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Abstract—This paper introduces the concepts of “self-
consistency” and “universality” to evaluate high precision camera
distortion models. Self-consistency is evaluated by the residual
error when the distortion generated with a certain model is
corrected by the best parameters for the same model (used in re-
verse way, which is common practice). Analogously, universality
is measured by the residual error when a model is used to correct
distortions generated by a family of other models. Five classic
camera distortion models are reviewed and compared for their
degree of self-consistency and universality. Among the evaluated
models, it is concluded that only the polynomial and the rational
models are universal up to precisions of 1/100 pixel. However,
the polynomial model, being linear, is much simpler and faster
to estimate. Unusually high polynomial degrees are required to
reach this strong precision. Nevertheless, extensive numerical
experiments show that such distortion polynomials are easily
estimated and produce a precise distortion correction without
over-fitting. Our conclusions are validated by three independent
experimental setups: The models are compared first in synthetic
experiments by their approximation power; second by fitting a
real camera distortion estimated by a non parametric algorithm;
and finally by the absolute correction measurement provided
by photographs of tightly stretched strings, warranting a high
straightness.

I. INTRODUCTION

The pinhole camera model is widely used in computer

vision applications because of its simplicity and its linearity

in terms of projective geometry [14]. But real cameras de-

viate from the ideal pinhole model, mainly because of lens

geometric distortion [2], and possibly from the CCD shape

distortion itself. Thus an accurate camera distortion correction

is the first step towards high precision 3D metric reconstruction

from photographs. With the steady progress in lens quality and

computing power, high-precision 3D reconstructions become

feasible, demanding in turn higher camera distortion precisions

than those provided by classic methods. The object of this

paper is to investigate the validity of distortion models at

the light of precision requirements increased by two to three

orders of magnitude. This increased accuracy requires a new

methodology for evaluating distortion models. In a nutshell,

our conclusion is that a polynomial model of higher degree

than usual, ranging from 8 to 15, is necessary for reaching

a pixel precision ranging from 1/100 to 1/1000. The poly-

nomial model permits to approximate at this resolution any

other model, and the inverse of any other model, including

itself. When these properties are reached, the model is called

universal and self-consistent. Among the other four models

which will be compared (radial, division, FOV, and rational),

only the rational model has the eligible self-consistency and

universality, but to a far higher computational cost.

With the exception of a few non-parametric methods [8],

[25], [12], an appropriate distortion model is indispensable to

model the deviation of a real camera from an ideal pinhole

camera. The main distortion models are the radial model

[2], the division model [9], the FOV model [7], the bicubic

model [15], the rational model [5], [13]. This diversity is only

marginally linked to the kind of camera. Thus, a synthetic

quantitative and qualitative comparison is required. Do these

models reflect camera distortion in its physical aspect? It could

be argued that a correct model should originate from physical

measurements on systems of lenses. Surprisingly enough, there

is little physical background for the distortion models in the

literature. In [29], lens distortion is decomposed into three

effects: radial distortion, decentering distortion and thin prism

distortion. But, still, it is only marginally based on a physical

background. In fact, the final distortion includes effects caused

by a complex lens system, by the camera geometry, and by

the (not perfectly planar) shape of the captor. One is therefore

led to figure out a flexible model with enough parameters to

approximate any plausible distortion. In absence of a physical

model, the model classification approach adopted here will

be to look for models which actually cope with any other

proposed distortion model, at a given precision.

The second question is the relationship between the dis-

tortion and the correction models, which should be inverse

of each other. A distortion model is used to simulate the

distortion of ideal images, while a correction model is used

to correct distorted images. Indeed, most of the widely used

models are not invertible, thus the correction model and the

distortion model must be different. In the literature, however,

it seems that the roles of distorted point and undistorted point

are interchangeable, which again confirms the lack of physical

meaning for these models. For example, direct distortion

models are used in global camera calibration [28], [31], [17],

[29]. Yet, in most plumb-line methods [2], [7], [1], [20], [23],

[22], [4] or some pattern-free methods [24], [30], [9], [18],

[27], [5], [21], [3], [16], the very same correction models are

used without any fuss to approximate the inverse distortion.

Assume we simulate a camera distortion with a certain

model and a certain set of parameters. Except for some models,
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the distortion will not be corrected by using the same model

with other parameters, because the model itself is usually not

invertible. We propose to measure the error incurring when a

distortion is inverted by using the same model as the one used

for simulating the distortion. This inversion error, when the

best correcting parameters have been estimated and applied,

will be a measurement of the model self-consistency. In other

words, self-consistency relates to how well a model is able

to correct distortion generated by a model of its own family.

