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Outline

In this supplementary material, the following points are elaborated and addi-
tional experimental data are provided.

1. Predicate Pf for position, shape, and orientation consistency (§2.1 of paper).
2. Distrust score (§2.3 of paper).
3. Proof of properties regarding region affine-consistency (§2.3 of paper).
4. Deformable Object Matching (§4.1 of paper).
5. Accurate and Scalable Matching for Camera Calibration (§4.2 of paper).
6. Accurate Pattern Localization: Window Detection (§4.3 of paper).
7. Affinity Estimation: Triple vs Single Match (§4.4 of paper).

1 Predicate Pf for Position, Shape, and Orientation
Consistency

All our reported experiments involve feature points with known scales (DOG,
Harris-Affine, Hessian-Affine and MSER, all described with SIFT). In this case,
position consistency is somehow already taken into account within the shape
consistency condition. We thus did not include condition dx1

(x2) < δp in Pf

(see condition (2) in paper, line 158).
Regarding shape and orientation consistency, we used δs = 0.4 and δo = 60◦

for all four kinds of features. In fact, such permissive thresholds are required
for DoG+SIFT, whose shape and orientation is not very precise, but they could
actually have been stricter for the other features, especially regarding orientation.

2 Distrust Score

The distrust score is illustrated in fig. 1.
With this score, ambiguous matches tend to be ordered after unambiguous

matches. Moreover, the search may be efficiently pruned by putting an upper
bound on distrust. Ambiguous matches with larger distrust are excluded right
from the start and are never considered for seeding or growing a region. They
thus do not appear in the final selection of matches R.
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Fig. 1: Illustration of the distrust score L. Nearest neighbors {vi
y}
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1
y). As a reminder: L(x, y1) ≤ 1 and 1 ≤ L(x, yi) ≤ ` for i ≥ 2.

The resulting match ordering and filtering is used to always select the best
match candidates first, either for constructing a region seed, i.e., a match quadru-
ple, or for growing a region. (Also, because of the greedy strategy, we only con-
sider matches that are not currently assigned to a region.)

3 Proof of Properties Regarding Region
Affine-Consistency

We sketch the proofs of the two properties expressed in the paper regarding
the affine-consistency of the union of affine-consistent regions (§ 2.3, Region
Affine-Consistency, line 216) and the unicity of minimal subpartition into affine-
consistent regions with maximum size (§ 2.3, Maximal Consistency, line 224).

Affine-Consistency of the Union of Affine-Consistent Regions (line 216). Given
two affine-consistent regions R,R′ such that R ∩ R′ 6= ∅, then R ∪ R′ is affine-
consistent. To show this, consider two matches m,m′ ∈ R∪R′. If m and m′ are
both in R (resp. both in R′), then m,m′ are affine-consistent in R (resp. in R′),
hence in R ∪ R′. If m ∈ R and m′ ∈ R′, let m0 ∈ R ∩ R′. Then there exists
a sequence of affine-consistent quadruples in R from m to m0 and a sequence
of affine-consistent quadruples in R′ from m0 to m′. The concatenation of both
sequences form a sequence of affine-consistent quadruples in R ∪ R′ from m
to m′. �

Maximal Consistency (line 224). If a subpartition of a set of matches M into
affine-consistent regions with maximum size is such that the number of regions
is minimal, then the subpartition is also unique (i.e., the only one with this
property). To show this, consider R,R′ two subpartitions of M into affine-
consistent regions such that ‖R‖= ‖R′‖ is maximal and |R|= |R′| is minimal.
First, there does not exist R ∈ R such that R ∩ (

⋃
R′∈R′ R′) = ∅. Otherwise

R′0 = R′ ∪{R} would be a subpartition ofM into affine-consistent regions such
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that ‖R′0‖ > ‖R′‖, which contradicts the maximality assumption. Thus for any
R ∈ R, there exists R′ ∈ R′ such that R∩R′ 6= ∅. But then R = R′. Otherwise
consider m ∈ R′\R, form R0 = R′∪

⋃
Ri∈R,Ri∩R′ 6=∅Ri, which is affine-consistent

according to the above property (cf. region affine-consistency), and define R0 as
R where all the Ri occurring for constructing R0 (including R) are replaced by
just R0. ThenR0 is a subpartition ofM into affine-consistent regions, whose size
is at least that of R: ‖R0‖ ≥ ‖R‖. Now if m ∈ R′ \R is in some Ri, then Ri 6= R
and at least R and Ri are merged in R0 to form R0, hence |R0| < |R| which
contradicts the minimality assumption of the cardinality of regions. And if m ∈
R′\R is in no Ri, then |R0| > |

