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Abstract

We address the problem of parsing images of building
facades. The goal is to segment images, assigning to the
resulting regions semantic labels that correspond to the ba-
sic architectural elements. We assume a top-down parsing
framework based on a 2D shape grammar that encodes a
prior knowledge on the possible composition of facades.
The algorithm explores the space of feasible solutions by
generating the possible configurations of the facade and
comparing it to the input data by means of a local, pixel-
or patch-based classifier. We propose new bottom-up cues
for the algorithm, both for evaluation of a candidate parse
and for guiding the exploration of the space of feasible solu-
tions. The method that we propose benefits from detection-
based information and leverages on the similar appearance
of elements that repeat in a given facade. Experiments per-
formed on standard datasets show that this use of more
discriminative bottom-up cues improves the convergence in
comparison to state-of-the-art algorithms, and gives better
results in terms of precision and recall, as well as computa-
tion time and performance deviation.

1. Introduction
Image segmentation remains a generic, and in a large

part, unsolved problem in computer vision. For many in-
stances of this problem we are not restricted to using the
information contained in the image alone. We may also re-
sort to prior knowledge of the likely compositions of ob-
jects present in the scenes. Shape grammars are a concept
that encodes such prior knowledge and is used for image
segmentation. In the framework of shape grammars, seg-
mentation amounts to assigning semantic labels to image
regions and is known under the name of image parsing [24].

Applications involving images of highly structured
scenes are likely to benefit most from the development of
image grammars. One such field, which has been drawing
increasing attention recently, is facade parsing [2, 10, 11,
3, 19, 18]. The goal of facade parsing is to automatically
provide a hierarchical decomposition of a building facade

into its constituent elements, given an image of the facade.
Facade parsing has a variety of applications, including ur-
ban planning, thermal performance assessment of existing
structures and reconstruction of models of existing build-
ings for games and simulators.

Amongst the most successful solutions to the problem of
facade parsing are the top-down parsers proposed by Teboul
et al. [19, 18]. They draw from the idea of split grammars
for architectural modeling [10], where a variety of building
models can be generated from a single grammar. The pro-
cess is analogous to string or sentence derivation in formal
and natural language processing. The goal of parsing here
is to perform the derivation in such a manner that the result-
ing model corresponds to the input image. The top-down
parsers have proven to be efficient in this task.

However, the robustness of this approach is dependent
on the quality of the bottom-up information used for com-
paring the candidate models with the input image. Such in-
formation can be degraded because of challenging lighting
conditions, facade appearance variation, or occlusions. This
sensitivity is partly due to the fact that the underlying merit
function is based on low-level, pixel- or patch-based infor-
mation, as proposed in [18]. Besides, because of the high
complexity of the problem space and due to the randomized
nature of the approach, a good data-driven exploration of
the solution space is crucial to simultaneously limit signifi-
cant performance deviation in the parsing, and achieve fast
convergence rate. But again, exploration presented in [18]
is only based on pixels or patches.

To address the above issues, we propose a modified algo-
rithm for top-down facade parsing that benefits from higher
level and more robust abstractions, as provided by object
detectors and geometric primitives. Namely, we integrate
an object detector into the existing framework of [18], in
this case a window detector. For this, we use a robust pat-
tern search method, exploiting the fact that architectural ele-
ments present in a particular facade frequently share similar
appearance. Additionally, to improve the convergence prop-
erties of the method, we guide the parser with the window
detections and line segment cues. As a result, the parser
not only better locates facade elements but also prunes the
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solution space much more selectively.

2. Related Work
The idea of representing the image contents in a hier-

archical and semantized manner can be traced back to the
work of Kanade and Ohta [12, 13]. However, the practi-
cal applications of grammars to image interpretation or seg-
mentation are attributed to more recent works [4, 22, 5, 1].