Of course the best models should be universal, therefore able

to correct distortions generated by other models. We therefore

propose to measure a model universality as the residual error

when this model is used to correct distortion generated by

a whole set of different models. A universal model is a

model for which this error is very small no matter what

other (reasonable) distortion model has been applied. A self-

consistent and universal model implies that the model can

also approximate the distortion generated by other models.

Our goal is to identify the least complex universal and self-

consistent models. Of course this question only makes sense

within fixed accuracy bounds. None of the classic models is

actually exactly (algebraically) invertible. Thus, the introduced

concepts, universality and self-consistency, must be thought

of with the to a given precision caveat. As a matter of fact,

for off-the-shelf cameras, most distortion models are roughly

equivalent at a 1 pixel precision. The question is different when

we aim at sub-pixel precisions. These precisions, up to 1/100

pixel, are highly desirable when using cameras for stereovision

or photogrammetric tasks.

The other caveat is that, although distortion models reflect

a model of the optical lens, the real corrected distortion must

actually involve the whole system lens + CCD. There is no

way to guarantee that a CCD is absolutely flat, or exactly

perpendicular to the optical axis. This explains why the camera

distortion modeling remains, after all, an empirical question

where no physical argument can be final. The ultimate decision

is numerical.

The various distortion models will be carefully compared

on realistic synthetic distortion data permitting to quantify

the ideal attainable precision. Then, the same models will

be compared on their capacity to fit a real camera distortion

(estimated by a non-parametric algorithm [12]). Finally, the

distortion correction accuracy by each model will be evaluated

by using the plumb-line approach, with photographs of tightly

stretched strings, warranting a high straightness, and giving

absolute measurements of the correction quality [26]. In short,

there will be three different numerical validations of our

conclusions.

This paper is organized as follows. Section II reviews five

classic distortion models. Their self-consistency and univer-

sality are evaluated in Section III by synthetic experiments.

Section IV and V describe the experiments done with real

cameras. Section VI is a conclusion.

II. DISTORTION AND CORRECTION MODELS

Let us denote by (xu, yu) the coordinates of an undistorted

point as would be observed in an ideal pinhole camera. Due

to the lens geometric distortion, this point will be distorted to

coordinates (xd, yd). We will model distortion by a function

f that transforms undistorted to distorted coordinates,

xd = fx(xu, yu),

yd = fy(xu, yu). (1)

A correction model g performs the transformation in the

opposite direction:

xu = gx(xd, yd),

yu = gy(xd, yd). (2)

A particularly interesting case is when the functions f or

g show radial symmetry relative to a fixed distortion center

(xc, yc). In that case we obtain a compact formulation using

normalized coordinates x̄u = xu − xc, ȳu = yu − yc,

x̄d = xd − xc and ȳd = yd − yc; then, the distortion can

be expressed as the transformation of the undistorted radius

ru =
√

x̄2
u + ȳ2u to the distorted radius rd =

√

x̄2

d + ȳ2d.

We start by reviewing the most current models, namely the

radial model [2], the division model [9], the FOV model [7],

the polynomial model [15], and the rational function model

[5], [13]. We will write the models as transforming from

coordinates (x1, y1) to (x2, y2). When a model would be used

as a distortion model, (x1, y1) will correspond to (xu, yu) and

(x2, y2) to (xd, yd), and it is the opposite when used as a

correction model.

The radial model displaces a point along its radial direction

originating at the distortion center. The distorted new radius

r2 is a function of the original radius r1,

r2 = r1(k0 + k1r1 + k2r
2

1
+ · · · ). (3)

The parameter k0 representing a scaling does not introduce

distortion. The scaled image is distorted by k1, k2, . . .. If

k1, k2, . . . are all positive, we have a pincushion distortion;

if k1, k2, . . . are all negative, a barrel distortion. Mustache

distortion occurs if the signs of k1, k2, . . . are not the same.

Note that the distortion center (xc, yc) is also a parameter of

radial models.

The division model is nothing but the scalar inverse of the

radial model,

r2 =
r1

k0 + k1r1 + k2r21 + · · ·
. (4)

In these models, high-order coefficients are needed to model

extreme distortion in fish-eye lenses or other wide angle

lens systems. A more sparse representation is obtained by

parameterizing the distortion by the field of view (FOV). The

only parameter of the FOV model is the field of view ω:

r2 = r1
tan(r1ω)

2r1 tan(
ω
2
)
. (5)

Here the coefficient ω is of order 1, but more coefficients can

be added to the FOV model to make it more complete.

