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This study aims at evaluating the influence of a heavily urbanized area such as the Paris city area 

on receiving water contamination by bisphenol A (BPA) and alkylphenol ethoxylate by-product 

(APE). Firstly, concentrations in urban sources were investigated. Therefore, in addition to 

wastewater treatment plant effluents commonly studied, wet-weather urban sources including 

combined sewer overflows, urban runoff and total atmospheric fallout were considered. The first 

results highlight significant contaminations of all urban sources (from few ng/L in atmospheric 

fallout to several µg/L in other sources) with clearly distinguishable distribution patterns. 

Secondly, the concentration changes along the Seine River from upstream to downstream of Paris 

conurbation were investigated. While concentrations of BPA and nonylphenoxy acetic acid 

(NP1EC) significantly increase because of urban sources, 4-nonylphenol concentrations are 

homogeneous along the Seine River. These results suggest a global dissemination of 4-

nonylphenol at the scale of the Seine River basin. Finally, the relationship between pollutant 

concentrations and Seine river flow were studied upstream and downstream of the Parisian 

conurbation. As a result, the clear decrease of NP1EC dissolved concentrations according to Seine 

River flow underlines the influence of punctual urban pollution on Seine River contamination. 

Conversely, 4-nonylphenol dissolved concentrations reinforce the hypothesis of its widespread at 

the scale of the Seine River basin. 

Keywords: Nonylphenol, bisphenol A, urban sources, Seine River, atmospheric fallout, heavily 

urbanized area  
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Introduction 

Among the pollutants commonly pointed out in the literature for their endocrine disrupting 

properties, alkylphenol ethoxylates (APE) and the 2,2-(4,4 hydroxydiphenyl) propane commonly 

named bisphenol A (BPA) deserve special attention because of their global spread in the 

environment (Staples et al. 1998; Vethaak et al. 2005). APE, mainly composed of nonylphenol 

ethoxylate (NPE: 80%) and octylphenol ethoxylate (OPE: 20%), are widely used for industrial and 

domestic applications, such as lubricating, oil additives, detergents and antistatic agents (Ying et 

al. 2002). A reasonable estimate of the world annual production of NPE is around 500,000 tons 

(Ying et al. 2002). BPA is mainly used as a monomer in the manufacture of polycarbonate plastics 

known for its high resistance to shocks and temperature (plastic windows or greenhouses, car 

bumpers, baby bottles), and in epoxy resins used as food contact lacquer for cans and tin cans. Due 

to its uses, the world production of BPA was evaluated at about 3,000,000 tons (Vandenberg et al. 

2007) 

While BPA is recognized as an endocrine disrupting chemical (Wetherill et al. 2007), NPE and 

OPE have been of rising concern because of their biodegradation by-products. Indeed, in urban or 

natural environment NPE can be biodegraded through oxidative or non-oxidative pathways (John 

and White 1998; Jonkers et al. 2001). Under oxidative biodegradation pathway, NPE turn into 

carboxylic acids such as nonylphenol acetic acid (NP1EC) while under non-oxidative 

biodegradation pathway, short chain ethoxylates are produced such as nonylphenol diethoxylate 

(NP2EO) and nonylphenol monoethoxylate (NP1EO) (Giger et al. 2009). Finally, NP1EC and 

NP1EO can be biodegraded into 4-nonylphenol (4-NP) known as the most toxic and persistent 

by-products of NPE in the aquatic environment (Servos 1999).  

The occurrence of APE and BPA in environment is closely correlated with anthropogenic 

activities. Many studies suggest that these chemicals preferentially enter into the environment 

through urban sources (Sharma et al. 2009; Ying et al. 2002). Among the urban sources 

investigated in the literature, the effluents of wastewater treatment plants (WWTP) are frequently 

studied (Hohne and Puttmann 2008; Loyo-Rosales et al. 2007; Voutsa et al. 2006; Zhou et al. 

2010). On the contrary, studies on wet weather urban sources such as combined sewer overflows 

(CSOs) and urban runoff are less available, despite their high contamination (Björklund et al. 

2009; Gasperi et al. 2008). 