In many works, the hierarchical and regular structure of
man-made objects is explored to improve segmentation or
detection results [22, 5, 1]. We focus on flexible grammars
that allow the user to encode specific knowledge of the do-
main in the form of production rules that constrain the space
of feasible solutions. The grammar-based image interpreta-
tion paradigm is thoroughly reviewed in the work of Zhu
and Mumford [24]. A good example of this approach is
the rectangle-based grammar of Han and Zhu [4], in which
the prior knowledge is represented by means of an and/or
graph. The terminal symbols are rectangles and the produc-
tion rules combine them into rows, columns or grids, and
allow for rectangle nesting. This case illustrates one of the
difficulty of the problem: the number of terminals in the so-
lution is unknown. The greedy algorithm presented in the
paper copes well with this difficulty. However, since there
is no semantic interpretation associated with the rectangles,
there is no sensible way of deciding which of any two can-
didate parse trees is better.

The use of grammar-based facade parsing has been in-
spired by the successful application of split grammars for
generating virtual urban environments [10]. The key to suc-
cess is to encode in the grammar basic constraints on the
generated objects: the principles of adjacency, non-overlap
and snaplines. A number of research works has been aimed
at applying the grammar principles for retrieving building
models from images [19, 18, 8, 15]. In their work, Teboul
et al. present an application of a 2D binary split grammar
for parsing rectified facade images [19]. The method can
accommodate several classes of terminal symbols and has
been shown to be robust to partial occlusions and relatively
flexible to variable facade appearance [18]. However, the al-
gorithm suffers from a number of shortcomings, including
the use of bottom-up gradient cues. The work of Yang et
al. [23] focuses on the application of rank-1 matrix approx-
imation for facade parsing. A binary classifier of window
color is applied to the facade image. The image is divided
into rectangular regions. The algorithm attempts to fit an
irregular grid of windows to each of these regions. This is
performed by approximating the output of the classifier by
a rank-1 matrix. The main drawback of the algorithm is the
constraint of two-class (window and wall) facades and the
lack of flexibility in defining the grammar. Mathias et al.
propose to use the grammar of [10] and generate the build-
ing while estimating the attributes of the applied grammar

rules from the input images and a 3D point cloud. While
the general idea seems attractive, the algorithm has not been
shown to perform well with more than two classes of termi-
nal symbols and accommodates only a small subset of rules
of the original grammar [8].

3. Grammar-based Parsing
A shape grammar [16, 24] is a formalism to represent a

structured collection of shapes. The symbols of the gram-
mar are basic shapes, and the production rules transform
one configuration of basic shapes into another. The split
grammars [19, 10] are context-free shape grammars, where
the production rules split the non-terminal basic shape on
the left-hand side of the production rule along one dimen-
sion at a time. This simplification decreases the dimen-
sionality of the space of parameters of a single production
rule while preserving the expressive power of the grammar.
This makes split grammars particularly suitable for model-
ing building facades.

The following part of this section gives a brief overview
of 2D split grammars for facade modeling. The reader is
referred to [19, 18] for more details.

3.1. Split grammars

The grammar dealt with in this paper operates on rectan-
gles as basic shapes. Each production rule splits a rectangle
along the horizontal or vertical dimension into a number
of new rectangles. In the case of building grammars, the
terminal basic shapes represent architectural elements, like
windows and wall tiles, and the production rules encode the
possible spatial compositions of these elements. Generating
from the grammar, one obtains schematic images of build-
ing facades [19, 10].

Formally, a 2D split grammar G is a context-free gram-
mar (N , T ,R, S) where N is a finite set of non-terminal
basic shapes {N1, . . . , Nm}, T is a finite set of terminal ba-
sic shapes {t1, . . . , tn},R is a finite set of rules {r1, . . . , rl}
and S ∈ N is the starting shape (axiom).

Terminal and non-terminal symbols of the grammar are
called basic shapes. They have a semantic type (e.g., win-
dow, balcony or floor) from a finite subset C, and a bound-
ing box. The vector of attributes of a basic shape of type c
at position (x, y) with width w and height h is denoted as
(c, x, y, w, h).

A rule r : A→ B1B2 . . . Bk splits a single non-terminal
basic shape A along a selected dimension into a sequence
of basic shapes (Bi)1≤i≤k. For example, a vertical split
rule decomposes a basic shape into multiple chunks of basic
shapes along the y axis. The grammar can be transformed
into Chomsky Normal Form, so that each rule applies at
most one split to the processed basic shape. This reduces
the number of continuous attributes of a production rule to
one.



