
HAL Id: hal-00733855
https://enpc.hal.science/hal-00733855

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Interval Extension Based on Occurrence Grouping
Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

To cite this version:
Ignacio Araya, Bertrand Neveu, Gilles Trombettoni. An Interval Extension Based on Occurrence
Grouping. Computing, 2012, 94 (2), pp.173-188. �hal-00733855�

https://enpc.hal.science/hal-00733855
https://hal.archives-ouvertes.fr

Computing manuscript No.

(will be inserted by the editor)

An Interval Extension Based on Occurrence Grouping

Ignacio Araya · Bertrand Neveu ·
Gilles Trombettoni

Accepted: 12 October 2011

Abstract In interval arithmetics, special care has been brought to the definition of interval

extension functions that compute narrow interval images. In particular, when a function f is

monotonic w.r.t. a variable in a given domain, it is well-known that the monotonicity-based

interval extension of f computes a sharper image than the natural interval extension does.

This paper presents a so-called “occurrence grouping” interval extension [f]og of a func-

tion f . When f is not monotonic w.r.t. a variable x in a given domain, we try to transform

f into a new function f og that is monotonic w.r.t. two subsets xa and xb of the occurrences

of x: f og is increasing w.r.t. xa and decreasing w.r.t. xb. [f]og is the interval extension by

monotonicity of f og and produces a sharper interval image than the natural extension does.

For finding a good occurrence grouping, we propose a linear program and an algorithm that

minimize a Taylor-based over-estimate of the image diameter of [f]og. Experiments show

the benefits of this new interval extension for solving systems of nonlinear equations.

Keywords Intervals · Interval extension ·Monotonicity · Occurrence grouping

1 Introduction

The computation of sharp interval image enclosures is in the heart of interval arithmetics [14].

It allows a computer to evaluate a mathematical formula while taking into account in a re-

liable way round-off errors due to floating point arithmetics. Sharp enclosures also allow

combinatorial interval methods to quickly converge towards the solutions of a system of

constraints over the reals. At every node of the search tree, a test of existence checks that,

for every equation f (X) = 0, the interval extension of f returns an interval including 0 (oth-

erwise the branch is cut). Also, constraint propagation algorithms, used at every node of the

search tree to reduce the search space, can be improved when they use better interval ex-

tensions. For instance, the Box constraint propagation algorithm [3] uses a test of existence

inside its iterative splitting process.

This paper proposes a new interval extension and we first recall basic material about

interval arithmetics [14,15,10] to introduce the interval extensions useful in our work.

An interval [x] = [a,b] is the set of real numbers between a and b. x = a denotes the

minimum of [x] and x = b denotes the maximum of [x]. The diameter/width of an interval is:

I. Araya, UTFSM, Valparaiso, Chile. E-mail: iaraya@inf.utfsm.cl
B. Neveu, Imagine LIGM Univ. Paris-Est, Champs-sur-Marne, France. E-mail: Bertrand.neveu@enpc.fr
G. Trombettoni, INRIA, I3S, Univ. Nice-Sophia, Sophia-Antipolis, France.
E-mail: Gilles.Trombettoni@inria.fr

2 Ignacio Araya et al.

diam([x]) = x− x, and the absolute value of an interval is: |[x]|= max(|x|, |x|). A Cartesian

product of intervals is named a box, and is denoted by a vector. [V] = {[x1], [x2], ..., [xn]}.
(Vectorial variables appear in upper case in this article.)

An interval function [f] is a function from IR to IR
n, IR being the set of all the intervals

over R. When a function f is a composition of elementary functions, an extension of f to

intervals must be defined to ensure a conservative image computation.

Definition 1 (Extension of a function to IR; also called inclusion function)

Consider a function f : R
n→ R.

[f] : IR
n→ IR is an extension of f to intervals iff:

∀[V] ∈ IR
n [f]([V])⊇ ℑ f ([V])≡ { f (V), V ∈ [V]}

∀V ∈ R
n f (V) = [f](V)

The first idea is to use interval arithmetics. Interval arithmetics extends to intervals

arithmetic operators +,−,×, / and elementary functions (power, exp, log, sin, cos, ...). For

instance, [a,b]+ [c,d] = [a+ c,b+d]. The natural interval extension [f]n of a real function

f simply replaces arithmetic over the reals by interval arithmetic.

