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Abstract

Knowledge of the contact stress between roll and strip is a critical factor in modern, high-speed rolling mills.
Previously two inverse analytical methods have been developed to determine the elastic contact stress on the one
hand and the heat flux or the temperature in the whole roll (andespecially at the surface) on the other hand,
by measuring the stress tensor inside the roll body with fibreoptics and by measuring the temperature with a
thermocouple fully embedded at only one point inside the roll. However measurements done by fibre optics take
into account the elastic stress and the thermal stress. However the contact stress was determined under isothermal
assumption, which is strongly incorrect for hot rolling conditions. In this paper, the coupled thermoelastic problem
is solved analytically using the theorem of superposition and the expression of the temperature field exhibited
previously. A significant improvement of the accuracy of theinverse method for reconstructing the contact stress
is observed by taking into account thermal stress. Hot rolling simulation is given to demonstrate this result.
The computation time is studied to rapidly optimise the industrial parameters during the rolling process, and
considering that both inverse methods have been run, the computation of thermal stress does not cost significant
additional CPU times.

Keywords:
Steel rolling, Thermoelastic, Friction sensor, Computation time, Inverse analysis, Temperature sensor

Table 1: Nomenclature

Roll
Rd Radius of the roll
Rc Radius of temperature measurements (thermocouple)
Rb Radius of stress measurements (fibre optics)
r Radial position of Eulerian point
θ Angular position of Eulerian point
t Time
Ta Initial temperature of the roll
er Radial direction
eθ Circumferential direction
ω Rotation speed
D Thermal diffusivity of the roll
α Thermal dilatation of the roll
αF Thermal dilatation of the fibre optics
λ, µ Lamé’s coefficients of the roll

Solution in the roll
T Eulerian temperature
Tn nth coefficient involved in the expansion ofT (complex)
γn nth coefficient involved in the expansion ofT (real)
u Displacement field
ur Radial displacement
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uθ Circumferential displacement
σ Stress of the global problem
σr Reconstructed stress (global problem)
σa Applied stress (global problem)
σA Stress of the auxiliary problem A
σB Stress of the auxiliary problem B
σC Stress of the auxiliary problem C
σth Thermal stress (σth = σA + σB)
TA Tensile vector of the auxiliary problem A
TB Tensile vector of the auxiliary problem B
TC Tensile vector of the global problem and problem C
N1 Order of truncation (integer)
N2 Order of truncation (integer)
Nθ Number o points of the reconstruction (integer)
ζn Coefficient (complex)
Jn nth Bessel function of the first kind
xn Successive positive zeros ofJ0

Pn(r) Function involved in the expansion ofur

pn(r) Function involved in the expansion ofur

Qn(r) Function involved in the expansion ofuθ
qn(r) Function involved in the expansion ofuθ
Ln Coefficient (complex)
ln Coefficient (real)
L Vector ofLn

l Vector of ln
ln(r) Coefficient (real)
Sn(r) Function involved in the expansion ofσA

sn(r) Function involved in the expansion ofσA

z Complex variablez= rexp(iθ)
Φ(z) Holomorphic function
Ψ(z) Holomorphic function
f (z) Holomorphic function
g(z) Holomorphic function
φn Coefficient of the expansion ofΦ(z)
ψn Coefficient of the expansion ofΨ(z)
fn Coefficient of the expansion off (z)
gn Coefficient of the expansion ofg(z)
φ Vector ofφn

ψ Vector ofψn

A.. Matrices related toσA (..=rr , rθ or θθ)
a.. Vectors related toσA (..=rr , rθ or θθ)
B j Matrices related toσB ( j=1,2 or 3)
g j(r) Auxiliary functions (j=1,2,3 or 4)
ǫ Error estimate

Strip
Ti Initial temperature of the strip
FR Rolling force
ti Initial thickness of the strip
t f Final thickness of the strip
R Reduction ratio of the strip
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Lc Contact length
HTC Heat Transfer Coefficient in the contact strip/roll
σ0 Initial yield stress of the strip

1. Introduction

1.1. Objectives of the paper

In steel rolling processes, two rolls are used as tools to reduce the thickness of a workpiece. Modern rolling
mills combine higher rolling speeds, larger reductions, harder steel grades and thinner rolled strips. Thus, to ensure
better product quality, especially in terms of thickness, flatness and defect-free surface, knowledge of friction and
lubrication in the roll gap becomes critical. The contact between the strip and the roll is a location of unknown
shear stress and normal pressure and lubrication conditions. Some models that characterise the interface taking
into account lubrication have been proposed in recent yearsby Montmitonnet et al. [1] but still need experimental
validation. On the other hand, with industrial rolling process being currently dictated by empiricism, knowledge
of the contact stress would be desirable to allow an optimisation of parameters such as speed and lubrication, with
a closed-loop control.

In order to estimate the contact stress between the roll and the strip Legrand et al. [2] recently computed an
inverse method (with isothermal assumption) developed by Meierhofer and Stelson [3], which interprets stresses
measured at two locations inside the roll (at two different radii). Legrand et al. [2] studied the skin thickness where
thermal stress is not negligible and attempted to perform the inverse method by measuring the stress tensor deeper
than this skin thickness. The inversion failed, and the authors concluded that the inversion was impossible for hot
rolling conditions. However, this paper is an attempt to overcome this difficulty. Instead of measuring deeper than
the skin thickness to avoid large thermal stress, a thermoelastic problem can be solved to take into account thermal
stress and therefore to allow measurements very close from the surface of the roll.

In a previous contribution Weisz-Patrault et al. [4] proposed an improved inverse analytical method which
interprets measured stresses (fibre optics fully embedded)to infer the contact stress between the roll and the strip.
Measurements are done at only one location inside the roll and the method is demonstrated to be more accurate.
The solution is analytical and a very short computation times are obtained (0.07 s for each cycle). To make the
reading easier, the basic mathematical principles of the solution are reminded in Section 4. However the problem
was assumed to be isothermal. Therefore a corrective solution is needed to take into account the significant
thermal stress occurring during hot rolling. It is demonstrated in the paper (Section 9) that it is necessary to take
into account this thermal stress, otherwise the error compromises the inverse method.

Weisz-Patrault et al. [5] also proposed an inverse analytical method which interprets measured temperatures
(thermocouple fully embedded) to infer heat flux or temperature field in the whole roll (and especially at the
surface of the roll without knowing any thermal boundary conditions). The method being analytical very short
computation times are also obtained (0.05 s for each cycle) and the basic mathematical principles of the solution
are reminded in Section 5.

In this paper, thermal stresses are derived from this temperature field by using analytical developments. Mathe-
matical modeling and analytical solutions are exposed in Sections 6 and 7. Moreover this paper aims at combining
both inverse solutions (contact stress and temperature field) in order to obtain the contact stress between the roll
and the strip by taking into account large gradients of temperature and therefore large thermal stress.