The Seine Basin, located in North-West part of France, drains approximately a 32,000 km² area 

from its headwaters to Paris. It can be considered as representative of river basins exposed to the 

impacts of intense human activity  (Parisian conurbation: 12 million of inhabitants, among the 

thirty most populous cities in the world and the third in Europe after Moscow and London) 

(Meybeck et al. 2007). This basin combines strong anthropogenic pressures with a very limited 

dilution factor in the Seine River, due to its low flow rate (Seine River median flow at 

Paris: 350 m3/s). Actually, no comprehensive data on the occurrence of APE and BPA are 

presently available for the upper part of the Seine basin. As far as we are aware, only few studies 

deal with the influence of such heavily urbanized conurbations (more than 10 millions of 
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inhabitants) on their environment (Isobe et al. 2001) and none of them focus on watershed of 

European cities. 

As a consequence, the study tackles several objectives. The first objective is to assess the 

occurrence of APE and BPA concentrations and their relative significance in different urban 

sources of the Parisian conurbation such as the effluents of the major WWTP, the main CSO 

outfall and urban runoff. Secondly, this study aims at evaluating the influence of the Parisian 

conurbation on receiving water between upstream and downstream sampling sites. Finally, the last 

objective is to better examine the concentration variation of target compounds according to the 

hydrological conditions on upstream and downstream sites. 

Materials and methods 

Sampling sites / campaigns 

Seine River water was collected at three locations (n=11 for each sampling location; Table 1) from 

February 2010 to February 2011. The first site, Marnay, is located upstream of the Parisian 

conurbation (weakly urbanized). The second site, Bougival, is located just downstream of Paris 

City (heavily urbanized). Finally, the last site, Meulan, is located downstream of all Parisian 

wastewater effluent discharges (heavily urbanized) (Fig. 1). In addition, the Orgeval River in an 

agricultural experimental catchment (Vilain et al. 2012) was also monitored during year 2011 

(n=9) (Fig. 1). All samples were manually collected in 2 L glass amber bottles previously 

pyrolysed at 500°C to avoid sample contaminations.  

 

 

Fig. 1 Sampling sites within the Parisian conurbation 
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Urban sources investigated include WWTP effluents, total atmospheric fallout (TAF), urban runoff 

and CSOs. For WWTP effluents, the effluents of the 5 major WWTPs (WWTP1 to WWTP5 on 

Fig. 1) of the Parisian conurbation were monitored monthly from January 2011 to November 2011 

(n=9). These WWTPs are supervised by the Parisian public sanitation service (SIAAP) and treat 

more than 2 millions m3 of wastewater every day (70% of the Parisian conurbation inhabitants). 

Samples were collected in 2L glass amber bottles also pyrolysed at 500°C. Among these five 

WWTPs, three different processes of wastewater treatment are considered. Firstly, the WWTP1 

use conventional activated sludge (AS) for carbon and nitrogen removal (AS-WWTP), WWTP4 

use activated sludge for carbon removal and biofiltration (B) for nitrogen removal (ASB-WWTP), 

finally the more recent WWTP2, WWTP3 and WWTP5 use biofiltration units for both carbon and 

nitrogen removals (B-WWTP). The removal efficiencies on organic matter (evaluated with the 

Chemical Oxygen Demand: COD) and nitrogen (nitrification: Total Kjeldahl Nitrogen (TKN), 

denitrification: total nitrogen (TN)) are disclosed in Table 1. According to these efficiencies, 

WWTP1,2,3 and 5 reveal high removals for organic matter and nitrogen. Conversely, WWTP4 

which is the largest WWTP of the Parisian conurbation and one of the biggest in the world (more 

than 1,600,000 m3 of wastewater treated every day) highlights lower efficiencies for organic 

matter (COD: 85%), nitrogen (TKN: 70%; TN: 20%) and SS (90%). Measures for the 

modernization of this WWTP are under way to improve its efficiency for carbon and nitrogen 

removals. 

Table 1 sampling site characteristics 

Sample n period comments / details 

Orgeval River 9 

Mar 2011 

– 
Nov 2011 

Upstream site  Agricultural watershed 

Manually collected in 2 L glass bottles 

Seine River 11 

Feb 2010 

- 
Feb 2011 

3 stations (Marmay, Bougival, Meulan) increasing urbanization 

Manually collected in 2 L glass bottles 

WWTP effluent 11 

Jan 2011 

– 

Nov 2011 

WWTP x (vol):   process  efficiency COD,  NTK,  TN, SS 

WWTP 1 (385,000 m3/d):AS,   96% ,  97%,  74%,  98% 

WWTP 2 (48,000, m3/d): B,   93%,  95%,  86%,  97% 
WWTP 3 (233,000 m3/d): B ,   95%,  96%,  70%,  98% 