In the polynomial model the distortion is modeled as a

polynomial in x1 and y1. For example, the third order (bicubic)
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polynomial model is

x2 = a1x
3

1
+ a2x

2

1
y1 + a3x1y

2

1
+ a4y

3

1
+ a5x

2

1

+a6x1y1 + a7y
2

1
+ a8x1 + a9y1 + a10,

y2 = b1x
3

1
+ b2x

2

1
y1 + b3x1y

2

1
+ b4y

3

1
+ b5x

2

1

+b6x1y1 + b7y
2

1
+ b8x1 + b9y1 + b10. (6)

The rational function model is a quotient of two polynomials.

A second order rational function model can be written as

x2 =
a1x

2

1
+ a2x1y1 + · · ·+ a5y1 + a6

c1x2

1
+ c2x1y1 + · · ·+ c5y1 + c6

,

y2 =
b1x

2

1
+ b2x1y1 + · · ·+ b5y1 + b6

c1x2

1
+ c2x1y1 + · · ·+ c5y1 + c6

. (7)

III. SELF-CONSISTENCY AND UNIVERSALITY

In the literature it is not always clear whether the above

models are correction models or distortion models. This raises

the question of self-consistency, while the universality ques-

tion is raised by the plurality of models. Being theoretical

properties of model families, both properties can be genuinely

evaluated by synthetic experiments. Self-consistency and uni-

versality will be tested by generating a distortion with any

of the above models, and then evaluating the residual error

after applying the best distortion correction with each model.

Of course, we will use for each model sets of parameters

that generate a realistic distortion, as illustrated in Table I.

A distortion is generated using a first model in direct way,

using Eq. (1). This distortion is then corrected by identifying

the best parameters of a second model when used as in Eq. (2).

In our synthetic tests, both (xu, yu) and (xd, yd) are known.

The question is how well the ideal points (xu, yu) can be

approached by gx(xd, yd) and gy(xd, yd). We want to compute

the coefficients of gx and gy by minimizing the difference

between the ideal correction and the practical correction. The

energy to be minimized can be written as

C =

∫ ∫

(

gx(xd, yd)− xu

)2

+
(

gy(xd, yd)− yu
)2
dxddyd. (8)

In practice, the simulation is performed on M samples

(xui
, yui

), i = 1, . . . ,M regularly distributed on an image.

The corresponding distorted samples (xdi
, ydi

), i = 1, . . . ,M
are obtained by Eq (1). The discrete energy to be minimized

is

D =
M
∑

i=1

(

gx(xdi
, ydi

)− xui

)2
+
(

gy(xdi
, ydi

)− yui

)2
. (9)

Given the two coordinates for each of the M points, we have

2M equations relating the ideal and the distorted points. In

the case of the polynomial model these equations have the

form given in Eq. (6), and the problem can be formulated as

a linear system

Ak = b, (10)

where A is a matrix containing the different powers for all

the distorted points, k is formed with the model’s coefficients,

and b contains the undistorted coordinates. The set of model

coefficients with least error D is obtained by minimizing the

norm ‖Ak− b‖2, which results in

k =
(

A
T
A
)

−1

A
T
b. (11)

In practice, the matrix A is ill-conditioned and can make the

solution unstable. Some normalization technique should be

applied before.

The same linear method can be applied to the radial model

when the distortion center is known because the transfor-

mation Eq. (3) is also linear.1 For all the other models, a

non-linear method must be used, even if (xc, yc) is known.

The minimization is performed by first doing an incremental

Levenberg-Marquardt (LM) algorithm which estimates the

parameters in increasing order. The algorithm starts estimating

the parameters of a low order model; the result is used

to initialize the model with the next higher order, and the

process continues until the aimed order. The Jacobian matrix

J required by LM is computed explicitly to make the algorithm

efficient. Even though this strategy is complex, it avoids some

local minima and is safer than performing LM directly on the

model of the aimed order.

A. Experiments with known distortion center

For our first experiment, a total of M = 5104 points were

regularly distributed in an image domain of size 1761× 1174
and the distortion center was fixed at (880.5, 587) and was

assumed to be known. The corresponding distorted points were

computed using the different models with the parameters in

Table I. The self-consistency and universality measurements

are recapitulated in Table II, expressed as the average error

D̄ =
√

D
M

after estimating the parameters which minimize

the energy in Eq (9).

B. Experiments with unknown distortion center

In practice, the distortion center (xc, yc) is unknown and it

should also be considered as a parameter in the minimization

formulation. Our second experiment was done in this way.

The minimization problem becomes now non-linear for most

models. This is true for the radial model, the division model

and the FOV model. In contrast, the polynomial and the

rational function models are invariant to a translation of the

distortion center. The point (xc, yc) can be fixed arbitrarily, and

in the polynomial case the minimization problem is still linear.

This is a decisive advantage with respect to the other models.