The Figure 1 presents a schematic view of the measurement system. The thermocouple is located at the radius
Rc and the fibre optics at the radiusRb. The rotation of the roll allows measurements on the whole circles.
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Figure 1: Geometry

1.2. Perspectives

Although the main focus of this paper is the contact stress between the roll and the strip (determined by inverse
analysis and corrected with the present thermoelastic problem), the present method can be used for other aims.
For hot rolling conditions, knowledge of thermal stress also enables the evaluation of thermal fatigue, which is
one of the major factor of wear on rolls. In this way Corral et al. [6] proposed a mixed analytical/numerical model
which predicts the life time of the work roll on the base of an analysis of thermal stress. However, the coupling of
the radial and tangential displacement is neglected as wellas the rotations. The solution proposed by Corral et al.
[6] is compared with the solution developed in this paper to show the influence of these simplifications. Li et al.
[7] proposed more recently a three-dimensional model by Finite Element Method (FEM) to evaluate the thermal
stress of the roll.

1.3. Fibre optics and thermocouple

The fibre optics are glued to the roll body in a thin hole. The thermoelastic stress of the roll body passes through
the glue to the fibre optics. The stiffness of the glue implies that a transfer function is necessary to interpret the
measurement of the fibre optics. In this paper this transfer function is not studied. Moreover, the variation of
temperature of the fibre optics themselves implies an additional measured thermal strain. This additional thermal
strain has nothing to do with the additional thermal stress due to the roll body, and should be removed separately.
This can be done by considering an axial body (the fibre) loaded by a variation of temperature∆T = T − Ta. The
thermal strain is thereforeǫ = αF∆T, whereT is the actual temperature at the position of the fibre,Ta the initial
temperature andαF the thermal dilatation of the fibre. In the following it is assumed that the inputs have been
cleaned from this additional thermal strain.

The insertion of the thermocouple in the roll body has been studied experimentally by Weisz-Patrault et al.
[8] who focused on the feasibility of inserting a thermocouple in industrial work rolls, technological equipment,
wireless acquisition system, quality of measurements and influence of the reduction ratio of the strip. Legrand et al.
[9] proposed another experimental study which focuses moreespecially on the influence of the scale thickness and
evaluation of the contact resistance between the strip and the roll.

2. Validation of the method

2.1. Rolling conditions for validation

The validation of the exactness of the analytical solution (which computes thermal stress) on the one hand
and the necessity of taking this thermal stress into accountfor the evaluation of contact stress by the inverse
analysis proposed by Weisz-Patrault et al. [4] on the other hand is demonstrated as follows. Hot rolling process
is simulated by a 3D thermo-mechanical strip/roll stack coupled model proposed by Hacquin [10]. This model
called Lam3/Tec3 is a software developed by Cemef, Transvalor, ArcelorMittal Research and Alcan, and it solves
the strip elastic-viscoplastic strain by 3D FEM, and the roll stack elastic deformation by semi-analytical models.
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Then the temperature field in the whole roll is computed by FDMby using Heat Transfer Coefficients (HTC). The
rolling conditions are listed in Table 2. Among several authors, this model has been used by Legrand et al. [2],
Weisz-Patrault et al. [4] and Abdelkhalek et al. [11] who gave more details on the formulation.

Many papers model rolling processes by FEM. For example Jiang and Tieu [12] proposed a 3D rigid plastic/visco-
plastic FEM. More recently Montmitonnet [13] proposed a coupled numerical model for hot and cold rolling
process. A comprehensive hot rolling process has also been modeled recently by Wang et al. [14]. Abdelkhalek
et al. [11] used Lam3/Tec3 and added the computation of the post-bite buckling of the strip, in order to predict
accurately flatness defects. Moreover Shahani et al. [15] simulated a hot rolling process of aluminum by FEM
and used an artificial neural network in order to predict the behaviour of the strip during the rolling process (the
artificial neural network being trained by the simulation).Lam3/Tec3 [10] has been chosen because the simulation
was already done (directly taken from Legrand et al. [2]) andpreviously used for demonstrating the accuracy of
the inverse method of Weisz-Patrault et al. [4]. Therefore the same simulation is used to demonstrate the exact-
ness of the present thermal stress computation and the necessity of correcting the inputs of the inverse method of
Weisz-Patrault et al. [4].

Among other outputs, Lam3/Tec3 [10] produces the contact stress (see Figure 7), then the temperature field
inside the roll is computed (see Figure 3). The aim of the paper is not at simulating rolling process but at developing
inverse analysis dedicated to measurement interpretation. These simulated contact stress and temperature field are
only used as possible conditions for a work roll during hot rolling process for the only purpose of validating the
presented method. Therefore the formulation of the model Lam3/Tec3 [10] is not reminded in this paper.

2.2. Validation of the analytical solution

The temperature field produced by the simulation of hot rolling process is used to compute the thermal stress
with the analytical method developed in Sections 6 and 7. Moreover a simple linear and plain strain FE compu-
tation of the thermal stress has also been done with the freeware Cast3m [16] and a comparison (see Figure 5) is
done to show the exactness of the present analytical solution. Very good agreement is obtained. It should be noted
that this temperature field can be practically evaluated by using the analytical inverse analysis of Weisz-Patrault
et al. [5] which interprets measurements of a thermocouple embedded inside the roll body. In this paper the tem-
perature field is numerical but by considering the temperature at the radiusRc, the analytical form (14) is deduced
(as it would have been done with real measurements).

2.3. Influence of thermal stress on contact stress reconstruction

Moreover the contact stress produced by Lam3/Tec3 [10] is used to compute the purely elastic stress insidethe
roll. The purely elastic stress tensor at the radiusRb corresponds with corrected inputs (free from thermal stress).
The thermal stress at the radiusRb computed with the present method can also by added to the purely elastic stress
to constitute thermo-elastic inputs (which replace measurements done with fibre optics). The evaluation of contact
stress by using the inverse analysis proposed by Weisz-Patrault et al. [4] is done both with purely elastic inputs and
thermo-elastic inputs and a comparison with the applied contact stress (produced by Lam3/Tec3 [10]) is proposed
to show the necessity of taking the thermal stress into account for an accurate evaluation of contact stress.

3. Principle of superposition

The present method considers only the work roll. The strip isnot modeled because this paper aims at develop-
ing inverse methods and not at simulating the rolling process with coupled FEM. The contact stress (mechanical
boundary conditions) and temperature field are inferred from the inverse methods which interpret measurements
of stress tensor and temperature at radiiRb andRc.