Figure 1: Top-down construction of a derivation tree. Top:
the input image with the overlaid symbols. Bottom: the
derivation tree under construction.

The generation process starts by applying a production
rule to the axiom and continues applying production rules
to the non-terminal basic shapes until there are only termi-
nals in the derived configuration. The application of a rule
requires the selection of the rule and the determination of
its attributes, i.e., the number and positions of the splits.
Generation is thus a sequence of decisions. It constructs a
derivation tree. The root of the tree is the axiom S and all
the nodes correspond to basic shapes, with terminal basic
shapes at the leaves. An operation on a non-terminal node
is performed by attaching to it the children nodes. Figure 1
illustrates the first two steps of a derivation process for an
exemplary split grammar.

The idea of parsing is to construct a derivation tree cor-
responding to a given configuration of terminal shapes. It
can be performed in a top-down or bottom-up fashion. In
the first case, the derivation tree is constructed starting from
the axiom; in the second case, the leaves of the tree are in-
stantiated first.

In many practical facade parsing applications, the input
data consists of a rectified facade image. The goal is to seg-
ment the image into a configuration of semantically mean-
ingful regions that is allowed by the grammar. The grammar
presented in [18] represents the Haussmannian architecture
of the XIXth century buildings in Paris. The set of terminals
includes sky, roof, shop, door, window, wall and balcony
areas. As in [18], choosing a relevant split grammar is an
issue we do not address. We assume the split grammar is
known and written beforehand.

3.2. Reinforcement Learning for Top-Down Parsing

To assess the quality of a derivation tree, a pixel-
wise merit function is computed first. The merit function

m(x, y, c) ∈ [0, 1] estimates the likelihood that a pixel at
(x, y) is of semantic type c. In [18], a random forest (RF)
classifier is used to estimate m. The parser’s goal is to
find a derivation tree T that maximizes the cumulated re-
ward, defined over all the terminals and the input image
as:

∑
ti
M(ti). M(t) is the reward for a single terminal

t = (c, x, y, w, h) and cumulates the reward over all pixels
covered by the terminal:

M(t) =

x+w∑
x′=x

y+h∑
y′=y

m(x′, y′, c) . (1)

The task is difficult because the effect of decisions taken
on the non-terminal nodes is not known until the terminal
nodes are instantiated. In [18], the problem is formulated
in terms of a Markov Decision Process. The parser acts as
an agent constructing a derivation tree. Such tree has a state
s = (T,N) which consists of the tree T under construction
and the next non-terminal node N to be processed.

The parser learns a policy function π(s, a), which is the
probability of choosing production rule attribute a in state
s. By repeatedly simulating derivation trees with the current
policy function π(s, a), the parser updates at each iteration
π(s, a) accordingly with the history of cumulated rewards,
which are determined when derivation trees are complete.

Denoting the current best optimal attribute by a∗ and the
prior distribution of rule attributes by P (a|s), the policy
function takes the form

π(s, a) = (1− ε)δ(a, a∗) + εP (a|s), (2)

where δ is the Kronecker delta and ε is a parameter of the
algorithm. Specifically, the policy function either chooses
with probability 1−ε the best rule attribute a∗, learnt “from
experience”, or draws another rule attribute a from the prior
distribution P (a|s) with probability ε.

After a number of iterations, π(s, a) converges to the op-
timal policy function, which in turn can generate a deriva-
tion tree yielding the highest reward. In order to speed up
the convergence, a data-driven version of the algorithm is
used, where P (a|s) is determined from the bottom-up cues.
The prior distribution P (a|s) for split locations is generated
by marginalizing the horizontal and vertical gradient mag-
nitudes along the y and x directions of the image.

3.3. Improved bottom-up cues for facade parsing

The algorithm proposed by [18] only utilizes local, pixel-
or patch-based information. In particular, this is the case of
the merit function, which lacks robustness. Such a limita-
tion is significant in the case of buildings, because of pos-
sibly high variations of facade color and lighting conditions
of image acquisition. Within the framework, it is also not
possible to benefit from the fact that in a single image, ele-
ments of the same type may share similar appearance; e.g.,



the pixel classifier in [18] looks for any kind of window at
any position. It does not reinforce the specific similarity
of windows and window surroundings. Besides, the ran-
dom nature of the Q-learning algorithm used in [18] results
in significant result variations from run to run. In the fol-
lowing part of this paper we propose modifications to the
algorithm to address these drawbacks.