The self-consistency and universality results are recapitulated

in Table III with the same parameters for generating distortion

in Table I. For the distortion generation, the distortion center

was fixed again at the center (880.5, 587) of the image, while

for the correction the initial distortion center was realistically

taken (50, 50) pixels away from the true position. For the

radial model and the division model, the Levenberg-Marquardt

algorithm could still find the true distortion center, and the

1According to [4], the rational function model can also be solved linearly
by minimizing some algebraic error. But this error is not directly related to
the geometric error we want to minimize and sometimes leads to undesirable
result.
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model parameters

radial 2◦
k0 = 1.0, k1 = 0.25× 10−4, k2 = −0.5× 10−7

1084 → 1050
radial 4◦

k0 = 1.0, k1 = 0.25× 10−4, k2 = −0.5× 10−7, k3 = 1.0× 10−10, k4 = −1.5× 10−14

991.6 → 1050
division 2◦

d0 = 1.0, d1 = −0.25× 10−4, d2 = 0.5× 10−7

1083 → 1050
division 4◦

d0 = 1.0, d1 = −0.25× 10−4, d2 = 0.5× 10−7, d3 = −1.0× 10−10, d4 = 1.5× 10−14

988.7 → 1050
FOV 3◦

k0 = 1.0, ω = 1.0× 10−3, k2 = −2.0× 10−7, k3 = 4.0× 10−10

501.4 → 1050
polynomial 3◦ a1 = b1 = −1.0× 10−8, . . ., a5 = b5 = 2.0× 10−5, . . .,
1050 → 1064 a8 = 0.9, a9 = 0.1, a10 = 0.0, b8 = 0.1, b9 = 0.9, b10 = 0.0
polynomial 4◦ a1 = b1 = 5.0× 10−12, a6 = b6 = −1.0× 10−8, a10 = b10 = 2.0× 10−5, . . .,
1050 → 1075 a13 = 0.9, a14 = 0.1, a15 = 0.0, b13 = 0.1, b14 = 0.9, b15 = 0.0
rational 2◦ a1 = 1.0× 10−5, a2 = 2.0× 10−5, a3 = 3.0× 10−5, a4 = 0.9, a5 = 0.1, a6 = 0.0
1031 → 1104 b1 = 3.0× 10−5, b2 = 2.0× 10−5, b3 = 1.0× 10−5, b4 = 0.1, b5 = 0.9, b6 = 0.0

c1 = 1.0× 10−8, c2 = 1.0× 10−8, c3 = 1.0× 10−8, c4 = 0.0001, c5 = 0.0001, c6 = 1.0

TABLE I
MODELS USED TO GENERATE DISTORTION, WITH THEIR REALISTIC PARAMETERS. THE VALUES ON THE LEFT AND ON THE RIGHT OF THE SIGN “→” ARE

THE UNDISTORTED RADIUS AND THE DISTORTED RADIUS RESPECTIVELY. FOR THE POLYNOMIAL MODEL, THE COEFFICIENTS ARE THE SAME FOR x AND

y COMPONENT, EXCEPT FOR THE ORDER 1 COEFFICIENTS. NOTE THAT THE DISTORTION CAN BE BARREL, PINCUSHION OR MUSTACHE.

Distortion Generation Model
R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

C
o

rr
ec

ti
o

n
M

o
d

el

R 2◦ 0.09 0.1 0.06 0.2 0.03 60 60 70
R 4◦ 0.002 0.002 0.0008 0.002 0.0008 60 60 70
D 2◦ 0.06 0.2 0.03 0.2 0.04 60 60 70
D 4◦ 0.001 0.001 0.0004 0.001 0.0007 60 60 70
F 3◦ 0.08 0.07 0.09 0.06 0.02 60 60 70
P 3◦ 0.6 0.5 0.5 0.6 0.2 0.2 0.7 0.5
P 4◦ 0.6 0.5 0.5 0.6 0.2 0.05 0.1 0.07
P 8◦ 0.06 0.02 0.06 0.02 0.007 0.00007 0.0007 0.00004

P 15◦ 0.01 0.008 0.01 0.008 0.0003 0.0000001 0.0000002 0.0000004

Ra2◦ 5 7 5 7 40 0.5 0.4 0.1
Ra6◦ 0.05 0.03 0.1 0.09 0.1 0.000002 0.0001 0.00000008

Ra14◦ 0.01 0.009 0.01 0.01 0.009 0.00000003 0.000002 0.0000000002

TABLE II
SELF-CONSISTENCY AND UNIVERSALITY WITH KNOWN DISTORTION CENTER. THE AVERAGE ERROR (D̄) (IN PIXELS) IS SHOWN. THE LEFT COLUMN

ENTRIES SHOW THE MODEL AND THE ORDER USED FOR CORRECTION. THE TOP ENTRY ROW GIVES THE MODEL AND THE ORDER USED TO GENERATE

