
HAL Id: hal-00738040
https://enpc.hal.science/hal-00738040

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Galerkin approach to FFT-based homogenization
methods

Sébastien Brisard, Luc Dormieux

To cite this version:
Sébastien Brisard, Luc Dormieux. A Galerkin approach to FFT-based homogenization methods. 6th
European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
2012, Sep 2012, Vienna, Austria. pp.1709-1718. �hal-00738040�

https://enpc.hal.science/hal-00738040
https://hal.archives-ouvertes.fr


European Congress on Computational Methods
in Applied Sciences and Engineering (ECCOMAS 2012)

J. Eberhardsteiner et.al. (eds.)
Vienna, Austria, September 10-14, 2012

A GALERKIN APPROACH TO FFT-BASED HOMOGENIZATION
METHODS
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Abstract. Since their introduction by Moulinec and Suquet [1, 2], FFT-based full-field sim-
ulations of the mechanical properties of composites have become increasingly popular, with
applications ranging from the linear elastic behaviour of cementitious materials [3], to the
plasticity of polycrystals [4].

Recently, the authors have proposed [5] a new formulation of these numerical schemes, based
on the energy principle of Hashin and Shtrikman [6]. While similar in principle to the original
scheme of Moulinec and Suquet, the new scheme was shown to be much better-behaved. Indeed,
convergence of the scheme is guaranteed for any contrast, without having to resort to augmented
Lagrangian approaches [7]. Besides, convergence of the new scheme is generally much faster.
However, the new scheme has two drawbacks. First, the reference material must be stiffer (or
softer) than all constituants of the composite; this is not always possible, for example when the
composite contains both pores and rigid inclusions. Second, the scheme requires the preliminary
computation of the so-called consistent Green operator, which turned out to be a difficult task in
three dimensions.

In order to relax these requirements, an in-depth mathematical analysis of these schemes was
carried out by the authors [8].

In this paper, the Lippmann-Schwinger equation and its variational form will briefly be
recalled. The Galerkin approach will then be adopted for the discretization of this equation, and
it will be shown that the basic scheme of [1] as well as the energy scheme proposed in [5] can
both be viewed as well-posed Galerkin approximations of the Lippmann-Schwinger equation.

Contrary to what was previously believed [7, 5] these approximations are convergent, regard-
less of the reference material (provided that its stiffness is positive definite). Comparison of these
two approximations leads to the derivation of the so-called filtered, non-consistent approach,
which combines the assets of the two former methods.

Finally, some applications will be shown. In particular, the important problem of heteroge-
neous voxels will be addressed.



Sébastien Brisard and Luc Dormieux

1 THE LIPPMANN-SCHWINGER EQUATION AND ITS VARIATIONAL FORM

1.1 From the local problem of elasticity to the Lippmann-Schwinger equation

This paper is devoted to the homogenization of linear elastic materials with periodic mi-
crostructures. Let Ω = (0, L1) × · · · × (0, Ld) be the unit-cell, and C(x) the local stiffness
tensor. Periodic homogenization requires the solution to the following local problem on the
unit-cell

divσ = 0, (1a)
σ(x) = C(x) : ε(x), (1b)

2εij(x) = ∂iuj(x) + ∂jui(x), (1c)
u (x+ Liei) = u(x) + LiE · ei, (1d)
σ (x+ Liei) · ei = σ(x) · ei, (1e)

where E is the macroscopic (imposed) strain, x ∈ Rd, i, j = 1, . . . , d and e1, . . . , ed denote the
basis vectors (no summation on repeated indices in the above expressions). The macroscopic
elastic properties are then given by

Ceff : E = C : ε,

where ε(x) solves problem (1) (overlined quantities denote volume averages on Ω). Finding
ε is equivalent to solving the following integral equation, known as the Lippmann-Schwinger
equation [9, 10]

(C −C0)−1 : τ + Γ0 ∗ τ = E, (2)

where Γ0 is the so-called Green operator for strains [11], associated with the reference material
C0. In the above equation, ∗ stands for the convolution product, which reads in Fourier space1

(Γ0 ∗ τ ) (x) =
∑
b∈Zd

Γ̂0 (kb) : τ̂ (kb) exp (ıkb · x) ,

with
kb =

2πb1

L1

e1 + · · ·+ 2πbd
Ld

ed, for b ∈ Zd,

and [10]

Γ̂0,ijhl (k) =
1

4µ0

(δihnjnl + δilnjnh + δjhninl + δjlninh)−
1

2µ0 (1− ν0)
ninjnhnl,

where n = k/‖k‖ and µ0 (resp. ν0) is the shear modulus (resp. Poisson ratio) of the isotropic
reference material.