The Figure 2 explains the decomposition of the problem. The auxiliary problem A is direct. The temperature
field is considered as a thermal load. It is in the form of (14) introduced by Weisz-Patrault et al. [5] and briefly
reminded in Section 5. The solution is only a particular solution, no specified boundary conditions are settled.
Consequently the calculated tensile vector at the outer radius Rd (calledTA = σA

rr (Rd, θ)er + σ
A
rθ(Rd, θ)eθ) should

be compensated by an other elastic problem with−TA as boundary conditions. This is the purpose of the auxiliary
problem B which is also direct (boundary conditions known).The superposition of both auxiliary problems A and
B gives the thermal stress in the whole roll (considering that no displacement is blocked at the surface of the roll).
Thereforeσth = σA + σB, whereth means thermal. All the notations are listed in Table 1
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Figure 2: Superposition

4. Auxiliary problem C

This inverse problem has already been solved by Weisz-Patrault et al. [4]. However the basic principles of the
solution are reminded in this section in order to make the reading easier. The fibre optics give the measurement
of the stress tensor at the radiusRb calledσm

rr (θ), σ
m
rθ(θ) andσm

θθ
(θ) wherem means measured. Practically this

stress tensor is measured with thermal stress, thereforeσm = σe + σth wheree means purely elastic andth means
thermal. This paper aims at determiningσth which is done in Sections 6 and 7. The inputs of this inverse method
areσe, which is determined simply byσe = σm − σth.

The elastic stressσC of the auxiliary problem C verifies the equations of elasticity for an isotropic material
under the isothermal assumption given by Muskhelishvili [17]:

{

σC
rr (r, θ) + σ

C
θθ

(r, θ) = 2
(

f (z) + f (z)
)

−σC
rr (r, θ) + σ

C
θθ

(r, θ) + 2iσC
rθ(r, θ) = 2 exp(2iθ) (g(z) + z f′(z))

(1)

wherez = r exp(iθ) and f (z) andg(z) are unknown holomorphic functions defined on the roll. Mathematically,
these functions can be expanded into a power series. Therefore:

f (z) =
+∞
∑

k=0

fk

(

z
Rb

)k

g(z) =
+∞
∑

k=0

gk

(

z
Rb

)k

(2)

By combining (1) and (2) and considering thatσC(Rb, θ) = σe(θ) it is obtained that:







































σe
rr (θ) + σ

e
θθ(θ) = 2

+∞
∑

k=0

fk exp(ikθ) + fk exp(−ikθ)

−σe
rr (θ) + σ

e
θθ(θ) + 2iσe

rθ(θ) = 2
+∞
∑

k=0

(gk exp(i(k+ 2)θ) + kgk exp(ikθ))

(3)

By using (4), coefficients fk andgk are calculated by integrating the purely elastic part of thestresses measured at
the inner radius (with fast fourier transform) using (5):

∫

∂C

zk dz=

{

2iπ k = −1
0 k , −1

(4)
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f0 =
1
8π

∫ 2π

0
σe

rr (θ) + σ
e
θθ(θ) dθ

∀k ∈ N∗

fk =
1
4π

∫ 2π

0

σe
rr (θ) + σ

e
θθ

(θ)

exp(ikθ)
dθ

∀k ∈ N

gk =
1
4π

∫ 2π

0

−σe
rr (θ) + σ

e
θθ

(θ) + 2iσe
rθ(θ)

exp(i(k+ 2)θ)
dθ − (k+ 2) fk+2

(5)

By combining (1) and (2), the stresses in the roll gap as a function of fk andgk are obtained:






































σC
rr (Rd, θ) + σ

C
θθ(Rd, θ) = 2

+∞
∑

k=0

(

Rd

Rb

)k

( fk exp(ikθ) + fk exp(−ikθ))

−σC
rr (Rd, θ) + σ

C
θθ(Rd, θ) + 2iσC

rθ(Rd, θ) = 2
+∞
∑

k=0

(

Rd

Rb

)k

(gk exp(i(k+ 2)θ) + k fk exp(ikθ))

(6)

By eliminatingσC
θθ

(Rd, θ) in (6) the contact tensile vectorTC = σC
rr (Rd, θ)er + σ

C
rθ(Rd, θ)eθ is easily found.

5. Analytical temperature field

This inverse problem has already been solved by Weisz-Patrault et al. [5]. However the basic principles of the
solution are reminded in this section in order to make the reading easier. The temperature is measured at the radius
Rc and is calledTm(θ). The linear heat equation for a rotating body is:

∂2T
∂r2
+

1
r
∂T
∂r
+

1
r2

∂2T
∂θ2
=

1
D

(

∂T
∂t
+ ω

∂T
∂θ

)

(7)

whereD is the thermal diffusivity (assumed to be constant).
Two families of analytical solutions of (7) are used. The solution (8) is steady and solution (9) is transient:

γJn















√

−
iωn
D

r















exp(inθ) (8)

γJ0















√

1
Dτ

r















exp
(

−
t
τ

)

(9)

The solution is written as a linear combination of these families of solutions (8) and (9). The solution is divided
into two parts:T1 which is the steady solution (updated at each cycle) andT2 which is the transient solution. The
measured temperature is expanded into a Fourier series:

Tm(θ) =
N1
∑

n=−N1

Tnexp(inθ) (10)

where the Fourier coefficients (11) can be computed from measurements withfft:

Tn =
1
2π

∫ 2π

0
Tm(θ)exp(−inθ) dθ (11)

Therefore ifζn =
√

−iωn/D thenT1 defined by (12) is a solution in the form of (8) and matches the measurements
at r = Rc.

T1(r, θ) =
N1
∑

n=−N1

Tn
Jn(ζnr)
Jn(ζnRc)

exp(inθ) (12)

It is demonstrated by Weisz-Patrault et al. [5] that ifxn are the successive positive zeros of the Bessel function of
the order zero, then the function given by (13) is a solution of (7) in the form of (9) which vanishes atr = Rc and
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is a very good approximation in order to verify the initial condition (att = 0 the temperature in the whole roll is
the room temperature):

T2(r, t) =
N2
∑

n=1

γnJ0

(

xn
r
Rc

)

exp

(

−x2
n
Dt
R2

c

)

(13)

where the coefficientsγn are evaluated by using the detailed method presented by Weisz-Patrault et al. [5]. The
complete solution is therefore:

T(r, θ, t) =
N1
∑

n=−N1

Tn
Jn(ζnr)

Jn(ζnRc)
exp(inθ) +

N2
∑

n=1

γnJ0

(

xn
r
Rc

)

exp

(

−x2
n
Dt
R2

c

)

(14)

6. Auxiliary problem A

The auxiliary problem A defined in Figure 2 is a direct quasi-static problem of elasticity with a right hand
term corresponding to the temperature field, which is known in the whole roll in the form of (14). The mechanical
boundary conditions are not specified because only a particular solution is sought. The calculated tensile vector
at the outer radiusTA will be compensated by an isothermal elastic problem with−TA as boundary conditions
(auxiliary problem B).