The optimal image [f]opt([V]) is the sharpest interval containing ℑ f ([V]). If f is contin-

uous inside a box [V], the natural evaluation of f (i.e., the computation of [f]n([V])) yields

the optimal image when each variable occurs only once in f . When a variable appears sev-

eral times in f , the evaluation by interval arithmetics generally produces an over-estimate

of [f]opt([V]), because the correlation between the occurrences of a same variable is lost.

Two occurrences of a variable are handled as independent variables. For example [x]− [x],
with [x] = [0,1] gives the result [−1,1], instead of [0,0], as does [x]− [y], with [x] = [0,1]
and [y] = [0,1]. Thus, multiple occurrences of variables render NP-hard the computation of

the optimal image of a polynomial [11]. This main drawback of interval arithmetics causes

a real difficulty for implementing efficient interval-based solvers. There exist many possible

interval extensions for a function, the difficulty being to define an extension that computes

a sharp approximation of the optimal image at a low cost.

The first-order Taylor extension [f]t of f , also called centered form [14], uses the Taylor

form of f :

[f]t([V]) = f (Vm)+
n

∑
i=1

([

∂ f

∂xi

]

([V]) . ([xi]− xm
i)

)

where n is the number of variables in f , xm
i is the value in the middle of the interval [xi],

Vm is the n-dimensional point in the middle of [V] (i.e., Vm = (xm
1 , ...,xm

k)) and
[

∂ f

∂xi

]

is an

interval extension of
∂ f

∂xi
. The Taylor extension generally calculates sharp evaluations when

the diameters of the partial derivatives are close to 0. In other cases it can be even worse

than the natural extension.

A well-known variant of the Taylor extension, called here Hansen extension [f]h, com-

putes a sharper image at a higher cost [8]: [f]h([V])⊆ [f]t([V]).
Another extension to intervals uses the monotonicity of a function in a given domain.

When f is monotonic w.r.t. a subset of variables, one can replace, in the natural evalua-

tions, the intervals of these monotonic variables1 by degenerated intervals reduced to their

maximal or minimal values [14,8].

1 For the sake of conciseness, we sometimes write that a “variable x is monotonic” instead of writing that
f is monotonic w.r.t. x.

An Interval Extension Based on Occurrence Grouping 3

Definition 2 (fmin, fmax, monotonicity-based extension)

Let f be a function defined on variables V of domains [V]. Let X ⊆V be a subset of mono-

tonic variables. Consider the values x+
i and x−i such that: if xi ∈ X is an increasing (resp.

decreasing) variable, then x−i = xi and x+
i = xi (resp. x−i = xi and x+

i = xi).

Consider W = V \X the set of variables not detected monotonic. Then, fmin and fmax

are functions defined by:

fmin(W) = f (x−1 , ...,x−n ,W)

fmax(W) = f (x+
1 , ...,x+

n ,W)

Finally, the monotonicity-based extension [f]m of f in the box [V] produces the following

interval image:

[f]m([V]) =
[

[fmin]n([W]), [fmax]n([W])
]

The image [f]m([V]) obtained by the monotonicity-based extension is sharper than, or

equal to, the image [f]n([V]) obtained by natural evaluation. That is:

[f]opt([V])⊆ [f]m([V])⊆ [f]n([V])

In addition, when a function is monotonic w.r.t. each of its variables, i.e., when W is empty in

Def. 2, the problem of multiple occurrences disappears and the evaluation (using a monotonicity-

based extension) becomes optimal: [f]m([V]) = [f]opt([V]).
Note that the bounds of the evaluation by monotonicity can be computed using any

interval extension, not necessarily the natural extension. When the bounds are computed

with the Taylor (resp. Hansen) extension, we denote this variant by [f]m+t (resp. [f]m+h).

When the evaluation by monotonicity uses, recursively, the same evaluation by mono-

tonicity for computing the bounds of the image, we call it recursive evaluation by mono-

tonicity and denote it by [f]mr. This computes images sharper than or equal to the evaluation

by monotonicity does (i.e., [f]mr([V]) ⊆ [f]m([V])) at a cost between 2 and 2n higher. The

extended paper illustrates this interval extension [1].