Instead of constraining the bottom-up information to a
local, low-level merit function, we propose to also use an
object detector and a robust pattern search method. Our al-
gorithm may thus exploit the repetition of specific instances
of architectural elements within the facade. To better guide
the parsing, we also design discriminative distributions of
parsing actions using the object detections and line segment
cues. As a result, the parser not only better locates elements
but also prunes the solution space much more selectively.

In the rest of the paper, we describe our repetitive pattern
search, our improved merit function, the new distribution
for split positions and provide experimental results.

4. Detection of repeated objects
There are numerous methods for object detection, in par-

ticular based on learning techniques, such as the cascade
classifier [20]. However, these methods are not perfect and
still make errors, i.e., miss objects, hallucinate objects, or
do not localize them properly. One or several parameters
may usually be tuned to favor precision or recall. More-
over, they are trained to recognize a wide variety of object
instances. They do not exploit the fact that, in some circum-
stances, only similar object instances appear in the image,
e.g., windows on a given single facade. A hypothesis of
these methods is that all detected objects are independent
one from another (as long as they do not overlap).

We propose to use such a detector only to find few but
very likely object occurrences, tuning the detector for pre-
cision. We then use these accurate detections as problem-
specific models and rely on a robust pattern search proce-
dure to look for similar instances of these models in the
image. For more robustness, to improve recall, this proce-
dure is repeated recursively on the new detections (resulting
from the pattern search) until there are no more detections.

In the general case, other similar objects can be seen
from different view angles. Assuming the visible part of the
considered model object is mostly planar, other instances
appear as a projective transformation of this model. In prac-
tice, when working on rectified images, mostly translation
and rotation are to be expected. Depending on the appli-
cation, scale could also vary and the expected transforma-
tion could then be a similarity. In the particular case of fa-
cade windows, there is no rotation, but the window sizes
may vary. Indeed, windows on the same facade often have
two or three different widths, depending on the size or use
of the corresponding room. Although stretched horizon-

tally, all windows on the facade however “look alike”. Also
for older structures, including Haussmanian buildings, bot-
tom floors have higher ceilings and higher windows than
top floors, to compensate for the lesser illumination. But
here again the window appearance is only stretched, ver-
tically. To accomodate these different situations, our pat-
tern search procedure looks for affine transformations of the
model, that satisfy additional, problem-specific constraints.
In particular, for facade windows on a rectified image, the

score of an affinity matrix A =

[
a1 a2 tx
a3 a4 ty

]
is defined

as s(A) = exp(−(a22 + a23)), to discourage choosing affini-
ties with strong shear components and large rotation angle,
which can be generated due to inaccurately localized key-
points. Thus, affinities with a score below threshold smin

are discarded.

To improve robustness, our pattern search procedure is
based on feature correspondence rather than pixel similar-
ity (e.g., with SSD or NCC). Features located in the model
subimage indeed provide a robust model abstraction and are
a good indicator of the presence of other pattern instances
in the rest of the image. Given the extent P of the pattern
in image I , matches to consider are only pairs of features
(x, y) such that x is in the model subimage P and y in the
rest of the image I \ P .

In this situation, the transformation can be estimated
from the feature point positions. Methods as RANSAC or
one of its numerous variants [14] are well suited to de-
termine such a transformation. However, several trans-
formations are to be sought here, one for each instance
of the model. RANSAC thus has to be iterated after a
first instance is found, to find other ones, or a variant of
RANSAC looking simultaneously for several models has to
be used [25]. In our case, the model instances are expected
to be clearly separated and a simple sequential RANSAC is
enough. Note that pattern repetition intrinsically introduces
match ambiguities between features associated to repeated
elements. Depending on the amount of repetition, the num-
ber of match outliers can be huge. In our exemples with
windows, the outlier contamination rate can reach 98% of
about 500,000 feature matches. That would normally be
beyond what most RANSAC variants can handle, but the
fact that we are only looking here for (specific) affinities
reduces the search space, as these affinities are defined by
just a triple of matches. Furthermore, to prevent the explo-
ration of a vast amount of triples than cannot lead to match-
ing the model, we pick a first match (x1, y1) and draw the
other two matches (xi, yi)2≤i≤3 of a triple looking for yi in
the neighborhood of y1, at a distance less than the diameter
of P . Depending on the feature detector, this distance may
take into account a scale factor defined by the relative scale
of x and y. Moreover, to further speed up model estimation,
matches are drawn based on the distance of their descriptor.