6.1. Displacements

For an isotropic medium the Navier’s equation with a right hand term is used:

µdiv gradu + (λ + µ)grad divu = α(3λ + 2µ)gradT (15)

By writing u in polar coordinates the following differential equations system is obtained:







































(λ + 2µ)

(

∂2ur

∂r2
+

1
r
∂ur

∂r
−

ur

r2

)

+ µ
1
r2

∂2ur

∂θ2
+ (λ + µ)

1
r
∂2uθ
∂r∂θ

− (λ + 3µ)
1
r2

∂uθ
∂θ
= α(3λ + 2µ)

∂T
∂r

µ

(

∂2uθ
∂r2
+

1
r
∂uθ
∂r
−

uθ
r2

)

+ (λ + 2µ)
1
r2

∂2uθ
∂θ2
+ (λ + µ)

1
r
∂2ur

∂r∂θ
+ (λ + 3µ)

1
r2

∂ur

∂θ
= α(3λ + 2µ)

1
r
∂T
∂θ

(16)

The temperature field is known and can be written in the form of(14), therefore the polar displacementsur anduθ
are sought in the form:



















































ur (r, θ) =
N1
∑

n=1

(

Pn(r)exp(inθ) + Pn(r)exp(−inθ)
)

+

N2
∑

n=1

pn(r)exp

(

−x2
n
Dt
R2

c

)

uθ(r, θ) =
N1
∑

n=1

(

Qn(r)exp(inθ) + Qn(r)exp(−inθ)
)

+

N2
∑

n=1

qn(r)exp

(

−x2
n
Dt
R2

c

)

(17)

For convenience the following quantities are introduced:































Ln = α

(

3λ + 2µ
λ + 2µ

) (

ζnTn

Jn(ζnRc)

)

ln = α

(

3λ + 2µ
λ + 2µ

) (

γnRc

xn

) (18)

8



It should be noted that the quantities{Pn(r),Qn(r), pn(r), qn(r), Ln, ln} are updated at each cycle, but subscripts of
cycles are omitted to make the reading easier. The system (16) combined with (17) and (18) gives:







































































































(λ + 2µ)

(

P′′n (r) +
P′n(r)

r
−

Pn(r)
r2

)

− µn2 Pn(r)
r2
+ (λ + µ)in

Q′n(r)

r
− (λ + 3µ)in

Qn(r)
r2
= (λ + 2µ)LnJ′n(ζnr)

µ

(

Q′′n (r) +
Q′n(r)

r
−

Qn(r)
r2

)

− (λ + 2µ)n2 Qn(r)
r2
+ (λ + µ)in

P′n(r)
r
+ (λ + 3µ)in

Pn(r)
r2
= in(λ + 2µ)Ln

Jn(ζnr)
ζnr

p′′n (r) +
p′n(r)

r
−

pn(r)
r2
= ln

(

xn

Rc

)2

J′0

(

xn
r

Rc

)

q′′n (r) +
q′n(r)

r
−

qn(r)
r2
= 0

(19)

A particular solution of (19) is given by (proof appended in Appendix A):

∀n ≥ 1







































Pn(r) = −
Ln

ζ2
n

J′n(ζnr)

Qn(r) = −in
Ln

ζ2
n

Jn(ζnr)
ζnr

∀n ≥ 1



















pn(r) = −lnJ′0

(

xn
r

Rc

)

qn(r) = 0

(20)

Therefore the displacement field has been solved by plugging(20) in (17).

6.2. Stress

By using an isotropic behavior of the medium the following system is obtained:



















































σA
rr = (λ + 2µ)

∂ur

∂r
+ λ

(

ur

r
+

1
r
∂uθ
∂θ

)

− α(3λ + 2µ) (T(r, θ, t) − Ta)

σA
rθ = µ

(

1
r
∂ur

∂θ
+
∂uθ
∂r
−

uθ
r

)

σA
θθ = λ

∂ur

∂r
+ (λ + 2µ)

(

ur

r
+

1
r
∂uθ
∂θ

)

− α(3λ + 2µ) (T(r, θ, t) − Ta)

(21)

Therefore by using (21) and (17) the stress tensor is expressed:

σA
.. (r, θ) =

N1
∑

n=1

(

S..
n(r)exp(inθ) + S..

n(r)exp(−inθ)
)

+ S..
0 +

N2
∑

n=1

s..n(r)exp

(

−x2
n
Dt
R2

c

)

(22)
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where (..) can be replaced byrr , rθ or θθ and:



















Srr
0 (r) = α(3λ + 2µ)(Ta − T0)

Srθ
0 (r) = 0

Sθθ
0 (r) = α(3λ + 2µ)(Ta − T0)

∀n ≥ 1



















































Srr
n (r) =

2µLn

ζn

(

J′n(ζnr)

ζnr
− n2 Jn(ζnr)

ζ2
nr2

)

Srθ
n (r) =

2µinLn

ζn

(

−
J′n(ζnr)

ζnr
+

Jn(ζnr)
ζ2

nr2

)

Sθθ
n (r) = −

2µLn

ζn

(

J′n(ζnr)

ζnr
−

(

n2

ζ2
nr2
− 1

)

Jn(ζnr)

)

∀n ≥ 1







































srr
n (r) =

2µln
r

J′0

(

xnr
Rc

)

srθ
n (r) = 0

sθθn (r) = −
2µlnxn

Rc

(

J′0

(

xnr
Rc

)

Rc

xnr
+ J0

(

xnr
Rc

))

(23)

7. Auxiliary problem B

The Figure 2 shows that the plane elastic problem B is isothermal. Therefore the complex equations system
given by Muskhelishvili [17] is used:

{

σB
rr (r, θ) + σ

B
θθ

(r, θ) = 2
(

Φ(z) + Φ(z)
)

−σB
rr (r, θ) + σ

B
θθ

(r, θ) + 2iσB
rθ(r, θ) = 2exp(2iθ) (Ψ(z) + zΦ′(z))

(24)

wherez = rexp(iθ) (with (r, θ) the position where the stress is calculated) andΦ(z) andΨ(z) are two unknown
holomorphic functions. Mathematically, these functions can be expanded into a power series. Therefore:

Φ(z) =
N1
∑

n=0

φkz
k Ψ(z) =

N1
∑

n=0

ψkz
k (25)

The opposite tensile vector calculated for the auxiliary problem A (given in Section 6) is applied.