Contribution

This paper explains how to use monotonicity when a function is not monotonic w.r.t. a vari-

able x, but is monotonic w.r.t. a subgroup of occurrences of x. We present in the next section

the idea of grouping the occurrences into three sets, increasing, decreasing and non mono-

tonic auxiliary variables. Linear programs for obtaining “interesting” occurrence groupings

are described in Sections 3 and 4. In Section 5, we propose an algorithm to solve the linear

programming problem presented in Section 4. Finally, in Section 7, experiments show that

this new occurrence grouping interval extension function compares favorably with existing

ones and show its benefits for solving systems of equations, in particular when we use a

filtering algorithm like Mohc [2,6] exploiting monotonicity.

2 Evaluation by monotonicity with occurrence grouping

In this section, we study the case of a function which is not monotonic w.r.t. a variable

with multiple occurrences. We can, without loss of generality, limit the study to a function

of one variable: the generalization to a function of several variables is straightforward, the

evaluations by monotonicity being independent.

Example 1 Consider f1(x) = −x3 + 2x2 + 14x. We want to calculate a sharp evaluation of

this function when x falls in [−2,1]. The derivative of f1 is f ′1(x) = −3x2 + 4x + 14 and

contains a positive term (14), a negative term (−3x2) and the term 4x that is negative when

x ∈ [−2,0] and positive when x ∈ [0,1]. [f1]opt([V]) is [−13.18,15], but we cannot obtain

4 Ignacio Araya et al.

it directly by a simple interval function evaluation (one needs to solve f ′1(x) = 0, which is

difficult in the general case). In the interval [−2,1], f1 is not monotonic. The natural interval

evaluation yields [−29,30], the Horner evaluation [−34,17] (see [9]).

When a function is not monotonic w.r.t. a variable x, it sometimes appears that it is

monotonic w.r.t. some occurrences. A first naive idea leads to replace the function f by

a function f nog, grouping all increasing occurrences into one variable xa, all decreasing

occurrences into one variable xb, and the non monotonic occurrences into xc. The domain

of the new auxiliary variables is the same: [xa] = [xb] = [xc] = [x]. However, the evaluation

by monotonicity of the new function f nog always provides the same result as the natural

evaluation. The main idea is then to change this grouping in order to reduce the dependency

problem and obtain sharper evaluations. We can indeed group some occurrences (increasing,

decreasing, or non monotonic) into an increasing variable xa (resp. a decreasing variable

xb) as long as the function remains increasing (resp. decreasing) w.r.t. this variable xa (resp.

xb). If one can move a non monotonic occurrence into a monotonic group, the evaluation will

be better (or remain the same). Also, if it is possible to transfer all decreasing occurrences

into the increasing part, the dependency problem will now occur only on the occurrences in

the increasing and non monotonic parts.

For f1, if we group together the positive derivative term with the derivative term con-

taining zero, we obtain the new function: f
og
1 (xa,xb) = −x3

b + 2x2
a + 14xa. As the inter-

val derivative of the grouping of the first two occurrences (the variable xa) is positive:

4[x]+14 = [6,18], f
og
1 is increasing w.r.t. xa. We can then achieve the evaluation by mono-

tonicity and obtain the interval [−21,24]. We can in the same manner obtain f
og
1 (xa,xc) =

−x3
a +2x2

c +14xa, the evaluation by monotonicity yields then [−20,21]. We remark that we

find sharper images than the natural evaluation of f1 does.

Interval extension by occurrence grouping

Consider the function f (x) with multiple occurrences of x. We obtain a function f og(xa,xb,xc)
by replacing in f every occurrence of x by one of the three variables xa, xb, xc, such that f og

is increasing w.r.t. xa in [x], and f og is decreasing w.r.t. xb in [x]. Then, we define the interval

extension by occurrence grouping of f by: [f]og([V]) := [f og]m([V])
Unlike the natural interval extension and the interval extension by monotonicity, the

interval extension by occurrence grouping is not unique for a function f since it depends on

the occurrence grouping (og) that transforms f into f og.

3 A 0,1 linear program to perform occurrence grouping

In this section, we propose a method for automatizing occurrence grouping. Using the Taylor

extension, we first compute an over-estimate of the diameter of the image computed by [f]og.

Then, we propose a linear program performing a grouping that minimizes this over-estimate.

3.1 Taylor-based over-estimate

First, as f og could be not monotonic w.r.t. xc, the evaluation by monotonicity considers the

occurrences of xc as different variables such as the natural evaluation would do.