Finally, for more robustness, we sligthly increase the
area of the model P , by constant factor, to include some en-
vironmental information. After patterns are localized, they
are shrunk with the same factor to recover the estimated
boundary of the actual model instances.

5. Enhanced merit function

We propose a new, more robust and more accurate merit
function, which combines the local, low-level (pixel- or
patch-based) information with standalone, high-level object
detection. We interpret a detector for a class d as a pixel
classifierwd(x, y), the value of which is 1 if (x, y) is a pixel
belonging to the detected object and 0 otherwise. Not all
semantic categories can have a sensible detector in practice.
For instance, a classifier can be trained to detect windows or
doors, but it is much harder to practically and reliably detect
walls or roofs. Moreover, although the semantic types of
terminals have no intersection in this kind of grammar, ac-
tual detectors can locate objects that overlap several seman-
tic types of the grammar. For example, a general window
model for detection can encompass both window-only areas
and cast iron balconies in front of windows in the grammar.
We thus make a difference between the semantic classes C
of the grammar and the semantic classes D of the detectors,
and define c(d) as the classes of C that have an intersection
with class d ∈ D. In case we have several detectors, for
classes in D, we define c(D) =

⋃
d∈D

c(d).

The improved merit functionm+ gives confidence to the
high-level detectors over the underlying, low-level merit: in
case of a detection at a given pixel, it zeroes the merit of
undetected classes (and the merit is renormalized). More
formally, let Dx,y = {d ∈ D | wd(x, y) = 1} be the set
of detected classes at pixel (x, y). We define m+(x, y, c) =
m(x, y, c) if Dx,y = ∅, i.e., it is unchanged where there are
no detection. Otherwise, if Dx,y 6= ∅, then m+(x, y, c) is
defined as

m(x, y, c)∑
c′∈c(Dx,y)

m(x, y, c′)
if c ∈ c(Dx,y)

0 otherwise.
(3)

In our experiments we trained a general window detec-
tor that also localizes windows with a cast iron balcony
in the foreground. We thus have D = {whole-window}
and c(D) = {window, balcony}. Figure 2 illustrates
the improved merit function. We display m∗(x, y, c)
= argmaxcm(x, y, c) with different colors for different
classes (and likewise for m∗+) and an image illustrating
wwhole-window with patches of the original image in places
where whole windows have been detected.

⊕ =

m∗(x, y) wwhole-window(x, y) m∗+(x, y)

Figure 2: Classification based on the local merit func-
tion(left) vs the higer-level merit function (right). The result
of the window detection is presented in the middle.

6. Enhanced distribution of split positions
Our last contribution is the design of more discriminative

distributions of parsing actions P (a|s) for the policy func-
tion π(s, a). The most critical parsing action is the choice of
the split position that decomposes a basic shape in the opti-
mal manner. We consider two distributions for the split po-
sitions: one for horizontal splits and one for vertical splits.
In [18], these distributions are obtained by accumulating
gradients in the image along the x and y axes. However,
these marginal distributions are noisy because of the harm-
ful accumulation of gradients not corresponding to objects
of interest, but resulting from shadows, texture or small ar-
chitectural details. We propose another approach, based on
marginalizing the distribution of line segments detected in
the image. These higher-level abstractions are better split
indicators.