The purpose of this paper is the mathematical analysis of two numerical schemes, namely the
non-consistent scheme of Moulinec and Suquet [1, 2] and the consistent scheme of Brisard and
Dormieux [5].

1In this paper, greek multi-indices (β ∈ Zd) refer to the real space, while latin multi-indices (b ∈ Zd) refer to
the Fourier space.
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1.2 Variational formulation of the Lippmann-Schwinger equation

This formulation can be found by point-wise multiplication of (2) with a test function$(x)
(second rank, symmetric tensor), and integration other the unit-cell Ω. The following variational
problem results

Find τ ∈ V such that a(τ ,$) = `($) for all $ ∈ V, (3a)

where

a(τ ,$) = $ : (C −C0)−1 : τ +$ : (Γ0 ∗ τ ), `($) = E : $, (3b)

and the appropriate choice for V is the space of second rank, symmetric tensors with square
integrable components. Under some asumptions, which are stated in [8], it can be shown that
this variational problem is well-posed in the sense of Hadamard [12]. In particular, this problem
has a unique solution τ ∈ V for any macroscopic strain E and reference material C0. That this
result is true regardless of the reference material is of paramount importance. It should be noted
that in [8], well-posedness could not be proved for porous materials; this important special case
is currently under investigation.

2 DISCRETIZATION OF THE LIPPMANN-SCHWINGER EQUATION

2.1 Galerkin approximation

A Galerkin approximation of problem (3) requires the selection of a finite-dimension subspace
Vh ⊂ V on which the following variational problem is solved

Find τ h ∈ Vh such that ah(τ h,$h) = `($h) for all $h ∈ Vh, (4)

where ah approximates in some sense the bilinear form a2.
In the present paper, Vh is defined as the space of cell-wise constant polarizations. More

precisely, we assume that the unit cell can be divided in N = N1×· · ·×Nd d-dimensional cubic
cells, with size h = L1

N1
= · · · = Ld

Nd
. Cells are indexed by β, with 0 ≤ βi < Ni, i = 1, . . . , d;

the domain occupied by cell β is denoted Ωh
β ⊂ Ω, and the constant value of τ h ∈ Vh (resp.

$h ∈ Vh) over cell β is denoted τ hβ (resp. $h
β).

The approximate bilinear function ah must then be selected so as to ensure that problem (4) is
well-posed, and τ h → τ in the L2 sense as h→ 0. It is consistent [12] if ah can be extended to
V× Vh, and

For all $h ∈ Vh, ah(τ ,$h) = `($h),

where τ ∈ V is the unique solution to problem (3).
It should first be noted that only the non-local part of a –the convolution product in (3b)– is

approximated, since the local part can easily be evaluated on Vh. Indeed

For all τ h,$h ∈ Vh, $h : (C −C0)−1 : τ h =
1

N

N1−1∑
β1=0

· · ·
Nd−1∑
βd=0

$h
β :
(
Ch
β −C0

)−1
: τ hβ ,

2An approximate linear form `h might have been used as well. However, the exact linear form ` defined by (3b)
is very simple, and will always be computed exactly on τh.
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Figure 1: Graphical representation of the xxxy component of the non-consistent (left), consistent (middle) and
filtered, non-consistent discrete Green operators in plane elasticity (ν0 = 0.3). The consistent and filtered non-
consistent operators are smooth, while the non-consistent operator exhibits a sharp discontinuity at high frequencies.

whereCh(x) is the cell-wise constant stiffness whose value on cell β is defined by the following
volume average (

Ch
β −C0

)−1
=

1∣∣Ωh
β

∣∣ ∫
x∈Ωh

β

[C(x)−C0]−1 dΩ. (5)

As for the non-local part of a, it is approximated as follows

$h :
(
Γh

0 ∗ τ h
)

=
1

N

N1−1∑
β1=0

· · ·
Nd−1∑
βd=0

$h
β : DFT−1

β

[
Γ̂h

0,b : DFTb(τ
h
• )
]
,

where DFT denotes the d-dimensional discrete Fourier transform, and Γh
0,b is the discretized

Green operator in Fourier space, to be defined below. It should be noted that the DFT involves
only finite sums (as opposed to inifinite Fourier series).