TB = −TA = −σA
rr (Rd, θ)er − σ

A
rθ(Rd, θ)eθ (26)

By rewriting (24) at the boundary (i.e., forz= Rdexp(iθ)) and by subtracting both equations:

−σA
rr (Rd, θ) + iσA

rθ(Rd, θ) = Φ(z) −
z2

R2
d

Ψ(z) − zΦ′(z) + Φ(z) (27)

By combining (27) and (25), the stresses in the roll gap as a function ofφk andψk are obtained:

−σA
rr (Rd, θ) + iσA

rθ(Rd, θ) =
N1
∑

n=2

(

φn(1− n)Rn
d − ψn−2Rn−2

d

)

exp(inθ) +
N1
∑

n=1

φnexp(−inθ) + φ0 + φ0 (28)

By injecting (22) into (28):



























































φ0 + φ0 = −Srr
0 (Rd) −

N2
∑

n=0

srr
n (Rd)exp

(

−x2
n
Dt
R2

c

)

φn = −
Srr

n (Rd) + iSrθ
n (Rd)

Rn
d

(∀n ≥ 1)

ψn−2 =
nSrr

n (Rd) − i(2− n)Srθ
n (Rd)

Rn−2
d

(∀n ≥ 2)

(29)
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The equation (24) can be rewritten:







































σB
rr (r, θ) + σ

B
θθ(r, θ) = 2

N1
∑

k=0

rk(φk exp(ikθ) + φk exp(−ikθ))

−σB
rr (r, θ) + σ

B
θθ(r, θ) + 2iσB

rθ(r, θ) = 2
N1
∑

k=0

rk(ψk exp(i(k+ 2)θ) + kφk exp(ikθ))

(30)

It is fairly easy to deriveσB
rr (r, θ), σ

B
rθ(r, θ) andσB

θθ
(r, θ) by taking the sum and the difference of both equations of

(30).
Finally, the thermal stress is defined by:

σth
.. = σ

A
.. + σ

B
.. (31)

where (..) can be replaced byrr , rθ or θθ.

8. Validation of the solution

8.1. Temperature field

The temperature field in the whole roll is extracted from the simulation of the hot rolling process presented
in Section 2. By considering the temperature at the radiusRc the Fourier coefficients (11) are computed and
the temperature field is expressed in the form of (14) and is given in Figure 3 at radiiRc andRd. It should be
noted that the temperature field is consistent with typical temperature fields that occur during hot rolling processes
as observed by Corral et al. [6] or more recently Abbaspour and Saboonchi [18]. The Fourier coefficientsTn

computed from the temperatures at the radiusRc by using (11) are listed in Table B.4 and the coefficientsγn are
listed in Table B.5 (appended in Appendix B). The rolling parameters are listed in Table 2.

Table 2: Parameters

(a) Roll

Rd (mm) 177.51
Rc (mm) 177.01
Rb (mm) 174.51
Ta (K) 293.15
D (mm2/s) 13.5
α (K−1) 12×10−6

λ (MPa) 121153.85
µ (MPa) 80769.231
ω (rad/s) 18.76

(b) Strip

Material Steel
ti (mm) 56.2
t f (mm) 31.2
R (%) 44.48
FR (N/mm) 8867
σ0 (MPa) 150
Ti (K) 1275.15
HTC (W/m2/K) 70000
Lc (mm) 70

(c) Solution

N1 200
N2 60

11
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Figure 3: Temperature for hot rolling conditions at the radii Rd andRc.

8.2. Comparison with FEM

The thermal stress of the present analytical method is obtained by adding the solutions of the auxiliary problem
A in Section.6 and the auxiliary problem B in Section.7, thereforeσth = σA + σB (the superscriptth meaning
thermal). This thermal stress is validated by comparing themethod presented in this paper and a numerical model
by FEM performed with the freeware Cast3m developed by CEA [16]. The temperature field presented in Section
8.1 is used for the computation. Considering the extremely sharp gradients near the surface of the roll, the mesh is
refined in this area. The mesh is generated by rotating (200 increments) a line defined by 10 nodes from the center
to 167.51 mm and 100 nodes from 167.51 mm to 177.51 mm. Triangular elements are chosen. The figure 4 shows
the final mesh. The computation with Cast3m is linear and plane strain. The temperature is specified at each node
of the mesh, and the equilibrium is ensured by blocking the central node. The comparison is presented in Figure
5, and a good agreement is observed. The exactness of the analytical thermal stress presented in Sections 6 and 7
is verified.

Figure 4: Mesh for comparison with FEM (Cast3m)
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Figure 5: Comparison of thermal stress with FEM (Cast3m)

8.3. Comparison with other analytical models

Corral et al. [6] used an analytical solution of the Navier’sEquation (15), by simplifying the problem by ne-
glecting the rotation terms and decoupling the radial displacement and the tangential displacement. The analytical
formula given by the authors is used with the temperature field described in Section 8.1. The Figure 6 shows that
the thermal stressσth

θθ
at the outer radiusRd is underestimated by Corral et al. [6]. The present analytical solution

is therefore an improvement which can be used as inputs of other models (thermal fatigue for instance).
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Figure 6: Comparison of thermal stress with other analytical model

9. Reconstructed stress comparison

As explained in Section 2 a numerical simulation of hot rolling process is done with Lam3/Tec3 [10]. The
industrial hot rolling conditions chosen for the simulation are taken from Legrand et al. [2] and are listed in Table
2. The impact of the thermal stress on the reconstruction of the contact stress by inverse analysis is evaluated in
this section. The purely elastic contact stress profiles at the outer radiusRd for normal pressure (σrr ) and shear
stress (σrθ) are given in Figure 7.

The inputs of the inverse method proposed by Weisz-Patraultet al. [4] are the stresses at the radiusRb. In order
to quantify the impact of thermal stress and the necessity ofcorrection, two kinds of inputs are distinguished: the
thermoelastic stresses (which simulate the measurements of fibre optics) and the purely elastic stresses, which can
be practically deduced from the measurements of the fibre optics by using the present method and removing the
thermal stress.
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Therefore the thermal stress calculated at the radiusRb is added to the purely elastic stress also calculated at
the inner radiusRb. These stress distributions are given in Figure 8. The hoop stressσθθ is clearly the most affected
by the thermal dilatation of the roll. It can be noted that thedifference between the thermoelastic hoop stress and
the purely elastic hoop stress is relatively constant. Thisis the consequence of the diffusion of the temperature
into the roll. Rb is at 3 mm from the surface, at this depth the thermal hoop stress varies slightly compared to the
variations observed at the radiusRd (surface of the roll). Moreover the area around the roll gap being small, the
variations of thermal stresses are quite small as shown in Figure 9.
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Figure 7: Purely elastic contact stresses at radiusRd
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Figure 9: Thermal hoop stress at radiiRb andRd

The inverse calculation proposed by Weisz-Patrault et al. [4] is performed both for purely elastic inputs (cor-
rected data) and thermoelastic inputs (not corrected data)and the results (contact stress in the roll gap) are pre-
sented in Figures 10 and 11. In order to quantify the error between the applied stress and the reconstructed stress
an error estimate is introduced in (32). Ifσr andσa denote respectively the reconstructed stress and the applied
stress:

ǫ =

√

√

√

√

∫ 2π

0
(σr (θ) − σa(θ))2 dθ
∫ 2π

0
σa(θ)2 dθ

(32)

The Table 3 lists the quantified errors of reconstruction. The improvement of the reconstruction with corrected
data with the present thermoelastic method is very significant. The correction of the inputs is therefore necessary
to perform accurately the inverse method proposed by Weisz-Patrault et al. [4].