Proposition 1 ([14]) Let f (x) be a continuous function in a box [V] with a set of occur-

rences of x: {x1,x2, ...,xk}. f ◦(x1, ..,xk) is a function obtained from f by considering all the

occurrences of x as different variables. Then, [f]n([V]) = [f ◦]opt([V]).

Second, as f og is monotonic w.r.t. xa and xb, the evaluation by monotonicity of these

variables is optimal.

An Interval Extension Based on Occurrence Grouping 5

Proposition 2 ([14]) Let f (x1, ...,xn) be a monotonic function w.r.t. each of its variables in

a box [V] = {[x1], ..., [xn]}. Then, the evaluation by monotonicity computes [f]opt([V]).

Using these propositions, we observe that [f og]m([xa], [xb], [xc]) is equivalent to

[f ◦]opt([xa], [xb], [xc1
], ..., [xcck

]), considering each occurrence of xc in f og as an independent

variable xc j
in f ◦, ck being the number of occurrences of xc in f og. Using the Taylor evalu-

ation, an upper bound of diam([f]opt([V])) is given by the right side of (1) in Proposition 3.

Proposition 3 Let f (x1, ...,xn) be a function with domains [V] = {[x1], ..., [xn]}. Then,

diam([f]opt([V]))≤
n

∑
i=1

(

diam([xi]) . |[gi]([V])|
)

(1)

where [gi] is an interval extension of gi = ∂ f

∂xi
.

Using Proposition 3, we can calculate an upper bound of the diameter of [f]og([V]) =
[f og]m([V]) = [f ◦]opt([V]):

diam([f]og([V]))≤ diam([x])
(

|[ga]([V])|+ |[gb]([V])|+
ck

∑
i=1

|[gci
]([V])|

)

where [ga], [gb] and [gci
] are the interval extensions of ga = ∂ f og

∂xa
, gb = ∂ f og

∂xb
and gci

= ∂ f og

∂xci

respectively. diam([x]) is factorized because [x] = [xa] = [xb] = [xc1
] = ... = [xcck

].

In order to respect the monotonicity conditions required by f og:
∂ f og

∂xa
([V])≥ 0,

∂ f og

∂xb
([V])≤

0, we have the sufficient conditions [ga]([V]) ≥ 0 and [gb]([V]) ≤ 0, implying |[ga]([V])| =

[ga]([V]) and |[gb]([V])|=−[gb]([V]). Finally:

diam([f]og([V]))≤ diam([x])
(

[ga]([V])− [gb]([V])+
ck

∑
i=1

|[gci
]([V])|

)

(2)

3.2 A linear program

We want to transform f into a new function f og that minimizes the right side of the rela-

tion (2). The problem can be easily transformed into the following integer linear program:

Find the values rai
, rbi

and rci
for each occurrence xi that minimize

G = [ga]([V])− [gb]([V])+
k

∑
i=1

(

|[gi]([V])|rci

)

(3)

subject to:

[ga]([V])≥ 0 (4)

[gb]([V])≤ 0 (5)

rai
,rbi

,rci
∈ {0,1}; rai

+ rbi
+ rci

= 1 for i = 1, ...,k, (6)

where a value rai
, rbi

or rci
equal to 1 indicates that the occurrence xi in f will be re-

placed, respectively, by xa, xb or xc in f og. k is the number of occurrences of x, [ga]([V]) =
k

∑
i=1

[gi]([V])rai
, [gb]([V]) =

k

∑
i=1

[gi]([V])rbi
, and [g1]([V]), ..., [gk]([V]) are the derivatives w.r.t.

each occurrence. We can remark that [ga]([V]) and [gb]([V]) are calculated using only the

derivatives of f w.r.t. each occurrence of x (i.e., [gi]([V])).