WWTP 4 (1,612,000 m3/d):AS + B,  86%,  70%,  21%,  91% 

WWTP 5 (92,000 m3/d): B ,   94%,  92%,  82%,  97% 

CSO 8 

June 2010 

- 

Nov 2010 

volume per event: 35,000 to 1,000,000 m3 

automatic samplers 12 bottles  Weighted mean samples 

Total 
atmospheric 

fallout 

20 
Feb 2011 

- 

Nov 2011 

3 sites (Paris City, Lognes, Fontainebleau) 

Total atmospheric fallout (dry + wet) (on 15 days) 

Urban runoff 4 
July 2011 

- 

Oct 2011 

samples collected at Sucy-en-Brie outfall, separated sewer 

automatic samplers 12 bottles  Weighted mean samples 

 

In addition to WWTP effluents, urban sources during wet weather period were also sampled, i.e. 

combined sewer overflows (CSOs) and urban runoff in separate sewer. CSOs were sampled at 

Clichy outfall, one of the biggest outfalls of the Parisian conurbation, for 8 events (discharged 
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volumes ranging from 35,000 m3 to more than 1,000,000 m3) (Fig. 1). Urban runoff was sampled 

at the outlet of small sub-urban catchment (Sucy-en-Brie) for 4 rain events (Fig. 1). For CSOs and 

runoff, samplings were performed by an automatic sampler. Flow-weighted composite samples 

representative of the entire discharges were considered for analyse. At last, TAF were collected at 

Paris city (heavily urbanized; n=10), Lognes (weakly urbanized; n=5) and at the Fontainebleau 

forest (n=5) in 10 L glass bottles fitted with 1 m² aluminium funnels (Fig. 1) during 7 periods 

(15 days) between January and November 2011.  

Analytical procedure 

Sample preparation 

Bisphenol A (BPA), 4-nonylphenol (4-NP), nonylphenol mono- and diethoxylate (NP1&2EO), 

nonylphenol acetic acid (NP1EC), 4-tert-octylphenol (4-t-OP) and octylphenol mono- and 

diethoxylate (OP1&2EO) were analyzed in dissolved and SS. After filtration (GF/F, Whatman), 

100 mL of dissolved phase for CSOs or 250 mL for all other water samples were spiked with a 

surrogate standard mixture (BPA-d6, NP1EO-d2, OP-d17) before extraction.  

For dissolved phase, samples were extracted by solid phase extraction (Autotrace SPE 

Workstation, Caliper LifeScience) using OASIS® HLB cartridges (200 mg, 6 mL). After 

conditioning with 10 mL of methanol and 10 mL of ultrapure water, dissolved samples were 

extracted at 5 mL/min, under neutral pH. After drying, elutions were performed with 12 mL of a 

mixture methanol (MeOH)/Dichloromethane (DCM)/Ethyl acetate (Etace) (40/40/20, v/v). 

After freeze-drying, the SS were extracted by microwave assisted extraction using a 

multiwave 3000 (Antonn Paar). The filters, were extracted using 20 mL of MeOH/DCM 

(60/40, v/v) mixture at 100°C and 7 bars during 30 min. After extraction, samples were cleaned up 

by SPE using OASIS® HLB (200 mg, 6 mL). Basically, after conditioning (3 mL MeOH and 3 mL 

MeOH/H2O (20/80 v/v), the samples dissolved in 500 µL of MeOH/H2O (50/50 v/v) mixture, were 

deposited on the top of the cartridges. Then, the cartridges were washed with 3 mL of H2O prior to 

elution with 9 mL of MeOH/DCM/Etace (40/40/20, v/v/v) mixture.  

UPLC-MS-MS analysis 

Before analysis, both extracts were concentrated and spiked with internal standard for 

quantification (BPA-d16, n-NP and n-NP1EO). The analysis was performed by liquid 

chromatography coupled to a tandem mass spectrometry, LC-MS-MS (AQUITY UPLC / TQD, 

Waters). APEOs and BPA were separated on an AQUITY UPLC / BEH C18 column, heated at 40 

°C, with ultrapure water (A) and methanol (B) each containing 4.5 mM NH4OH. Equilibration 

takes place with 50 % B at 0.4 mL/min and 10 µL of sample were injected. The mass spectrometer 

is equipped with an electrospray interface used in positive ionization mode (ESI+) for NP1&2EO 

and OP1&2EO and negative ionization mode (ESI-) for all other compounds. The compounds were 

detected in multiple reactions monitoring mode (MRM) with two mass transitions. 
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Analytical variability 

