be determined
in a usual manner from elastic limits for different loading paths.

Now by considering the model response from the precedent parametric
study and its further extensions given by the constitutive relations (34) and
(35), one finds that the εpv(t) and ε

p
s (t) curves for the static creep and the εpv(N)

and εps (N) curves for the cyclic creep can be divided into two parts. The first
part, that we denote by Phase 1, corresponds to the early response where the
permanent strains increase quickly. The next part, that we denote by Phase 2,
consists to a somehow stabilized phase where the permanent strains increase
slowly.

Parameters H1, H2, a, b, η1 and η2 mostly influence the whole response
in static creep. In particular, H1, a, H2 and b strongly influence the Phase

1 responses, while Phase 2 is mostly influenced by η1 and η2. On the other
hand, for cyclic creep, the volumetric response is mostly influenced by the
parameters ̟ and η0 in Phase 1, and by the parameter η2 in Phase 2.

At last, as the constitutive relation (35) solely influences the cyclic creep
responses, mostly for the shear response, the paramaters ηX0

, ηX1
and ηX2

can be determinined from the εps (N) curves.

With these observations at hand, we propose the following identification
procedure by curve fitting of different permament evolution responses:

– Parameters ̟ and η0 are determined from Phase 1 of static and cyclic
creep tests.



Cyclic plasticity 17

– Paramaters H1, a, H2 and b are determined by curve fitting εpv(t) and ε
p
s (t)

under static creep.
– Parameter η1 is determined from Phase 1 of the volumetric response εpv(N)

under cyclic creep.
– Parameter η2 is determined from Phase 2 responses of the εpv(t), ε

p
s (t) and

εpv(N) curves.
– Parameters ηX0

, ηX1
and ηX2

are determined by curve fitting of the whole
cyclic creep response εps (N).

These identifications need then triaxial experimental tests under static and
cyclic creep, preferably at loading levels of the same order.

5.3 A comparison with selected experimental data

In this section, some simulations of creep tests are compared to some exper-
imental results by [1]. These authors have in fact realized a complete test
campaign to study permanent behaviors of asphalt mixtures. All the tests
were processed on cylindrical specimens of length 240mm. Both static and
cyclic creep tests were performed under triaxial loadings with the presence of
lateral confining stresses in order to limit the instability of the samples. In
cyclic creep tests, the square waves stress form was involved with the stress
on for 0.5 s and off for 0.5 s. The stress levels in the corresponding static creep
tests were equal to the peak values in the cyclic creep tests. Axial and radial
permanent strains were measured and used to calculate the volumetric and
shear strains after Equations (33).

The static and cyclic creep tests at stress levels of σa = 0.267MPa and
σc = 0.167MPa were chosen to validate the proposed model. The Young’s
modulus and the Poisson ratio of the materials were [1]: E = 830MPa and
ν = 0.25. Within the present framework, the following set of parameters has
been identified, see [9] for details:

κ = 0.9; δ = 0.75; R0 = 0.10MPa; ̟ = 1.15

H1 = 65MPa; H2 = 80MPa; a = 1.80; b = 19.95

η0 = 265MPas; η1 = 15; η2 = 1700

ηX0
= 25MPas; ηX1

= 0.05; ηX2
= 1750

With these material parameters, Figure 8 shows the numerical responses
of the model under static creep loading. Thanks to the presence of two dif-
ferent kinematic hardening mechanisms, both the volumetric and shear evo-
lutions are in satisfactory good agreement with the experimental results. The
non-linearity of the kinematic hardening stresses allow the strains rates to be
maintained until a high loading duration. The evolution of the viscous param-
eter η brings a diminution of permanent strains rates, and thus a nonlinear
evolution of εpv and εps versus time.
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Fig. 8 Static creep test. Comparison with experimental results of Brown and Cooper [1].

Also, a comparison of the numerical responses and the experimental results
in the case of cyclic creep tests is presented in Figure 9. Here again, a good
correlation confirms the capacities of the proposed model. The restoration of
shear kinematic hardening stress X1 ensures a higher permanent strain level
in cyclic creep tests than in static creep tests.

6 Conclusion and perspectives

In this paper we have presented a viscoplastic constitutive framework suitable
for the prediction of the cyclic loadings at high number of cycles. The model
is based on the notion of kinematic hardening restoration that is physically
observed in many man-made materials of engineering interest.

Motivated by a simple rheological model with elementary considerations,
we have shown that the three-dimensional constitutive modeling is straight-
forward and in agreement with the continuum thermodynamics requirements.
We have shown that using a single-surface yield criterion, one can get plastic
accumulation at a very large number of cycles.

An application to describe the behavior of bituminous materials has been
proposed. We have shown that this latter is richly featured and is capable of
simulating not only cyclic creep loadings, but also static creep loadings at the
same time. However, as bituminous materials are very complex materials in
general, the proposed model should be improved to account for many other
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Fig. 9 Cyclic creep test. Comparison with the experimantal results of Brown and Cooper
[1].

characteristics such as the omnipresent temperature dependency in the asphalt
concrete pavements, and damage in terms of crack and air void growth.
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