6 Ignacio Araya et al.

Linear program corresponding to Example 1

We have f1(x) =−x3 +2x2 +14x, f ′1(x) =−3x2 +4x+14 with x ∈ [−2,1]. The gradient is:

[g1]([−2,1]) = [−12,0], [g2]([−2,1]) = [−8,4] and [g3]([−2,1]) = [14,14]. Then, the linear

program is:

Find the values rai
, rbi

and rci
that minimize

G =
3

∑
i=1

[gi]([V])rai
−

3

∑
i=1

[gi]([V])rbi
+

3

∑
i=1

(

|[gi]([V])|rci

)

= (4ra2
+14ra3

)+(12rb1
+8rb2

−14rb3
)+(12rc1

+8rc2
+14rc3

)

subject to:

3

∑
i=1

[gi]([V])rai
=−12ra1

−8ra2
+14ra3

≥ 0;
3

∑
i=1

[gi]([V])rbi
= 4rb2

+14rb3
≤ 0

rai
,rbi

,rci
∈ {0,1}; rai

+ rbi
+ rci

= 1 for i = 1, ...,3
We obtain the minimum 22, and the solution ra1

= 1, rb1
= 0, rc1

= 0, ra2
= 0, rb2

= 0,

rc2
= 1, ra3

= 1, rb3
= 0, rc3

= 0, which is the last solution presented in Section 2. Note that

the value of the over-estimate of diam([f]og([V])) is equal to 66 (22∗diam[−2,1]) whereas

diam([f]og([V])) = 41. Although the over-estimate is rough, the heuristic works rather well

on this example. Indeed, diam([f]n([V])) = 59 and diam([f]opt([V])) = 28.18.

4 A linear programming problem achieving a better occurrence grouping

The linear program above is a 0,1 linear program and is known to be NP-hard in general.

We can render it tractable while, more important in practice, improving the minimum G by

allowing rai
, rbi

and rci
to get real values. In other words, we allow each occurrence of x in

f to be replaced by a convex linear combination of auxiliary variables, xa, xb and xc such

that f og is increasing w.r.t. xa and decreasing w.r.t. xb in [x].

Definition 3 (Interval extension by occurrence grouping)

Let f (x) be a function with multiple occurrences of the variable x. f og(xa,xb,xc) is the

function obtained by replacing in f every occurrence of x by rai
xa + rbi

xb + rci
xc, such that:

– rai
,rbi

,rci
∈ [0,1]3 and rai

+ rbi
+ rci

= 1,

–
∂ f og

∂xa
([x], [x], [x])≥ 0 and

∂ f og

∂xb
([x], [x], [x])≤ 0.

The interval extension by occurrence grouping of f is defined by [f]og([x]) := [f og]m([x], [x], [x])

Note that f and f og have the same natural evaluation.

In Example 1, we can replace f1 by f og1 or f og2 in a way respecting the monotonicity

constraints of xa and xb:

1. f
og1
1 (xa,xb) =−(1

2
xa + 1

2
xb)3+2xa2+14xa → [f

og1
1]m([−2,1]) = [−19.875,16.125]

2. f
og2
1 (xa,xb,xc)=−x3

a +2(0.25xa +0.75xc)
2 +14xa → [f

og2
1]m([−2,1])= [−20,16.125]

Example 2 Consider the function f2(x) = x3 − x and the interval [x] = [0.5,2]. f2 is not

monotonic and the optimal image [f2]opt([x]) is [−0.385,6]. The natural evaluation yields

[−1.975,7.5], the Horner evaluation [−1.5,6]. We can replace f2 by one of the following

functions (among others).

1. f
og1
2 (xa,xb) = x3

a− (1
4
xa + 3

4
xb) → [f

og1
2]m([x]) = [−0.75,6.375]

2. f
og2
2 (xa,xb) = (11

12
xa + 1

12
xb)

3− xb → [f
og2
2]m([x]) = [−1.756,6.09]

An Interval Extension Based on Occurrence Grouping 7

Algorithm 1 Occurrence Grouping (in: f ,[g∗]
out: f og)

1: [G0]←
k

∑
i=1

[gi]

2: [Gm]← ∑
0 6∈[gi]

[gi]

3: if 0 6∈ [G0] then
4: OG case1([g∗], [ra∗], [rb∗], [rc∗])
5: else if 0 ∈ [Gm] then
6: OG case2([g∗], [ra∗], [rb∗], [rc∗])
7: else
8: /* 0 6∈ [Gm] and 0 ∈ [G0] */
9: if Gm ≥ 0 then

10: OG case3+([g∗], [ra∗], [rb∗], [rc∗])
11: else
12: OG case3−([g∗], [ra∗], [rb∗], [rc∗])
13: end if
14: end if
15: f og← Generate New Function(f , [ra∗], [rb∗], [rc∗])