In order to assess the variability of the analytical protocol, three surface water samples from the 

same sampling location (downstream of WWTP 4) were individually analyzed. This variability 

was only studied for the dissolved phase extraction and UPLC-MS-MS analysis and not for the 

suspended solids. Actually, in receiving water, alkylphenols and BPA are mostly present in the 

dissolved phase (4-NP: 80%; 4-t-OP: 90% and BPA: 95%; Cladiere et al. 2010; Isobe et al. 2001). 

The dissolved phases of the three water samples were extracted in triplicates and each extraction 

was also analyzed in triplicates. Thus, nine concentration values were obtained for each sample 

and every target compound. The nine values were compared to the median in order to calculate 

relative deviations that are representative of the analytical variability. Finally, the absolute values 

of relative deviations generated for the three samples (9x3=27) were represented on Fig. 2 as 

histograms for BPA, 4-NP and NP1EC.  
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Fig. 2 Distribution histograms of relative deviations of BPA, 4-NP, and NP1EC to the median 

value. The bold lines represent the third quartile of the relative deviations. 

 

For 4-NP, NP1EC and NP2EO, the relative deviations globally lie within the 0 - 15% range while 

maximum values reach 20% for 4-NP. Thus, in order to account 75% of the relative deviation 

values (bold lines), the analytical variabilities (±AV) of 4-NP, NP1EC and NP2EO were 

respectively estimated at 10%, 6% and 13%. For BPA and NP1EO, the relative deviations were 

calculated only for 21 analyses since their concentrations were close to their limit of quantification 

(LOQ: BPA: 11 ng/L; NP1EO: 10 ng/L). Similarly to previous compounds and in order to account 

75% of the relative deviation values (bold lines), the analytical variabilities of BPA and NP1EO 

were respectively evaluated at 35% and 31%. For OPE, the analytical variabilities were not 

evaluated since these compound concentrations were mostly under their limit of quantification 

(4-t-OP: 4 ng/L; OP1EO: 12 ng/L and OP2EO: 3 ng/L) in investigated surface water.  

Data exploitation 

The concentrations presented in this study are total concentrations (expressed in ng/L) calculated 

by summing dissolved concentrations (ng/L) and SS concentrations (ng/L). For the variations of 

concentrations with hydrological conditions, only the dissolved phase was considered in order to 

better assess the origins of target compounds (punctual or diffuse sources) within the Seine River.  
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Results are displayed in box plots which extend from the 1st quartile (Q1) to the 3rd quartile (Q3) 

and thus contain the central half of the distribution score. Dotted lines symbolize 1.5 times the 

interquartile range while outliers are indicated as points above or below the dotted lines. 

Since concentration distributions of each sampling point cannot be assumed to be normally 

distributed; non parametric tests were performed to compare concentrations found on different 

sites. The Wilcoxon signed-rank test was selected to compare the Marnay, Bougival and Meulan 

sites since samplings were collected on the same day at the three sites. For the same reason, the 

Wilcoxon signed-rank test was also used to compare the WWTP effluents. For all other matrices 

and sampling sites (TAF, CSO, runoff and Orgeval), the Mann-Whitney U test was selected to 

compare distributions of different sizes. In accordance with the analytical variabilities, statistical 

significance was accepted at p < 0.1 for all comparisons. 

Results and discussions 

Urban sources 

Wastewater treatment plants 

Results found in WWTP effluents for BPA and NPE are illustrated in Fig. 3. Three groups 

corresponding to AS-WWTP, ASB-WWTP and B-WWTP as described earlier are considered. 
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Fig. 3 Concentrations of target compounds (ng/L) in WWTP effluents. AS: activated sludges; 

B: biofiltration; ASB: activated sludge (carbon removal) + biofiltration (nitrogen removal) 

 

For AS-WWTP and B-WWTP considered, the median concentrations (±AV) of effluents were 

evaluated at 67(±24) ng/L for BPA, 114(±12) ng/L for 4-NP, 74(±23) ng/L for NP1EO, 

74(±9) ng/L for NP2EO and 573(±34) ng/L for NP1EC. For ASB-WWTP (WWTP4) the median 

concentrations (±AV) found in the effluent were higher and evaluated at 76(±27) ng/L for BPA, 

244(±24) ng/L for 4-NP, 304(±109) for NP1EO, 295(±38) ng/L for NP2EO and 861(±62) ng/L for 

NP1EC. The OPE were less concentrated (<54 ng/L) and only account for 10% of target 

alkylphenols in accordance with their use distributions (Ying et al. 2002). Globally, these median 
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concentrations are similar to those reported in the literature in Europe (Hohne and Puttmann 2008; 

Jonkers et al. 2009), USA (Loyo-Rosales et al. 2007), China (Zhou et al. 2010) and in a previous 

study in the Parisian conurbation (Gilbert et al. 2012).  

