%0 Journal Article %T New insights in dynamic modeling of a secondary settler. Dynamical analysis %+ CERGRENE (CERGRENE) %+ Division Eau et Environnement (LCPC/EAU) %A Chancelier, J.Ph. %A de Lara, Michel %A Joannis, C. %A Pacard, F. %< avec comité de lecture %@ 0043-1354 %J Water Research %I IWA Publishing/Elsevier %V 31 %N 8 %P 1857 %8 1997 %D 1997 %R 10.1016/S0043-1354(96)00287-4 %Z Environmental SciencesJournal articles %X A dynamic model of the settling process in the secondary settler of a wastewater treatment plant is given by a nonlinear scalar conservation law for the sludge concentration under the form of a partial differential equation (PDE). A numerical algorithm is given, which also includes a mathematical model of the aeration tank. Theoretical and numerical simulations are then compared with real data. The evolution of the shock corresponding to the rising of a sludge blanket is described by an ordinary differential equation (ODE). Consequently, regulation strategies of the rising of a sludge blanket in case of important water admission to the plant are proposed. We end briefly with two possible extensions. A model with two classes of particles in interaction is introduced to take into account the particle size change, as well as a model giving the distribution of residence times to take into account its effect on the velocity.A dynamic model of the settling process in the secondary settler of a wastewater treatment plant is given by a nonlinear scalar conservation law for the sludge concentration under the form of a partial differential equation (PDE). A numerical algorithm is given, which also includes a mathematical model of the aeration tank. Theoretical and numerical simulations are then compared with real data. The evolution of the shock corresponding to the rising of a sludge blanket is described by an ordinary differential equation (ODE). Consequently, regulation strategies of the rising of a sludge blanket in case of important water admission to the plant are proposed. We end briefly with two possible extensions. A model with two classes of particles in interaction is introduced to take into account the particle size change, as well as a model giving the distribution of residence times to take into account its effect on the velocity. %G English %L hal-00779535 %U https://enpc.hal.science/hal-00779535 %~ SDE %~ AGROPARISTECH %~ ENPC %~ ENGREF %~ PARISTECH %~ GIP-BE %~ UNAM %~ IFSTTAR %~ UNIV-EIFFEL %~ IFSTTAR-UNIVEIFFEL