Algorithm 2 OG case2 (in: [g∗]
out: [ra∗], [rb∗], [rc∗])

1: [G+]← ∑
[gi]≥0

[gi]

2: [G−]← ∑
[gi]≤0

[gi]

3: [α1]←
G+G−+G−G−

G+G−−G−G+

4: [α2]←
G+G+ +G−G+

G+G−−G−G+

5:
6: for all [gi] ∈ [g∗] do
7: if gi ≥ 0 then

8: ([rai
], [rbi

], [rci
])← (1− [α1], [α1],0)

9: else if gi ≤ 0 then
10: ([rai

], [rbi
], [rci

])← ([α2],1− [α2],0)
11: else
12: ([rai

], [rbi
], [rci

])← (0,0,1)
13: end if
14: end for

Thus, the new linear program that computes convex linear combinations for achieving

occurrence grouping becomes:

Find the values rai
, rbi

and rci
for each occurrence xi that minimize (3) subject to (4), (5),

(6) and

rai
,rbi

,rci
∈ [0,1] for i = 1, ...,k. (7)

Note that this continuous linear program improves the minimum of the objective function

because the integrity conditions are relaxed.

Examples

In Example 1, we obtain the minimum 21 and the new function f
og
1 (xa,xb,xc) = −x3

a +

2(0.25xa + 0.75xc)
2 + 14xa: [f

og
1]m([x]) = [−20,16.25]. The minimum 21 is inferior to 22

(obtained by the 0,1 linear program). The evaluation by occurrence grouping of f1 yields

[−20,16.25], which is sharper than the image [−20,21] obtained by the 0,1 linear program

presented in Section 3.

In Example 2, we obtain the minimum 11.25 and the new function f
og
2 (xa,xb) = (44

45
xa +

1
45

xb)
3−(11

15
xa + 4

15
xb). The image [−0.75,6.01] obtained by occurrence grouping is sharper

than the interval computed by natural and Horner evaluations. In this case, the 0,1 linear

program of Section 3 yields the naive grouping.

5 An efficient Occurrence Grouping algorithm

Algorithm 1 finds rai
, rbi

, rci
that minimize G subject to the constraints. At line 15, the

algorithm generates symbolically the new function f og that replaces each occurrence xi in

f by [rai
]xa + [rbi

]xb + [rci
]xc. Note that the values are represented by thin intervals, of a

few u.l.p. large, for taking into account the floating point rounding errors appearing in the

computations. Algorithm 1 uses a vector [g∗] of size k containing interval derivatives of f

w.r.t. each occurrence xi of x. Each component of [g∗] is denoted by [gi] and corresponds to

the interval
[

∂ f

∂xi

]

([V]). A symbol indexed by an asterisk refers to a vector (e.g., [g∗], [ra∗]).

8 Ignacio Araya et al.

Algorithm 3 OG case3+(in:[g∗] out:[ra∗], [rb∗], [rc∗])

1: [ga]← [0,0]
2: for all [gi] ∈ [g∗], gi ≥ 0 or gi ≤ 0 do

3: [ga]← [ga]+ [gi] /* All positive and negative derivatives are absorbed by [ga] */
4: ([rai

], [rbi
], [rci

])← (1,0,0)
5: end for
6:
7: index← descending sort({[gi] ∈ [g∗],gi < 0},criterion→ gi−|[gi]|

gi
)

8: j← 1 ; i← index[1]
9: while ga +gi ≥ 0 do

10: ([rai]], [rbi
], [rci

])← (1,0,0)

11: [ga]← [ga]+ [gi]
12: j← j +1 ; i← index[j]
13: end while
14:
15: [α]←−

ga

gi

16: ([rai
], [rbi

], [rci
])← ([α],0,1− [α]) /* [ga]← [ga]+ [α][gi] */

17:
18: j← j +1 ; i← index[j]
19: while j ≤ length(index) do
20: ([rai

], [rbi
], [rci

])← (0,0,1)
21: j← j +1 ; i← index[j]
22: end while

At line 1, the partial derivative [G0] of f w.r.t. x is calculated using the sum of the partial

derivatives of f w.r.t. each occurrence of x. At line 2, [Gm] gets the value of the partial

derivative of f w.r.t. the monotonic occurrences of x.