THE DISTORTION. THE FIVE COMPARED MODEL CLASSES ARE R-RADIAL, D-DIVISION, F-FOV, P-POLYNOMIAL, AND RA-RATIONAL. THE

PARAMETERS IN TABLE I WERE USED TO GENERATE THE DISTORTION. THE BOLD FONT IS USED TO HIGHLIGHT THE AVERAGE ERROR D̄ 6 10−2 .

minimized error was the same as when the distortion cen-

ter was known. Nevertheless, for the FOV model, a wrong

initialization of the distortion center degraded the correction

performance. For the polynomial model, the solution can be

found linearly by fixing an arbitrary distortion center.

C. Comparison

We aim at an average precision below 10−2 pixel. The

tables show that the models are self-consistent if the order

of correction is high enough. The radial model and the

division model are consistent with each other, whether the

distortion center is known or not. The FOV model is a little

less consistent with the radial symmetric models, including

itself, when the distortion center is known. With an unknown

distortion center, the FOV correction performance decays. The

polynomial model instead seems to be able to correct any

type of distortion, but a higher order is often necessary to

correct the radial, division or FOV distortions. This higher

order is not a problem, because of the computational efficiency

of the linear method. The rational model has a comparable

performance at the price of a much higher computational

cost. In conclusion, at precision 1/100 pixels the polynomial

and the rational models are the only ones to be jointly self-

consistent, universal and linear among the compared models.

But the polynomial model has a much lower complexity than

the rational model to attain the same precision. A degree 8

polynomial model is enough to attain precisions strictly below

1/10. The 1/100 pixel precision is robustly attainable with

degree 15 polynomials.

D. Realistic distortion

A real distortion can be far more complex than what the

above simple models can generate. A more realistic distortion

contains a radial symmetric term, a term for decentering

distortion and a term for thin prism distortion [29],

x̄d = x̄u

(

k0 + k1ru + k2r
2

u + · · ·
)

+
[

p1
(

r2u + 2x̄2

u

)

+ 2p2x̄uȳu
] (

1 + p3r
2

u

)

+ s1r
2

u,

ȳd = ȳu
(

k0 + k1ru + k2r
2

u + · · ·
)

+
[

p2
(

r2u + 2ȳ2u
)

+ 2p1x̄uȳu
] (

1 + p3r
2

u

)

+ s2r
2

u,
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Distortion Generation Model
R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

C
o

rr
ec

ti
o

n
M

o
d

el

R 2◦ 0.09 0.1 0.06 0.2 0.03 60 60 70
R 4◦ 0.002 0.002 0.0008 0.002 0.0008 60 60 70
D 2◦ 0.06 0.2 0.03 0.2 0.04 60 60 70
D 4◦ 0.001 0.001 0.0004 0.001 0.0007 60 60 70
F 3◦ 0.7 3 2 3 40 60 60 70
P 3◦ 0.6 0.5 0.5 0.6 0.2 0.2 0.7 0.5
P 4◦ 0.6 0.5 0.5 0.6 0.2 0.05 0.1 0.07
P 8◦ 0.06 0.02 0.06 0.02 0.007 0.00007 0.0007 0.00004

P 15◦ 0.01 0.008 0.01 0.008 0.0003 0.0000001 0.0000002 0.0000004

Ra2◦ 5 7 5 7 40 0.5 0.4 0.1
Ra6◦ 0.05 0.03 0.1 0.09 0.1 0.000002 0.0001 0.00000008

Ra14◦ 0.01 0.009 0.01 0.01 0.009 0.00000003 0.000002 0.0000000002

TABLE III
SELF-CONSISTENCY AND UNIVERSALITY WITH UNKNOWN DISTORTION CENTER. THE INITIAL DISTORTION CENTER WAS SET (50, 50) PIXELS AWAY

FROM ITS TRUE POSITION. THE AVERAGE ERROR (D̄) (IN PIXELS) IS SHOWN. THE LEFT COLUMN ENTRIES GIVE THE MODEL AND THE ORDER USED FOR

CORRECTION. THE TOP ROW ENTRIES GIVE THE MODEL AND THE ORDER USED TO GENERATE THE DISTORTION. THE FIVE COMPARED MODEL CLASSES

ARE R-RADIAL, D-DIVISION, F-FOV, P-POLYNOMIAL, AND RA-RATIONAL. THE PARAMETERS IN TABLE I WERE USED TO GENERATE THE DISTORTION.
THE BOLD FONT IS USED TO HIGHLIGHT THE AVERAGE ERROR D̄ 6 10−2 .