The WWTP effluents were characterized by the predominance of NPE (4-NP and NP1EC) 

comparatively to BPA. The low concentrations of BPA in WWTP effluents (medians being 

76(±27) ng/L for ASB-WWTP and 67(±24) ng/L for B-WWTP and AS-WWTP) result from the 

high efficiency of wastewater treatment and the high BPA biodegradation during wastewater 

treatment processes (about 90% according to Zhou et al. (2010)). Concerning NPE, the main by-

product of nonylphenol ethoxylate surfactants found in all WWTP effluents is NP1EC, median 

concentrations being 861(±39) ng/L for ASB-WWTP and 512(±31) ng/L for B-WWTP and AS-

WWTP. The NP1EC has already been claimed as the major by-product of NPE during wastewater 

treatment processes essentially based on aerobic biodegradation (Ahel et al. 1994). In contrast to 

results reported by Loyo-Rosales et al. (2007), but in accordance with those quoted by Hohne and 

Puttmann (2008) no seasonal trend of concentrations could be drawn for all WWTP effluents from 

January 2011 to November 2011. 

By comparing the AS-WWTP and B-WWTP effluents (Wilcoxon signed-rank test), no significant 

differences of concentrations appear for all target compounds (p > 0.1). The ASB-WWTP effluent 

does not exhibit any statistical difference compared to AS-WWTP and B-WWTP effluent for BPA 

and 4-NP (p > 0.1). Conversely, for NPE by-product (NP1EC, NP1EO and NP2EO) significant 

differences were found between ASB-WWTP and AS-WWTP + B-WWTP effluents (p < 0.05). 

The higher concentrations found in ASB-WWTP effluents can be certainly explained by the lower 

biodegradation rate on organic and nitrogenous matter (COD: 86%, NTK: 70%, TN: 21%) and to a 

lesser extent by the higher concentration of SS (23 mg/L for WWTP4, against 5 and 10 mg/L for 

other WWTPs). 

Urban sources during wet weather period 

Concentrations found in CSOs, runoff and TAF are exhibited in Table 2.  

Table 2 Total atmospheric fallout, CSO and runoff concentrations (ng/L) 

Compound TAF n=20 (ng/L) 

min-max (median) 

CSO n=8 (ng/L) 

min – max (median) 

Runoff n=4 (ng/L) 

min – max (mean) 

BPA 10 – 180 (40) 917 – 2098 (1410) 287 – 1224 (635) 

4-NP <LQ1 – 167 (80) 445 – 1208 (668) 272 – 533 (400) 

NP1EO <LQ1 – 65 (21) 357 – 1257 (598) 47 – 401 (184) 

NP2EO <LQ1 – 301 (10) 138 – 401 (250) 146 – 847 (402) 

NP1EC 2 – 63 (15) 220 – 591 (251) 193 – 426 (128) 

1 : <LQ: lower than limit of quantification 

 

The concentrations reported in the Table 2 disclose significant differences between TAF, on the 

one hand, and CSOs and runoff on the other hand (p < 0.01). For example, while concentrations of 

BPA range between 10(±4) and 180(±63) ng/L in TAF, concentrations vary between 917 and 

2098 ng/L (about 32 times higher) in CSOs and between 287 and 1224 ng/L (about 13 times 
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higher) in runoff. In addition, changes of pattern are clearly noticeable in Table 2. Indeed, while 4-

NP has the highest median concentration in TAF (80(±8) ng/L), BPA is the predominant 

compound in CSOs and runoff (CSO: 1410(±495) ng/L; runoff: 635(±222) ng/L). 