We first detect line segments L in the image. (In our ex-
periments we use LSD [21].) Let v(y) be the distribution of
vertical split positions. We denote by [al, bl] the projection
of a segment l ∈ L on the vertical axis, and by θl its angle
with respect to horizontality. The value of the distribution
at height y is computed as follows:

v(y) = C
∑
l∈L

1y∈[al,bl] exp(−
tan2 θl
2σ2

) , (4)

where σ is a parameter of the distribution and C is a nor-
malization constant. The definition is symmetrical for hor-
izontal splits. For our experiments we set σ = 0.06, which
roughly leads to a segment contribution of 1

3 for a segment
with a 5◦ angle, whereas a perfectly axis-aligned segment
contributes for 1. To reduce computation time, line seg-
ments with an angle beyond a threshold (around 10◦ for the
given σ value) can be discarded right after detection.

In the same manner, we build a normalized histogram
of the contours of the detected objects. The two distribu-
tions are summed and the resulting histogram is normalized,
yielding the final distribution of applicable split positions.
The major benefit of this approach is that the exploration



Gradient-based Detection-based

Figure 3: The gradient-based vs the detection-based distri-
bution of split positions.

of the solution space is significantly pruned and the splits
are attracted to optimal positions. The parser avoids being
stuck in local minimum and the temporal standard deviation
of the energy decreases over time faster than for the original
algorithm (see Figures 3 and 5).

7. Experimental validation
Our experimental validation is mainly based on the ECP

CVPR 2010 and ECP Benchmark 2011 datasets [17], that
picture rectified Haussmanian buildings annoted with 7 se-
mantic classes: sky, roof, wall, window, balcony, shop,
door. We also used the eTRIMS [6] dataset, which displays
many different architectural and building styles, with anno-
tations for windows. As eTRIMS images are not rectified,
we first performed the rectification (by hand). We also cor-
rected and normalized the annotations, as the ground truth
windows were sometimes erroneous or not delineated simi-
larly as in the ECP datasets. All datasets are publicly avail-
able. Before presenting parsing results, we first assess the
quality of our window detector alone.

7.1. Window detection

In our implementation, the initial model regions are ob-
tained by the Viola-Jones cascade classifier (CC) [20]. We
trained it to detect windows on the 20 training images of the
ECP CVPR 2010 dataset. We also added negative examples
of windows to minimize false detections. The classifier is
parameterized by a detection score threshold τ , to balance
precision and recall. We note CC(τ ) the corresponding de-
tector. Using τ , we may search only for reliable windows
and then use them as models to find windows that were
missed or wrongly localized by the classifier. For feature
detection and matching we use Harris-Affine [9], MSER [9]
and DoG [7] detectors, and the SIFT [7] descriptor.

We compare the results of the cascade classifier alone
for various detection thresholds (CC(τ )) against our pattern
search procedure (CC(τ ′)+PS). We also compare with the
grammar-based method of Teboul et al. (RL) [18], with two
different grammars: a binary grammar (windows, not win-
dow) that assumes an irregular grid layout (RL(bin)), and a

Methods TPR (%) TNR (%)

CC (τ = 5) 77 85.5
CC (τ = 10) 70 81
CC (τ = 20) 64 94
CC (τ = 30) 56.5 95.5

CC (τ = 20) + PS 76 94
CC (τ = 30) + PS 71 95

RL (bin) 51.5 64.5

RL (haussm) 67 93.5

Table 1: Average performance of window detection on ECP
CVPR 2010 and ECP Benchmark 2011.

Methods TPR (%) TNR (%)

CC (τ = 5) 46 96

CC (τ = 5) + PS 60 93

RL (bin) 27 77

Table 2: Average performance of window detection on the
rectified eTRIMS dataset.

TPR(%) TNR(%)

86 96

TPR(%) TNR(%)

77 96

TPR(%) TNR(%)

81 97

Figure 4: Three window detection results (best viewed us-
ing magnification). Top row: results of our pattern search.
Bottom row: corresponding detection rates.

Haussmannian grammar with 7 classes (RL(haussm)). The
methods are compared in terms of mean true positive rate
(TPR) and mean true negative rate (TNR).

Tables 1 and 2 summarize our results, and detection ex-
amples are shown in Figure 4. In all datasets, for a TNR
more than 90%, our pattern search algorithm (CC+PS) out-
performs other methods in terms of TPR. It significantly
improves the initial TPR of CC, by 12–15 points. It only
slightly decreases TNR with respect to CC on rectified
eTRIMS, by 3 points.