In what follows, the original method of Moulinec and Suquet [1, 2] and the newer method
proposed in [5] are both formulated in the framework of Galerkin approximations involving
two different approximations Γh

0 of the Green operator Γ0 (namely, the non-consistent discrete
Green operator Γh,nc

0 , and the consistent discrete Green operator Γh,c
0 ). Finally, the filtered

non-consistent discrete Green operator Γh,fnc
0 is introduced; it combines the assets of both

non-consistent and consistent operators.
It is shown in [8] that regardless of the reference material C0, problem (4) resulting from

any of these three discrete Green operators is well-posed (in particular, it always has a unique
solution). Besides, these discrete Green operators are asymptotically consistent in the sense of
[12, definition 2.15]. This ensures the convergence of the approximate solution τ h to the true
solution τ as h→ 0.

To close this section, it is noted that regardless of the discrete Green operator Γh
0 , the

discretized problem (4) always leads to a linear system, the matrix of which is generally full.
However, as noted in [1, 2, 5], products involving this matrix can be computed efficiently by use
of the fast Fourier transform. This advocates that iterative linear solvers [13] be used. Moulinec
and Suquet [1, 2] use Neumann (fixed-point) iterations to solve (4), but this iterative scheme
does not always converge [7] (although the system is always invertible). In [5, 8], more general
iterative solvers like conjugate gradient, SYMMLQ [14] or LSQR [15] have been used: these
solvers generally require less iterations to converge to the solution τ h of (4).
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2.2 The non-consistent approach

It can be shown [8] that the numerical scheme proposed by Moulinec and Suquet [1, 2]
corresponds to the following non-consistent discretization of the Green operator, Γh,nc

0

Γ̂h,nc
0,b = Γ̂0(kb+nN ), 0 ≤ bi < Ni, i = 1, . . . , d, (6)

where b + nN denotes the multi-index (b1 + n1N1, . . . , bd + ndNd) and ni = 0, 1 so that the
following inequality is verified

−Ni

2
< bi + niNi ≤

Ni

2
.

In other words, the non-consistent discrete Green operator corresponds to the truncation of
the true Green operator to the N1 × · · · ×Nd lowest frequencies.

2.3 The consistent approach

The bilinear form a(τ h,$h) can be computed exactly on the space Vh of cell-wise constant
polarizations [5]. This leads to the following consistent discretization of the Green operator, Γh,c

0

Γ̂h,c
0,b =

+∞∑
n1=−∞

· · ·
+∞∑

nd=−∞

[F (hkb+nN )]2Γ̂0(kb+nN ), 0 ≤ bi < Ni, i = 1, . . . , d,

where
F (K) = sinc

K1

2
· · · sinc

Kd

2
.

The main asset of the consistent discrete Green operator is its ability to provide an upper-
bound on the macroscopic elastic properties, provided that the reference material C0 is stiffer
than all phases in the composite. More precisely, as a result of the variational principle of Hashin
and Shtrikman [16], if C0 −C(x) is positive semidefinite for any x ∈ Ω, then

1

2
E : Ceff : E ≤ 1

2
E : C0 : E +

1

2
τ h : E, (7)

where τ h is the solution to (4), computed with Γh,c
0 . Conversely, if C0 − C(x) is negative

semidefinite for any x ∈ Ω, then the above inequality is reversed. The use of FFT-based methods
to produce bounds on the elastic properties of heterogeneous materials is illustrated in [5].

The consistent discrete Green operator is smoother than its non-consistent counterpart (figure
1, left and middle), resulting in better behaved approximate solutions τ h (see 3.1). However, its
computation is very difficult in three dimensions, as convergence of the above triple series is
slow, and prone to catastrophic cancellations.