Table 3: Hot rolling summary

Purely elastic inputs Thermoelastic inputs
(corrected) (not corrected)

rr rθ rr rθ
ǫ (%) 0.63 0.75 25.41 17.75
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10. Computation time

The computation time is studied to rapidly optimise the industrial parameters during the rolling process. The
principle is to write the solution in matrix form. The matrices can be computed off-line (i.e., before the rolling
process) and be stocked in a library. LetNθ be the number of angular positionsθ j ( j varying from 1 toNθ)
where the outputs are computed. The CPU times of the inverse methods proposed by Weisz-Patrault et al. [4] and
Weisz-Patrault et al. [5] are optimised (CPU times displayed by Scilab 5.3 are respectively 0.07 s and 0.05 s with
a quadcore 2.8 GHz). Therefore the following optimisation is only about the thermal stressσth = σA + σB which
is written as follows ((..) replacesrr , rθ or θθ):

σA
.. (θ, t0) = 2Re(A...L) + S..

0 + a...l (33)
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where the matricesA(rr ), A(rθ) andA(θθ) (sizeNθ × N1) are:



















































Arr
j,n =

2µ
ζn

(

J′n(ζnr)

ζnr
− n2 Jn(ζnr)

ζ2
nr2

)

exp
(

inθ j

)

Arθ
j,n =

2µin
ζn

(

−
J′n(ζnr)

ζnr
+

Jn(ζnr)
ζ2

nr2

)

exp
(

inθ j

)

Aθθ
j,n = −

2µ
ζn

(

J′n(ζnr)
ζnr

−

(

n2

ζ2
nr2
− 1

)

Jn(ζnr)

)

exp
(

inθ j

)

(34)

where the vectorsarr , arθ andaθθ (sizeN2 + 1) are:







































arr
n =

2µ
r

J′0

(

xnr
Rc

)

exp

(

−x2
n

D
R2

c
t0

)

arθ
n = 0

aθθn = −
2µxn

Rc

(

J′0

(

xnr
Rc

)

Rc

xnr
+ J0

(

xnr
Rc

))

exp

(

−x2
n

D
R2

c
t0

)

(35)

where the vectorL (sizeN1) is the vector of theLn, and the vectorl (sizeN2 + 1) is the vector of theln.

{

σB
rr + σ

B
θθ = 2Re(B1.φ)

−σB
rr + σ

B
θθ
+ 2iσB

rθ = B2.ψ + B3.φ
(36)

where the matricesB1, B2 andB3 (sizeNθ × N1) are:



















































B1. j,n = 2

(

Rb

Rd

)n

exp
(

inθ j

)

B2. j,n = 2

(

Rb

Rd

)n

exp
(

i(n+ 2)θ j

)

B3. j,n = 2

(

Rb

Rd

)n

nexp
(

inθ j

)

(37)

and whereφ is the vector ofφk andψ is the vector ofψk.
The matricesA(rr ), A(rθ), A(θθ),B1, B2 and B3 and the vectorsarr , arθ and aθθ are computed off-line (i.e.,

before the rolling process) and stocked in a library.L, l, φ andψ are computed on-line because the measured
temperatures and the measured stresses are needed. However, these quantities are already computed because both
inverse methods proposed by Weisz-Patrault et al. [4] and Weisz-Patrault et al. [5] are using them. Therefore the
correction of the input data (thermoelastic stress giving purely elastic stress) does not cost significant additional
CPU times (only the matrices products which is negligible).This is one of the main advantage of this analytical
solution.

11. Conclusions

A successful method has been presented to compute the thermal stress during hot rolling on the basis of
temperature fields expanded into series. These temperaturefields are produced by an inverse analysis which
interprets temperature measurements (thermocouple fullyembedded in the roll). This problem is mainly used in
this contribution to correct the inputs of an other inverse analysis which interprets stress measurements (fibre optics
fully embedded in the roll) to compute the contact stress in the roll gap. The purely elastic stress is inferred from
the measured (or simulated) thermoelastic stress by using the presented analytical method. It is demonstrated that
this correction is necessary, the error being significantlyreduced (from 25.41 % to 0.63 % for normal pressures
and from 17.75 % to 0.75 % for shear stresses).

Both inverse methods proposed by Weisz-Patrault et al. [4] and Weisz-Patrault et al. [5] are designed for real
time computation. The main advantage of the present correction is that it does not cost additional CPU times (or
negligible: matrices products).

Moreover, the computation of thermal stress is more accurate than older analytical methods, and therefore can
be used in the field of thermal fatigue of rolls both experimentally (measurement interpretation) and theoretically
(simulations).
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Appendix A. Proof of the particular solution

The left term of (19) involves the following quantity:

g1(r) = (λ + 2µ)

(

P′′n (r) +
P′n(r)

r
−

Pn(r)
r2

)

− µn2 Pn(r)
r2

(A.1)

By using (20) and denotingx = ζnr:

g1(r) = −(λ + 2µ)Ln

(

J′′′n (x) +
J′′n (x)

x
−

J′n(x)

x2

)

+ µn2Ln
J′n(x)

x2

The well known differential equation verified by Bessel function is:

J′′n (x) +
J′n(x)

x
+

(

1−
n2

x2

)

Jn(x) = 0 (A.2)

Therefore by differentiating (A.2):

J′′′n (x) +
J′′n (x)

x
−

J′n(x)

x2
= −

(

1−
n2

x2

)

J′n(x) −
2n2

x3
Jn(x)

Hence:

g1(r) = −Ln(λ + 2µ)

((

n2

x2
− 1

)

J′n(x) −
2n2

x3
Jn(x)

)

+ Lnµn2 J′n(x)

x2

And finally:

g1(r) = −Ln

(

(λ + µ)
n2

x2
− (λ + 2µ)

)

J′n(x) + 2Ln(λ + 2µ)
n2

x3
Jn(x) (A.3)