7.2. Facade parsing

To evaluate our approach, we ran the modified shape
grammar parser on the test set of the ECP Benchmark 2011
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60 30 4 0 4 2 0
6 81 10 0 2 0 1
16 31 50 0 2 0 1
0 1 1 51 0 0 48
13 3 0 0 74 10 0
3 0 0 0 6 91 0
0 7 3 8 0 0 82





72 20 3 0 2 2 0
5 84 8 0 2 0 1
18 26 53 0 2 0 1
0 2 0 45 0 0 53
8 2 0 0 81 9 0
3 0 0 0 5 92 0
0 8 2 8 0 0 81



+12
+3
+3
−6
+7
+1
−1

window
wall
balcony
door
roof
sky
shop

Detection-
enhanced

merit



71 16 8 0 2 2 0
9 73 15 0 2 0 0
15 27 56 0 2 0 1
0 2 0 55 0 0 43
16 2 0 0 71 10 0
4 0 0 0 6 90 0
0 7 4 7 0 0 81



+11
−8
+6
+4
−3
−1
−1



85 8 5 0 1 2 0
8 76 13 0 2 0 0
19 19 60 0 1 0 0
0 2 0 52 0 0 45
12 2 1 0 77 7 0
4 0 0 0 5 91 0
0 7 3 7 0 0 82



+25
−5
+10
+1
+3
0
0

window
wall
balcony
door
roof
sky
shop

Table 3: The average confusion matrices. Top-left: the original algorithm. Top-right: the algorithm with the new action
distribution. Bottom-left: the algorithm based on the modified merit function. Bottom-right: our final algorithm with both
modifications combined.

dataset1 (104 images). The window detector we used is
CC(τ = 20)+PS, that experimentally performs best (see Ta-
ble 1). We compare this parser against the original one, pre-
sented in [18]. In each case we run the parsers once. The
results are evaluated with use of the ground truth annota-
tions accompanying the dataset.

We present the results of the comparison in the form of
the confusion matrices. The detection rate of building ele-
ments corresponds to the diagonal entry of the matrix (see
[18] for details). Table 3 shows the efficiency of our two
contributions separately. Consistent improvement of the re-
sults over the whole range of classes is visible already even
for the partial contributions of the refined merit function and
the new distribution of split positions separately. The im-
provement is amplified when we combine the two modifica-
tions into our final algorithm (bottom-right matrix). In par-
ticular, the window detection improves from 60% to 85%
while most other rates are improved or preserved. Our al-
gorithm also shows better convergence properties than the
original one. In Figure 5 we show that the proposed algo-
rithm converges faster, attains better values of the reward
function and is less prone to deviate from the optimal solu-
tion. A few actual results are illustrated in Figure 6.

8. Conclusion

We have presented a method to enhance top-down fa-
cade parsing. It is based on the parser presented in [18]
and carries two significant contributions with respect to the
original version: the use of robust and adaptive object detec-
tors to better estimate the merit function used by the parser,

1This dataset must not be confused with the ECP CVPR 2010 dataset
which consists of 10 test images only. Hence the numbers differ from what
is reported in [18].
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Figure 5: The convergence of our algorithm with respect
to [18]. The plot shows the evolution of the reward, the
current best reward and the standard deviation of the reward
over time for a single run of the parser. The ’mean reward’
is the plot of the reward function smoothed over time, to
eliminate the high-frequency variation.

and the use of detected objects as well as line segments
to better determine split positions, which effectively guides
the reinforcement learning algorithm and speeds up its con-
vergence. The significant performance improvements that
we observe experimentally demonstrate the importance of
high-level bottom-up cues in top-down parsing.

We note that our algorithm for repeated pattern detection
can be used as a standalone algorithm for detecting multi-
ple object instances in images. The algorithm significantly
improves detection performance in cases where a particular
type of object repeats over the image. In such situation, the
algorithm can be viewed as an adaptive detector that adjusts
to the specific appearance of the repeated object.



Figure 6: Examples of images for which our parser out-
performs the original algorithm (best viewed using magni-
fication). Top: results of original parser [18]. Bottom: our
modified algorithm.
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