2.4 The filtered, non-consistent approach

In order to filter spurious high-frequencies, the so-called filtered, non-consistent discretized
Green operator Γh,fnc

0 was proposed in [8]

Γ̂h,fnc
0,b =

∑
n1=−1,0

· · ·
∑

nd=−1,0

[G(hkb+nN )]2Γ̂0(kb+nN ), 0 ≤ bi < Ni, i = 1, . . . , d,

where
G(K) = cos

K1

4
· · · cos

Kd

4
.
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Figure 2: Geometry of the bidimensional (plane strain) problem solved in figure 3. The upper-left corner is a pore.
The unit-cell is submitted to a macroscopic strain E = e1 ⊗ e2 + e2 ⊗ e1.

Like the consistent discrete Green operator, the filtered non-consistent discrete Green operator
is smooth; its computation is almost as easy as the non-consistent discrete Green operator of
Moulinec and Suquet [1, 2].

3 APPLICATIONS

3.1 Non-consistent vs. consistent approach

It is instructive to compare the three discrete Green operators. In the Fourier space, first,
figure 1 shows the map of the xxxy component of the operators in plane strain elasticity. Clearly,
the non-consistent operator exhibits a sharp discontinuity at high frequencies. This discontinuity
is smoothed out by both the consistent and filtered, non-consistent discrete Green operators.
Besides, these last two operators are very close, which means that the filtered non-consistent
Green operator (whose computation is considerably simpler) can be advantageously substituted
to the consistent Green operator.

In the real space, the discontinuity of the non-consistent discrete Green operator has a direct
impact on the quality of the numerical solution τ h, which is polluted by a “checker-board”
pattern as illustrated on figure 3, which represents the numerical solution to the problem sketched
in figure 2, computed with the three different discrete Green operators. It is known that for
heterogeneous materials containing voids, the Neumann solver of Moulinec and Suquet [1, 2]
does not converge [7]. The conjugate gradient method was therefore used instead; this solver did
converge to the unique solution of the discretized problem (4).

It should finally be noted that the numerical solutions found with the consistent and the filtered,
non-consistent discrete Green operators are very close (see figure 3). A more quantitative analysis
[8] in fact shows that using the latter instead of the former leads to negligible additional error on
the L2-norm ‖τ h − τ‖V. It is therefore recommended that the filtered, non-consistent discrete
Green operator be systematically used.

3.2 Heterogeneous voxels and finite resolution observations

Equation (5) is of high practical importance, because microstructures resulting from experi-
mental observations are scarcely fully resolved. This means that in 3d reconstructions, voxels are
not homogeneous. If the composition of each voxel can be assessed by other experimental means,
then rule (5) might be applied to compute the best equivalent stiffness of each heterogeneous

6
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Figure 3: Map of σxy for the problem sketched in figure 2, computed on a 32× 32 grid, with the non-consistent
(left), consistent (middle) and filtered, non-consistent (right) discrete Green operators. In all three computations, the
reference material is the solid matrix.

Figure 4: The multiscale porous microstructure, fully resolved (left). The total porosity is ϕ = 68.4%, the smallest
pores are two pixels wide, while the size of the overall microstructure is 256×256 pixels. If the same microstructure
is observed through a finite resolution instrument, then the smallest pores will no longer be fully resolved, and the
largest pores will be embedded in a grayish porous matrix. For a 4 × 4 resolution (middle), the porosity of the
heterogeneous matrix is ϕm = 25%; for a 16× 16 resolution (right), the porosity of the heterogeneous matrix is
ϕm = 43.75%;

voxels. Furthermore, application of this rule in combination with the consistent discrete Green
operator guarantees that the resulting estimate of the macroscopic stiffness is in fact a rigorous
bound [5].

This is illustrated below on a hypothetical multiscale porous microstructure, represented in
figure 4. The elastic properties of the solid matrix (resp. the reference medium) are µ = 1.0,
ν = 0.3 (resp. µ0 = 1.0, ν0 = 0.3). Since the reference material is stiffer than all phases, the
result provides an upper-bound on the macroscopic elastic moduli. More precisely, (7) reads for
E = E12 (e1 ⊗ e2 + e2 ⊗ e1)

4Ceff
1212E

2
12 ≤ 2µ0E

2
12 + τh12E12,

where τ h is the approximate polarization field. The computation is first carried out on the fully
resolved microstructure, then on a partially resolved microstructure.