The left term of (19) involves the following quantity:

g2(r) = (λ + µ)in
Q′n(r)

r
− (λ + 3µ)in

Qn(r)
r2

By using (20):

g2(r) = (λ + µ)n2Ln

(

J′n(x)

x2
−

Jn(x)
x3

)

− (λ + 3µ)n2Ln
Jn(x)

x3

And finally:

g2(r) = Ln(λ + µ)
n2

x2
J′n(x) − 2Ln(λ + 2µ)

n2

x3
Jn(x) (A.4)

By combining (A.3) and (A.4):
g1(r) + g2(r) = Ln(λ + 2µ)J′n(x) (A.5)

Therefore the first Eq. of (19) is verified.
The left term of (19) involves the following quantity:

g3(r) = µ

(

Y′′n (r) +
Q′n(r)

r
−

Qn(r)
r2

)

− (λ + 2µ)n2 Qn(r)
r2

By using (20):

g3(r) = −inLn

(

µ

(

J′′n (x)

x
− 2

J′n(x)

x2
+ 2

Jn(x)
x3
+

J′n(x)

x2
−

Jn(x)
x3
−

Jn(x)
x3

)

− (λ + 2µ)n2 Jn(x)
x3

)

Hence:

g3(r) = −inLn

(

µ

(

J′′n (x)
x
−

J′n(x)

x2

)

− (λ + 2µ)n2 Jn(x)
x3

)

By using directly (A.2):

g3(r) = −inLn

(

µ

(

−2
J′n(x)

x2
+

(

n2

x3
−

1
x

)

Jn(x)

)

− (λ + 2µ)n2 Jn(x)
x3

)
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And:

g3(r) = inLn

(

2µ
J′n(x)

x2
+

(

(λ + µ)
n2

x3
+
µ

x

)

Jn(x)

)

(A.6)

The left term of (19) involves the following quantity:

g4(r) = (λ + µ)in
P′n(r)

r
+ (λ + 3µ)in

Pn(r)
r2

By using (20):

g4(r) = −inLn

(

(λ + µ)
J′′n (x)

x
+ (λ + 3µ)

J′n(x)

x2

)

By using directly (A.2):

g4(r) = −inLn

(

(λ + µ)

(

−
J′n(x)

x2
+

(

n2

x3
−

1
x

)

Jn(x)

)

+ (λ + 3µ)
J′n(x)

x2

)

And:

g4(r) = inLn

(

−2µ
J′n(x)

x2
− (λ + µ)

(

n2

x3
−

1
x

)

Jn(x)

)

(A.7)

By combining (A.6) et (A.7):

g3(r) + g4(r) = inLn(λ + 2µ)
Jn(x)

x
(A.8)

Therefore the second Eq. of (19) is verified.

Appendix B. Temperature field

T0 = 366.3 (B.1)