TAF concentrations are generally low. Minimal concentrations are lower or close to the limits of 

quantification whereas median concentrations are always lower than 100 ng/L (Table 2). The non 

parametric Mann-Whitney U test, performed for the three sampling locations, points out that the 

concentrations of BPA are statistically greater in Paris (heavily urbanized) and in Lognes (weakly 

urbanized) than in Fontainebleau (forest) while no significant difference between the three sites is 

found for NPE. 

Higher concentrations in CSOs and runoff compared to those measured in TAF highlight a clear 

enrichment from atmosphere to catchment outlet. These enrichments could originate from 

wastewater for CSOs or road and buildings leaching (Björklund et al. 2009; Bressy et al. 2011) for 

runoff since NPE and BPA are used in building material (concrete, plastics). For both CSOs and 

runoff, the concentrations measured were close to those reported in untreated wastewaters (Zhou et 

al. 2010). These high concentrations underline necessity to treat wet weather effluents such as 

CSOs and runoff in order to avoid short-term pollutions of receiving water during wet weather 

periods especially for BPA. 

Comparing CSOs and urban runoff, BPA, 4-NP and NP1EO revealed significant differences of 

concentrations while NP1EC and NP2EO concentrations were statistically equivalent. Although 

these results suggest that the wastewater contained in CSOs may play a role in 4-NP, BPA and 

NP1EO concentrations, no correlation could be drawn between wastewater proportion and total 

concentrations of compounds in CSOs (R² < 0.25 for all investigated compounds). However, a 

good correlation between maximum flows discharged by CSOs (Qmax: m3.s-1) and particulate 

contents could be drawn for all target compounds (R² ≈ 0.80). The higher the Qmax, the higher the 

particulate contents. These results may confirm the existence of in-sewer sources such as sewer 

deposit erosion during high-intensity events. For some events, Gasperi et al. (2010) demonstrated 

that in-sewer deposit erosion can actually play a major role in the polycyclic aromatic hydrocarbon 

or suspended solid contaminations of CSOs. 

Surface water 

Concentration change in relation to urbanization gradient 

In order to track the influence of urban sources (WWTPs, CSOs and runoff) on the Seine River, 

the dissolved organic carbon (DOC) concentrations in Marnay, Bougival and Meulan were 

analysed in addition to target compounds. As expected, whatever the measurement campaign, a 

significant increase of DOC concentrations was noticed between Marnay (median: 2.0 mgC/L), 

Bougival (2.8 mgC/L) and Meulan (3.3 mgC/L) (Wilcoxon signed-rank test; p < 0.05).  

At the scale of all investigated sites, the concentrations ranged from < 11 ng/L to 154(±54) ng/L 

for BPA, from 28(±3) ng/L to 157(±16) ng/L for 4-NP and from 2.1(±0.1) ng/L to 274(±16) ng/L 

for NP1EC. These concentrations found in surface water within the Parisian conurbation were 

similar to concentrations reported in Europe (Brix et al. 2010; Jonkers et al. 2010), but lower than 
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in the Seine River estuary  (4-NP: 168 ng/L and NP1EC: 544 ng/L; Cailleaud et al. 2007). 

Concerning the upstream sites Orgeval (representative of rivers not influenced by urban activities) 

and Marnay (weakly urbanized) the concentrations of target compounds generally lie close to 

concentrations found in TAF. As a result, these sites could be considered as representative of the 

background pollution of the Seine River basin by target compounds. Moreover, the environmental 

quality standards established by the directive 2008/105/EC (European commission 2008) 

(4-NP: 300 ng/L; 4-t-OP: 100 ng/L) were never exceeded in the Seine River since the highest 

concentrations found in Meulan (the most impacted site) were 157 ng/L for 4-NP and 30 ng/L for 

4-t-OP. 

Total concentrations are represented according to the urbanization gradient (from agricultural site 

to heavily urbanized areas) on Fig. 4.  
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Fig. 4 Change of NPE and BPA concentrations according to urbanization gradient 

 

Three groups of compounds may be distinguished.  

In the first group including BPA and NP1EC, significant differences (p < 0.05) of concentrations 

between upstream sites (medians at Orgeval and Marnay: BPA: 20(±7) ng/L; NP1EC: 16(±1) ng/L) 

and downstream sites (Bougival and Meulan BPA: 66(±23) ng/L; NP1EC: 124(±7) ng/L) are 

noticed (Fig. 4). A similar evolution of NP1EC concentrations from upstream to downstream 

stations of the Glatt River have been pointed out by Jonkers et al. (2009). These significant 

differences underline the influence of urban sources on receiving water for BPA and NP1EC. 
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However, while Bougival and Meulan sites exhibit similar concentrations of BPA, a significant 

difference could be noticed for NP1EC between both sites (p < 0.05). This difference is linked to 

the large volume discharged by WWTP4 coupled with high concentrations of NP1EC 

(median: 861±51 ng/L). Thus, whereas the NP1EC was the lowest NPE by-product in upstream 

sites, it becomes predominant at Meulan. Similarly, the prevalence of NP1EC on a large range of 

organic pollutants in the Danube River has been reported by Loos et al. (2010).  