3.3 Computation on fully resolved microstructures

On the fully resolved microstructure, each voxel in the computation grid is in fact homoge-
neous, and (5) is trivial. In order to allow for small-scale variations of the polarization field, the
computation is carried out on a 256× 256 (initial grid), then 512× 512 and 1024× 1024 grid.

7
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Grid size Average polarization τ h12 Bound on Ceff
1212

16 -2.823 0.044
64 -2.923 0.019

256 -2.964 0.009
512 -2.968 0.008

1024 -2.971 0.007

Table 1: Results of the computation carried out on the microstructure represented in figure 4, for E12 = 1. Although
the microstructure is defined on a 256× 256 grid, the computation can be carried out on coarser or finer grids. The
resulting bounds on Ceff

1212 improve with the fineness of the computation grid.

The numerical results are gathered in table 1; unsurprisingly, refined computation grids lead to
improved bounds on Ceff

1212.

3.4 Computation on partially resolved microstructures

The case of partially resolved microstructures is more interesting. Let us assume that the
experimental resolution is 4× 4 pixels, so that the microstructure is observed on a 64× 64 grid
(see figure 4, middle). Then, the mixture of matrix and smallest pores (2× 2) is seen as a “porous
matrix”, with porosity ϕm. It can be verified that with the specific microstructure at hand, ϕm is
uniform, ϕm = 25 %. As previously mentioned, it is possible to compute rigorous bounds on the
macroscopic elastic moduli of the fully resolved microstructure, provided that rule (5) be applied
to each heterogeneous voxel. In the present case, it is found that

Ch
β = C0 +

[
(1− ϕm) (Cm −C0)−1 − ϕmC

−1
0

]−1
.

It should be emphasized that the equivalent stiffness Ch
β depends on the composition of the

heterogeneous voxel β (in the present case, the composition is characterized by ϕm), not on the
spatial repartition of the phases within voxel β. Of course, the latter is out of experimental reach,
but the former might be assessed by indirect methods. For example, using microtomography,
Scheiner et al. [17] performed an inverse analysis on the measured gray-levels to retrieve the
volume fractions of the constituents within each voxel.

Performing the computation on the partially resolved microstructures shown in figure 4
(middle and right) leads to two additional bounds on Ceff

1212 which are gathered in table 1. As
expected, these bounds are less tight than those obtained on fine grids. However, it is worthwhile
emphasizing again that these bounds are rigorous, and might well be the best information that
can be retrieved from a resolution-limited experiment.

4 Conclusion

In the present paper, two FFT-based homogenization schemes, namely the basic scheme of
Moulinec and Suquet [1, 2] and the energy scheme introduced in [5] have been formulated as
Galerkin approximations of the same variational problem. It has been shown that these two
schemes differ only by the choice of the discrete Green operator. Besides the non-consistent and
consistent approximations of this operator, a new one has been proposed, namely the filtered,
non-consistent Green operator, the use of which is generally recommended, except when rigorous
bounds are required.

For any of the three discrete Green operators discussed in this paper, the discrete variational
problem resulting from the Galerkin approximation always has a unique solution, regardless of
the stiffness of the reference material. This result must be contrasted with e.g. Michel et al. [7],

8
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where it is proved that the basic scheme converges only for some values of the elastic moduli of
the reference material.

This contradiction is in fact only apparent. Indeed, the present approach allowed the distinction
between i. the linear system (resulting from the Galerkin discretization) to be solved and ii. the
solver used to compute the solution. While the former is always invertible, some choices (such as
the Neumann iterations of the basic scheme) might be inappropriate under some circumstances.

Finally, it has been shown that the numerical scheme applies to partially resolved microstruc-
tures. In this case of high practical interest, a rule for the computation of the equivalent properties
of the heterogeneous voxels has been proposed; application of this rule preserves the status of
bound on the effective elastic moduli.
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