⋃
Ri∈R,Ri∩R′ 6=∅Ri| =

∑
Ri∈R,Ri∩R′ 6=∅|Ri|, hence

‖R0‖ > ‖R‖, which contradicts the size maximality assumption. Symmetrically,
for any R′ ∈ R′, there exists R ∈ R such that R = R′. Thus R = R′. �

4 Deformable Object Matching

The ETHZ Toys dataset can be found and downloaded from [1]. We show in
fig. 2 the results that we obtained on the 23 test images, which contain 43
objects in total. The names in italic such as All refer to the image file names in
the dataset. In the illustrations, we use different colors to reference each model
object, as summarized in table 1. Our results are shown for Harris-Affine and
MSER interest points. For each image pair, we obtained matches such that their
distrust score is less than ` = 1.1, whereas [2] uses a much more restricted set of
matches, i.e., such that their distrust score is less than ` = 0.9.

We can see that the results are visually very clean. The consistency of matches
actually goes beyond the mere recognition of objects. As already pointed out in
the paper, region affine-consistency does not assume a single affinity but many.
And this piecewise affinity is flexible enough to adapt to substantial non-affine
transformations, as occurs with deformable objects.

Color Model object Color Model object

Red Blonde Green Car
Blue Guard Magenta Leo

Yellow Michelle Orange Ovo
Dark Green Suchard Lavender Blue Xmas

Table 1: Reference color for each model object.

5 Accurate and Scalable Matching for Camera
Calibration

In fig. 3a and fig. 3b, we show the 3D point clouds corresponding to the datasets
Books and Mars [3], as obtained by our matching method followed by Bundler.
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6 Accurate Pattern Localization: Window Detection

Pattern detection has been extensively studied and we refer the reader to the
exhaustive survey of Liu et al. [4] for details. In pattern detection, structural
regularity or symmetry is commonly assumed [4]. However, it is not always
appropriate, such as for the eTRIMS dataset [5], and this makes our method
complementary to most of the methods surveyed in [4].

We experimented indeed our method with the eTRIMS dataset. In this ex-
periment, we considered initial matches such that their distrust score is less than
` = 1.2, i.e. matches within 20% of the best match (descriptor-wise). Excerpts
of our results are shown in fig. 4 and 5. The robustness of our pattern detection
in the non-rectified case shows that a preliminary rectification (often defined
manually and to be repeated for each different facade plane in a given image) is
not absolutely necessary.

7 Affinity Estimation: Triple vs Single Match

Mikolajczyk et al. describe in [6] how to compute affinites from single matches.
In addition to precision rates already depicted in fig. 4 of paper, we show the
corresponding recall rates in fig. 6 . As already mentioned in the paper, precision
rates clearly benefits from affinities computed with match triples, as opposed to
single matches. Here we show that it is not at the expense of recall rates, that
are comparable in the two approaches.
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(a) All (b) CarBooks (c) CarGlas (d) CarViewpoint

(e) CarXmasA (f) CarXmasB (g) Magazines (h) GuardOnBlonde

(i) GuardOnMichelle (j) KellogsClutter (k) KitchenA (l) KitchenB

(m) LeoHidden (n) LeoSleeps (o) MichelleBentA (p) MichelleBentB

(q) MichelleBentC (r) MichelleBentD (s) OvoLeoSuchardA (t) OvoLeoSuchardB

(u) OvoLeoSuchardC (v) TableA (w) TableB

Fig. 2: Detection in ETHZ Toys test images. Colors are defined in Table 1.



6 David Ok, Renaud Marlet, Jean-Yves Audibert

(a) 3D point cloud for the Books dataset.

(b) 3D point cloud for the Mars dataset. The camera position appears
in yellow, red and green.

Fig. 3: Reconstructed 3D point clouds.



Efficient and Scalable 4th-order Match Propagation 7

Fig. 4: Window detection results on the eTRIMS dataset (1/2): input quadrilat-
erals, detections on rectified images, and detections on non-rectified images.
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Fig. 5: Window detection results on the eTRIMS dataset (2/2): input quadrilat-
erals, detections on rectified images, and detections on non-rectified images.
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Fig. 6: Precision (%) and recall (%) of region growing on Mikolajczyk et al’s
dataset (pair 1-3).