The second group of compounds (NP1EO and NP2EO) reveals no significant difference of 

concentrations between all sites (NP1EO: 45(±14) ng/L and NP2EO: 50(±6) ng/L). The 

concentrations found in the Orgeval River (agricultural basin) are statistically similar to those 

found at Meulan site (p > 0.5). A large variation of NP1EO concentrations is observable at 

Bougival site (min: 20(±6) ng/L; max: 213(±66) ng/L) (Fig. 4). The highest concentrations found 

at Bougival could be the consequence of the activities generated by Gennevilliers Harbour (the 

greatest of Île-de-France) located upstream of the sampling site.  

Finally, the last group (4-NP and 4-t-OP) reveals a contrasted pattern. A significant difference 

(p < 0.05) of concentrations between Orgeval River (agricultural basin) and Seine River sites 

(Marnay, Bougival and Meulan) could be noticed on Fig. 4. The occurrence of 4-NP in the 

Orgeval River (median: 61(±6) ng/L) could be imputed either to mixture of diffuse sources such as 

TAF (median: 80(±8) ng/L) and groundwater (Latorre et al. 2003), and/or to agricultural activities 

(Zgola-Grzeskowiak et al. 2009). Conversely, Marnay site could be partially impacted by urban 

sources and by biodegradation of precursors (NP1EC, NP1&2EO) into 4-NP along the Seine River. 

Nonetheless, no statistical difference between Marnay (weakly urbanized), Bougival and Meulan 

(heavily urbanized) sites could be drawn (p > 1). This homogeneity of concentrations along the 

Seine River suggests that urban sources are probably not predominant sources of 4-NP on 

receiving water. Thus, diffuse sources such as TAF, groundwater and biodegradation of 4-NP 

precursors could play a key role in the occurrence of 4-NP in the environment and the 

homogeneity of its concentrations along the Seine River. This observation is in agreement with a 

previous study reporting the same observation on the Glatt River in Switzerland (Jonkers et al. 

2009). 

The concentrations found in the Seine River are far lower than concentrations leading to an acute 

lethal effect on aquatic wildlife (lethal concentration (LC50) for rosy barb: 344 µg/L; Bhattacharya 

et al. 2008). However, these authors have claimed that concentration closer to those reported in the 

Seine River could lead to histopathological effects on gills, liver and kidney of the same fish. In 

addition Brian et al. (2007) have highlighted the mixture effects of 4-NP, 4-t-OP and BPA. They 

have reported that the mixture of these three compounds has a greater estrogenic effect on fish’s 

reproduction than each compound separately. Therefore, even the low concentrations found in the 

Seine River may have chronic effects en aquatic wildlife. 

Variation of pollutant concentrations according to hydrological conditions 

The dissolved concentrations of BPA, 4-NP and NP1EC measured at Marnay and Meulan were 

compared to the Seine River flow on the Fig. 5. During the sampling period, from February 2010 

to February 2011, the Seine River flow ranged from 13 to 228 m3/s at Marnay and from 157 to 



12 

1050 m3/s at Meulan. Only the dissolved phase was investigated since the distributions of BPA 

and NPE between dissolved and particulate phases are mostly in favour of the dissolved phase as 

previously mentioned. The prevalence of the dissolved phase could be imputed to the low SS 

concentrations in the Seine River (from 6 mg/L to 20 mg/L at Meulan). Furthermore, and 

depending on the group of compounds, the relationship between the dissolved concentrations and 

the Seine River flow enables to better understand the origins (spot or diffuse sources) of NPE and 

BPA in the Seine River. 
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Fig. 5 Dissolved concentrations of target compounds (ng/L) versus Seine River flow (m3/s) at 

Marnay (a) and Meulan (b) 

 

The first pattern, found for NP1EC, shows a clear decrease of concentrations according to Seine 