Table B.4:Tn

n Tn n Tn n Tn n Tn

1 -1.92D+01+i 2.05D+01 51 4.03D-03+i 3.48D-02 101 -1.84D-04+i 2.35D-03 151 -3.00D-07+i 3.41D-05
2 9.70D+00+i -1.44D+01 52 -1.22D-03+i 1.51D-02 102 1.59D-04+i 2.10D-03 152 -3.00D-07+i 3.16D-05
3 -2.76D+00+i 1.09D+01 53 -2.68D-03+i 3.25D-02 103 -1.49D-04+i 1.96D-03 153 -4.16D-09+i 2.69D-05
4 2.85D+00+i -5.46D+00 54 5.56D-03+i 1.47D-02 104 1.09D-04+i 1.96D-03 154 -5.00D-07+i 2.47D-05
5 -2.85D+00+i 4.36D+00 55 -7.51D-03+i 2.89D-02 105 -7.59D-05+i 1.66D-03 155 3.00D-07+i 2.12D-05
6 2.57D+00+i -2.51D+00 56 8.52D-03+i 1.63D-02 106 3.84D-05+i 1.79D-03 156 -3.00D-07+i 1.89D-05
7 -2.67D+00+i 2.63D+00 57 -9.28D-03+i 2.31D-02 107 -2.43D-05+i 1.42D-03 157 1.00D-07+i 1.66D-05
8 2.07D+00+i -1.59D+00 58 8.90D-03+i 1.83D-02 108 -1.56D-05+i 1.59D-03 158 -5.00D-07+i 1.42D-05
9 -1.40D+00+i 1.58D+00 59 -8.02D-03+i 1.72D-02 109 5.53D-05+i 1.27D-03 159 1.00D-07+i 1.28D-05
10 1.18D+00+i -4.43D-01 60 7.33D-03+i 2.01D-02 110 -6.74D-05+i 1.36D-03 160 -2.00D-07+i 1.06D-05
11 -8.89D-01+i 4.70D-01 61 -5.47D-03+i 1.35D-02 111 9.36D-05+i 1.14D-03 161 -5.84D-08+i 9.70D-06
12 7.84D-01+i 2.31D-01 62 4.12D-03+i 2.03D-02 112 -9.22D-05+i 1.16D-03 162 2.61D-08+i 8.00D-06
13 -6.40D-01+i 4.21D-03 63 -2.54D-03+i 1.12D-02 113 7.73D-05+i 1.03D-03 163 -1.00D-07+i 7.20D-06
14 4.80D-01+i 3.21D-01 64 9.74D-04+i 1.86D-02 114 -6.81D-05+i 9.83D-04 164 1.97D-08+i 5.90D-06
15 -1.91D-01+i -8.82D-02 65 2.79D-04+i 1.06D-02 115 3.82D-05+i 9.28D-04 165 -9.91D-08+i 5.10D-06
16 5.59D-02+i 3.80D-01 66 -1.19D-03+i 1.61D-02 116 -3.58D-05+i 8.21D-04 166 1.00D-07+i 4.30D-06
17 1.03D-01+i -1.90D-01 67 2.00D-03+i 1.14D-02 117 2.71D-05+i 8.36D-04 167 -7.95D-08+i 3.70D-06
18 -1.71D-01+i 4.18D-01 68 -2.48D-03+i 1.32D-02 118 -1.35D-05+i 7.05D-04 168 5.29D-08+i 3.10D-06
19 1.87D-01+i -1.73D-01 69 2.47D-03+i 1.21D-02 119 4.00D-06+i 7.15D-04 169 -7.04D-08+i 2.60D-06
20 -2.16D-01+i 2.96D-01 70 -2.38D-03+i 1.04D-02 120 9.70D-06+i 6.13D-04 170 3.67D-09+i 2.20D-06
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21 2.49D-01+i -3.44D-02 71 2.03D-03+i 1.24D-02 121 -2.47D-05+i 6.08D-04 171 -1.90D-08+i 1.80D-06
22 -2.63D-01+i 1.53D-01 72 -1.40D-03+i 8.20D-03 122 2.45D-05+i 5.38D-04 172 5.27D-09+i 1.50D-06
23 2.72D-01+i 5.34D-02 73 1.03D-03+i 1.23D-02 123 -2.86D-05+i 5.13D-04 173 8.01D-09+i 1.20D-06
24 -2.55D-01+i 8.43D-02 74 -4.27D-04+i 6.90D-03 124 1.95D-05+i 4.71D-04 174 -4.97D-09+i 1.00D-06
25 2.08D-01+i 9.11D-02 75 -3.67D-05+i 1.13D-02 125 -2.20D-05+i 4.25D-04 175 4.88D-09+i 8.00D-07
26 -1.66D-01+i 3.07D-02 76 4.67D-04+i 6.42D-03 126 1.49D-05+i 4.17D-04 176 -1.64D-08+i 7.00D-07
27 1.22D-01+i 1.33D-01 77 -8.59D-04+i 9.91D-03 127 -1.06D-05+i 3.48D-04 177 4.29D-09+i 5.00D-07
28 -8.95D-02+i -1.52D-02 78 1.19D-03+i 6.44D-03 128 7.60D-06+i 3.57D-04 178 -1.50D-08+i 4.00D-07
29 6.20D-02+i 1.42D-01 79 -1.29D-03+i 8.38D-03 129 -4.30D-06+i 2.97D-04 179 -2.92D-09+i 3.00D-07
30 -4.19D-02+i -9.93D-03 80 1.21D-03+i 6.46D-03 130 1.90D-06+i 3.03D-04 180 -2.20D-09+i 2.00D-07
31 1.19D-02+i 1.10D-01 81 -1.14D-03+i 6.91D-03 131 6.80D-06+i 2.50D-04 181 1.09D-09+i 2.00D-07
32 6.29D-03+i 2.21D-02 82 8.84D-04+i 6.51D-03 132 -5.50D-06+i 2.52D-04 182 -4.57D-09+i 1.00D-07
33 -2.92D-02+i 7.31D-02 83 -6.24D-04+i 5.66D-03 133 6.90D-06+i 2.15D-04 183 -1.11D-09+i 1.00D-07
34 3.53D-02+i 4.31D-02 84 4.10D-04+i 6.28D-03 134 -8.20D-06+i 2.03D-04 184 2.60D-10+i 7.61D-08
35 -3.99D-02+i 4.47D-02 85 -2.08D-04+i 4.84D-03 135 5.40D-06+i 1.81D-04 185 -1.40D-10+i 5.61D-08
36 3.32D-02+i 6.25D-02 86 -3.77D-05+i 5.82D-03 136 -4.90D-06+i 1.66D-04 186 6.48D-11+i 3.84D-08
37 -2.99D-02+i 1.83D-02 87 2.35D-04+i 4.39D-03 137 2.30D-06+i 1.54D-04 187 -6.59D-10+i 2.74D-08
38 2.01D-02+i 8.18D-02 88 -4.16D-04+i 5.09D-03 138 -1.50D-06+i 1.35D-04 188 -4.24D-11+i 1.81D-08
39 -1.82D-02+i -1.74D-05 89 5.60D-04+i 4.18D-03 139 -4.00D-07+i 1.32D-04 189 -8.39D-11+i 1.19D-08
40 8.82D-03+i 8.38D-02 90 -6.12D-04+i 4.36D-03 140 -6.00D-07+i 1.11D-04 190 -3.47D-11+i 7.63D-09
41 -4.06D-03+i -1.77D-03 91 5.89D-04+i 3.99D-03 141 -1.50D-06+i 1.07D-04 191 -2.98D-11+i 4.50D-09
42 -4.54D-03+i 7.31D-02 92 -5.28D-04+i 3.68D-03 142 1.20D-06+i 9.23D-05 192 -1.24D-11+i 2.64D-09
43 1.06D-02+i 6.48D-03 93 4.30D-04+i 3.81D-03 143 -2.30D-06+i 8.69D-05 193 -7.06D-12+i 1.39D-09
44 -1.61D-02+i 5.99D-02 94 -3.37D-04+i 3.09D-03 144 3.00D-06+i 7.52D-05 194 -5.10D-12+i 7.04D-10
45 1.71D-02+i 1.43D-02 95 2.48D-04+i 3.56D-03 145 -2.40D-06+i 6.91D-05 195 1.80D-12+i 3.12D-10
46 -1.77D-02+i 4.46D-02 96 -1.53D-04+i 2.66D-03 146 2.60D-06+i 6.15D-05 196 -1.70D-12+i 1.24D-10
47 1.60D-02+i 2.34D-02 97 6.77D-05+i 3.17D-03 147 -1.70D-06+i 5.40D-05 197 8.93D-14+i 3.91D-11
48 -1.33D-02+i 2.98D-02 98 1.11D-05+i 2.43D-03 148 9.00D-07+i 5.02D-05 198 -3.59D-14+i 9.09D-12
49 1.09D-02+i 3.22D-02 99 -1.07D-04+i 2.75D-03 149 -1.30D-06+i 4.32D-05 199 2.09D-14+i 1.15D-12
50 -8.12D-03+i 1.99D-02 100 1.28D-04+i 2.24D-03 150 -9.70D-08+i 4.04D-05 200 -9.70D-16+i 3.49D-14

Table B.5:γn

n γn/(Ta − T0) n γn/(Ta − T0) n γn/(Ta − T0)
1 1.6017603 11 0.4198340 21 0.2792925
2 -1.0640481 12 -0.3994332 22 -0.2697257
3 0.8499229 13 0.3812070 23 0.2605739
4 -0.7272953 14 -0.3647408 24 -0.2517861
5 0.6451733 15 0.3497198 25 0.2433180
6 -0.5850795 16 -0.3359009 26 -0.2351319
7 0.5385006 17 0.3230924 27 0.2271942
8 -0.5009022 18 -0.3111410 28 -0.2194761
9 0.4696192 19 0.2999224 29 0.2119517
10 -0.4429698 20 -0.2893344 30 -0.2045984

n γn/(Ta − T0) n γn/(Ta − T0) n γn/(Ta − T0)
31 0.1973955 41 0.1303318 51 0.0651469
32 -0.1903252 42 -0.1238687 52 -0.0584356
33 0.1833701 43 0.1174123 53 0.0516561
34 -0.1765158 44 -0.1109563 54 -0.0448147
35 0.1697488 45 0.1044914 55 0.0378854
36 -0.1630565 46 -0.0980124 56 -0.0308898
37 0.1564265 47 0.0915102 57 0.0237728
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38 -0.1498492 48 -0.0849808 58 -0.0166182
39 0.1433137 49 0.0784137 59 0.0091932
40 -0.1368109 50 -0.0718065 60 -0.0026463
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