with p1, p2, p3 parameters for decentering distortion and s1,

s2 parameters for thin prism distortion. They contribute to

both radial symmetric distortion and tangential distortion. In

Table IV, the self-consistency and universality of the models

were again tested with known distortion center after adding

the additional distortion with p1 = 4.0 × 10−6, p2 = −2.0 ×
10−6, p3 = 0, s1 = 3.0 × 10−6, s2 = 1.0 × 10−6. By adding

a non-radial component in the distortion, the radial model,

the division model and the FOV model do not reach anymore

the 10−2 pixel precision. Both polynomial model and rational

function model give a precision equal or better than 10−2 pixel

with a high model order. But it is always linear to solve the

parameters of polynomial model, while it requires a complex

incremental LM minimization to solve rational function model.

IV. REAL DISTORTION FITTING EXPERIMENTS

After its validation on synthetic examples, we present here

real tests to verify that the proposed high order polynomial

model works for real distortion correction. This test is based

on the non-parametric camera distortion estimation method in

[12] but could be performed on any distortion model obtained

by blind correction. This method requires a highly textured

planar pattern, which is obtained by printing a textured image

and pasting it on a very flat object (a mirror was used in the

experiments). Two photos of the pattern were taken by a Canon

EOS 30D SLR camera with EFS 18−55mm lens. The minimal

focal length (18mm) was chosen (with fixed focus) to produce

a fairly large distortion. The distortion was estimated (up to

a homography) as the diffeomorphism mapping the original

digital pattern to a photograph of it. Without going into details,

the algorithm is summarized in the following:

1) Take two slightly different photographs of a textured

planar pattern with a camera whose settings are frozen;

2) apply the SIFT method [19] between the original digital

pattern and both photographs to obtain matching pairs

of points;

3) eliminate outliers by a loop validation step;

4) triangulate and interpolate the remaining matches to get

a dense reverse distortion field;

5) refine the precision of the SIFT matching by correcting

each matching point in one image with the local homog-

raphy estimated from its neighboring matching points;

6) by applying the reverse distortion field to all images

produced by the same camera, the camera is converted

into a virtual pinhole camera.

The matching pairs delivered by step 5 (about 8000 in our

experiments) in the above algorithm are “outliers”-free and

precise thanks to the loop validation and filtering by local

homography. So we can directly try all models to fit these

“outliers”-free matchings. The residual fitting error shows to

what extent the models are faithful to a real camera distortion.

Under the assumption that the textured pattern is flat, the

mapping from the digital pattern to the photo can be modeled

classically as SDH, with H the homography from the digital

pattern to the photo, D the non-linear lens distortion and S a

diagonal matrix to model the slant of the CCD matrix:

H =





h11 h12 h13

h21 h22 h23

h31 h32 1



 , S =





1 0 0
0 s 0
0 0 1



 . (12)

Since the polynomial model and the rational function model

can approximate well H and S, we can use these models

to approximate the distortion field without explicitly estimat-

ing the homography. Nevertheless, for the radial symmetric

models, it is necessary to take into account H and S when

approximating the distortion. Indeed H and S are generally

not radial symmetric. Thus, we have 9 additional parameters to

estimate, besides the parameters of radial symmetric distortion

model. The polynomial model can again be solved linearly.

For all the other models, an incremental LM minimization was

used to estimate the distortion center, the distortion parameters

and the homography.

Half of the matching pairs were used to estimate the

parameters for the different models, and the other half to

evaluate the average fitting error. The results are recapitulated

in Table VI. They show that by combining H and S to model

the inclination between the camera and the pattern, all of the

radial symmetric models give almost the same fitting error,

which becomes stable (0.15 pixel) when the order attains 4.
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Distortion Generation Model
R 2◦ R 4◦ D 2◦ D 4◦ F 3◦ P 3◦ P 4◦ Ra 2◦

C
o

rr
ec

ti
o

n
M

o
d

el

R 2◦ 7 5 7 5 0.7 60 60 70
R 4◦ 7 5 7 5 0.7 60 60 70
D 2◦ 7 5 7 5 0.7 60 60 70
D 4◦ 7 5 7 5 0.7 60 60 70
F 3◦ 7 5 7 5 0.7 60 60 70
P 3◦ 0.6 0.5 0.5 0.6 0.2 0.3 0.8 0.3
P 4◦ 0.6 0.5 0.5 0.6 0.2 0.06 0.2 0.05
P 8◦ 0.06 0.02 0.06 0.02 0.007 0.0001 0.001 0.00001

P 15◦ 0.01 0.008 0.01 0.008 0.0003 0.0000003 0.0000003 0.0000003

Ra2◦ 5 7 5 7 40 0.8 0.5 0.1
Ra6◦ 0.05 0.03 0.1 0.09 0.1 0.000006 0.005 0.00000007

Ra14◦ 0.01 0.009 0.01 0.01 0.009 0.00000005 0.000002 0.0000000001

TABLE IV
SELF-CONSISTENCY AND UNIVERSALITY WITH KNOWN DISTORTION CENTER. ADDITIONAL DECENTERING AND THIN-PRISM DISTORTION IS ADDED.