River flow increase suggesting that the NP1EC comes from constant and punctual sources diluted 

by the Seine River. This hypothesis is reinforced by the increase of NP1EC concentrations 

according to the urbanization gradient as mentioned before. Therefore, NP1EC probably mostly 

originates from punctual urban sources such as WWTP effluents. While NP1EC found at Meulan 

could originate from the urban sources of the Parisian conurbation, the concentrations found at 

Marnay are probably impacted by Troyes City (about 60,000 inhabitants) located about 50 km 

upstream of Marnay site.  
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The second pattern, as reflected by the 4-NP and NP2EO trends, shows a decrease of concentration 

according to Seine River flow increase. However, this decrease of concentration is significantly 

less marked than the trend observed for NP1EC. While the ratios between the highest and the 

lowest concentrations of NP1EC are about 14 and 10 respectively at Marnay and Meulan, the ratios 

for 4-NP do not exceed 3 at Marnay and 2 at Meulan. Thus, the influence of the punctual urban 

sources could be partially hide by the global contamination of the Seine River basin by 4-NP. This 

global contamination of the Seine River probably originates from the large uses of NPE since 1960 

and the persistence of 4-NP in the environment. Consequently, the diffuse sources mentioned 

before (TAF and groundwater) as well as biodegradation of precursors (NP1EC, NP1&2EO 

originate from urban sources) along the Seine River probably avoid high decreases of 

concentration according to hydrological conditions (lowest concentrations: 46 ng/L at Marnay and 

73 ng/L at Meulan).    

The last pattern, including BPA and NP1EO, is difficult to interpret since the analytical variabilites 

of these two compounds are important and do not enable to draw any relationship between 

dissolved concentrations and Seine River flow. Therefore, it is impossible to conclude on the 

predominance of punctual urban sources or diffuse sources for BPA and NP1EO. Nonetheless, in 

the case of BPA, the two highest concentrations at Meulan (111 ng/L in January 2010 and 

120 ng/L in July 2010) were found consecutively to rainy periods with large CSO discharges 

(January: 250,000 m3 dumped, July: 990,000 m3 dumped). Consequently, the wet weather urban 

sources such as CSOs or urban runoff discharged into the Seine River probably play a key role on 

short-term contamination of the Seine River by BPA.    

 

Conclusions 

This study aimed at investigating the APE and BPA in urban sources and evaluating the impact of 

a heavily urbanized area such as the Parisian conurbation on the receiving water. Hence, urban 

sources such as WWTP effluents, combined sewer overflows, urban runoff and total atmospheric 

fallout were studied. Depending on the urban sources considered, differences of concentrations 

and distribution patterns appear. WWTP effluents are featured by the predominance of NPE, 

especially NP1EC, due to aerobic biological treatments of wastewater. No seasonal trend of 

concentration as well as no significant difference of concentration according to the biological 

treatment of wastewater was noticed. Only the effluent of WWTP4 (one of the biggest WWTP in 

the world) revealed higher concentrations of NPE and BPA due to lower efficiencies on carbon 

and nitrogen removals than the other WWTPs. Conversely, wet weather urban sources (CSOs and 

runoff) are dominated by BPA probably due to wastewater contribution and leaching of building 

materials.  

In this study, a significant influence of the Parisian conurbation on NP1EC and BPA 

concentrations along the Seine River (respectively from 17(±1) ng/L to 124(±7) ng/L and from 

20(±7) ng/L to 66(±23) ng/L) was observed. For all other NPE, no significant evolution of 

concentrations from upstream to downstream sites was noticed suggesting that urban sources of 
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the Parisian conurbation do not have major effect on receiving water and underlining the existence 

of diffuse sources at the scale of the Seine River basin. Finally, the variation of dissolved 

concentrations according to the Seine River flow at Meulan and Marnay sites exhibits the 

importance of spot urban sources for NP1EC, and reinforces the hypothesis of the global 

dissemination of 4-NP at the scale of the Seine River basin. Unfortunately, the cases of BPA and 

NP1EO could not be interpreted because of their high analytical variabilities.  

In order to better understand the homogeneity of 4-NP concentrations along the Seine River as 

well as the dynamic of NPE within the Seine River, a further study should be carried out to asses 

the biodegradation rates of these compounds in receiving water. Finally, the diffuse sources 

probably linked to river flow origins have to be clearly identified and better assessed in order to 

understand the widespread of NPE and BPA at the scale of the Seine River Basin. 
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