COMPARE WITH TABLES II AND III. EACH ENTRY SHOWS THE AVERAGE ERROR (D̄) (IN PIXELS). THE PARAMETERS IN TABLE I WERE USED TO

GENERATE THE DISTORTION. THE BOLD FONT IS USED TO HIGHLIGHT THE AVERAGE ERROR D̄ 6 10−2 . THE ONLY NON-BOLD TO BOLD LINES ARE

OBTAINED FOR THE POLYNOMIAL MODEL WITH DEGREE 8 TO 15.

Table V shows H and S estimated by three radial symmetric

models of order 12. The similar estimation of H and S implies

that the minimization process is stable.

The polynomial model and the rational function model give

a stable fitting error (0.04 pixel), which is about 4 times

smaller than the radial symmetric models. The stability of

the fitting error confirms that none of the models suffers from

numerical instability or noise fitting. We remark that the fitting

error of the rational function model becomes stable when its

order attains 4 (45 parameters to be estimated), while the

polynomial model gives a stable fitting error when its order

attains 7 (72 parameters to be estimated). Even though in this

experiment the rational function model converges faster than

the polynomial model, solving the rational function model

requires a complex incremental LM minimization, which is

a time-consuming process requiring a good initialization and

does not always ensure the convergence to the global min-

imum,2 while the polynomial model can always be solved

linearly.

The fact that the polynomial model and the rational function

model give fitting errors about 4 times smaller than the radial

symmetric models implies that the real camera distortion is

not strictly radial symmetric. Otherwise, the fitting error of

the radial symmetric models should be at least as small as

0.04 pixel. The residual fitting error (0.04 pixel) given by

the polynomial model and the rational function model can be

attributed to the noise of matching points.

V. PLUMB-LINE VALIDATION

It should be noted that the non-parametric method does not

give a ground truth. It is just a non-parametric estimation of

the camera distortion, and it is subject to errors. Thus, we

need a more objective evaluation to check the quality of the

correction models. To this purpose, a physical frame with

tightly stretched cylindrical strings was built [26]. The physical

tension of the strings guarantees a very high straightness. Once

the parameters of the models are estimated, a distortion field

can be constructed and applied for the distortion correction of

2The linear solution to the rational function model proposed in [4] does
not give a precise result in this case.

order Radial Division FOV Polynomial Rational

3 0.29 0.29 0.28 1.48 0.19
4 0.15 0.15 0.15 1.26 0.05
5 0.15 0.15 0.15 0.21 0.05
6 0.15 0.15 0.15 0.08 0.05
7 0.15 0.15 0.15 0.04 0.04
8 0.15 0.15 0.15 0.04 0.04
9 0.15 0.15 0.15 0.04 0.04
10 0.15 0.15 0.15 0.04 0.04
11 0.15 0.15 0.15 0.04 0.04
12 0.15 0.15 0.15 0.04 0.04

TABLE VI
THE FITTING ERROR (IN PIXELS) OF THE COMPARED MODELS TO THE

MATCHINGS BETWEEN A DIGITAL TEXTURED IMAGE AND ITS

PHOTOGRAPH (WITH HOMOGRAPHY INITIALIZED BY 8-POINT

ALGORITHM). THE MATCHINGS OBTAINED AT STEP 5 IN THE

SUMMARIZED ALGORITHM ARE “OUTLIERS”-FREE AND PRECISE.
COLUMN 1 IS THE ORDER OF THE MODEL. HALF OF THE MATCHINGS ARE

USED TO ESTIMATE THE PARAMETERS AND THE AVERAGE FITTING ERROR

SHOWN IS COMPUTED ON THE OTHER HALF BY APPLYING THE ESTIMATED

PARAMETERS.

images of strings taken by the same camera with the same

fixed lens configuration (see Fig. 1). The average distance

from the edge points (computed by the method of [6]) of

the corrected lines to the corresponding regression line was

computed. See [26] for more details. Table VII recapitulates

average distance for all lines in the image. According to

Table VI, the stabilized fitting error implies that none of the

models has the problem of noise fitting, which guarantees the

correction quality and stability. The polynomial model gives

a stable performance when the order attains 6, which means

that a polynomial model of order 6 was already capable of

capturing the whole distortion. The rational model gives a

comparable performance when its order attains 4, at the price

of more complex non-linear incremental minimization which

does not ensure a global minimum. The residual straightness

error of corrected lines is due to the fact that the mirror on

which we pasted the pattern is not completely flat. All the

radial symmetric models give a straightness error larger than

the polynomial model and the rational function model, due to

the flatness error of the pattern and to the non radial symmetric

component in the camera distortion which the radial symmetric
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model order h11 h12 h13 h21 h22 h23 h31 h32 s

Radial 12 1.22 0.10 −170.16 0.015 1.24 −77.76 4.8× 10−5 1.1× 10−4 1.00
Division 12 1.22 0.10 −170.33 0.015 1.24 −77.49 4.8× 10−5 1.1× 10−4 1.00
FOV 12 1.22 0.10 −170.15 0.015 1.24 −77.76 4.8× 10−5 1.1× 10−4 1.01

TABLE V
THE ESTIMATED H AND S COMBINED WITH RADIAL SYMMETRIC MODELS OF ORDER 12 TO APPROXIMATE THE DISTORTION FIELD FROM DIGITAL

PATTERN TO THE PHOTO.

(a) distorted image

(b) correction result by the radial model of order-12 with H and S in Eq. (12)

(c) correction result by the polynomial model of order 12

Fig. 1. Top row: distorted image. Second row: the correction result by the radial model of order 12 with H and S in Eq. (12). Third row: the correction
result by the polynomial model of order 12. From left to right column: the distortion field coded as the module of the displacement vector pointing from
the digital pattern to the photo; the level line on the distortion field with quantification step of 10; corrected image. The results of the radial model and the
polynomial model are visually identical. In fact, the results of all the tested parametric models are visually identical, according to the accuracy shown in
Table VI and VII. The non-parametric method gives a slightly different result at the border due to the fact that the triangulation is imprecise at the border.

models are not capable to capture.

VI. CONCLUSION

We introduced the self-consistency and universality cri-

teria for camera distortion models. Using these tools, five

classic distortion models were evaluated and compared. The

polynomial and rational model were shown to be both self-

consistent and universal, to the cost of a high degree. This high

degree raises no computational issue for the polynomial model.

Indeed, we have seen that after a correct conditioning it can

always be solved linearly (in contrast to the rational model).

Furthermore, the polynomial model is translation invariant,

which makes it insensitive to a translation of the distortion

center. This model is not adapted to global camera calibration

methods where the internal and external parameters and the

distortion model are estimated simultaneously. The distortion

correction must be dealt with as an independent and previous

step to camera calibration. It might be objected that the high

number of parameters in the polynomial interpolation (156 for

an 11-order polynomial) could cause over-fitting bias in the

results. This might be an objection when using over-simple

calibration patterns. In our experiments the number of control

points (about 4000) was far higher, about 30 times the number

of polynomial coefficients. Our experiments show that the

residual errors stabilize for orders between 6 to 12, confirming

that no over-fitting occurred. Our experiments also show that
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order Radial Division FOV Polynomial Rational

3 0.27 0.27 0.27 0.74 0.11
4 0.19 0.21 0.19 0.58 0.09
5 0.19 0.21 0.19 0.15 0.09
6 0.19 0.21 0.19 0.09 0.09
7 0.19 0.21 0.19 0.09 0.09
8 0.19 0.21 0.19 0.09 0.09
9 0.19 0.21 0.19 0.09 0.09
10 0.19 0.21 0.19 0.09 0.09
11 0.19 0.21 0.19 0.09 0.09
12 0.19 0.21 0.19 0.09 0.09

TABLE VII
THE AVERAGED DISTANCE (IN PIXELS) FROM EDGE POINTS OF

CORRECTED LINES TO THE CORRESPONDING REGRESSION LINE. THE

PARAMETERS OF THE MODELS ARE ESTIMATED USING HALF OF THE

MATCHINGS COMING FROM STEP 5 IN THE SUMMARIZED ALGORITHM.
THE DISTORTED IMAGE IN FIG. 1 IS THEN CORRECTED BY USING ALL

MODELS. THE CORRECTED LINES ARE EXTRACTED BY USING THE LINE

SEGMENT DETECTOR IN [10], WHICH IS DESCRIBED IN DETAIL AND CAN

BE TESTED ON LINE AT [11].

there is a small component of non radial symmetric distortion

introduced by the camera, which cannot be modeled by radial

symmetric models. High order polynomials are really needed

to capture the non radial symmetric distortion if we wish to

obtain high precisions. Clearly, this also entails two method-

ological changes: first that the distortion should be corrected

independently and previously to projective calibration. Second,

that calibration patterns should contain a higher than usual

number of control points (more than 500). With the current

image resolution in most cameras, this is no more a restriction.
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