According to the values of [G0] and [Gm], we can distinguish 3 cases. The first case is

well-known (0 6∈ [G0] in line 3) and occurs when x is a monotonic variable. In the procedure

OG case1, all the occurrences of x are replaced by xa (if [G0] ≥ 0) or by xb (if [G0] ≤
0). The evaluation by monotonicity of f og is equivalent to the evaluation by monotonicity

of f . In the second case, when 0 ∈ [Gm] (line 5), the procedure OG case2 (Algorithm 2)

achieves a grouping of the occurrences of x. Increasing occurrences are replaced by (1−
α1)xa +α1xb, decreasing occurrences by α2xa +(1−α2)xb and non monotonic occurrences

by xc (lines 7 to 13 of Algorithm 2). The third case occurs when 0 6∈ [Gm] and 0 ∈ [G0].
W.l.o.g., assume that Gm ≥ 0. The procedure OG case3+ (Algorithm 3) first groups all the

positive and negative occurrences in the increasing group xa (lines 2–5). The non monotonic

occurrences are then replaced by xa in an order determined by an array index2 (line 7)

as long as the constraint
k

∑
i=1

rai
gi ≥ 0 is satisfied (lines 9–13). The first occurrence xi′ that

cannot be (entirely) replaced by xa because it would make the constraint (4) unsatisfiable is

replaced by αxa +(1−α)xc, with α such that the constraint is satisfied and equal to 0, i.e.,

(
k

∑
i=1,i6=i′

rai
gi)+αgi′ = 0 (lines 15–16). The rest of the occurrences are replaced by xc (lines

18–22). The extended paper [1] illustrates how the procedure OG case3+ (resp. OG case2)

handles the example f1 (resp. f2).

2 An occurrence xi1 is handled before xi2 if
gi1−|[gi1]|

gi1
≥ gi2−|[gi2]|

gi2
. index[j] yields the index of the jth

occurrence in this order.

An Interval Extension Based on Occurrence Grouping 9

6 Properties

Proposition 4 Algorithm 1 (Occurrence grouping) is correct and solves the linear pro-

gram that minimizes (3), modulo floating-point roundings, subject to the constraints (4), (5),

(6) and (7).

We can check that Algorithm 1 respects the four constraints (4)–(7). We have also proven

that the minimum of the objective function (3) is reached. The proof concerning OG case3

is sophisticated, due to the sort of indices, and uses known results about the continuous

knapsack problem. Special care has been brought to ensure the correctness modulo floating-

point roundings. A full proof can be found in [1].

Proposition 5 The time complexity of Occurrence Grouping for one variable with k oc-

currences is O(k log2(k)). It is time O(nk log2(k)) when a multi-variate function is itera-

tively transformed by Occurrence Grouping for each of its n variables having at most k

occurrences each.

A preliminary gradient calculation by automatic differentiation is time O(e), where e is

the number of unary and binary operators in the expression.

Computing the gradient of a function amounts in two traversals of the tree representing

the mathematical expression [3]. The time complexity of Algorithm 1 is dominated by that

of descending sort in the OG case3 procedure.

Instead of Algorithm 1, we may use a standard Simplex algorithm providing that the

used Simplex implementation takes into account floating-point rounding errors. A perfor-

mance comparison between Algorithm 1 and Simplex is shown in Section 7.3. Also, as

shown in Section 7.2, the time required in practice by Occurrence Grouping is negligible

when it is used for solving systems of equations.

Although Occurrence Grouping can be viewed as a heuristic since it minimizes a

Taylor-based over-estimate of the function image diameter, it is important to stress that our

new interval extension improves the well-known monotonicity-based interval extension.

Proposition 6 Consider a function f : R
n→ R, and the previously defined interval natural

([f]n), monotonicity-based ([f]m) and occurrence grouping ([f]og) extensions of f . Let V be

the n variables involved in f with domains [V]. Then, [f]og([V])⊆ [f]m([V])⊆ [f]n([V]).

7 Experiments

Occurrence Grouping has been implemented in the Ibex [5,4] open source interval-based

solver in C++. The main goal of these experiments is to show the improvements in CPU time

brought by Occurrence Grouping when solving systems of equations.

We briefly recall the combinatorial process followed by an interval-based solver to find

all the solutions of a system of equations. The solving process starts from an initial box rep-

resenting the search space and builds a search tree, following a Branch & Contract scheme:

– Branch: the current box is bisected on one dimension, generating two sub-boxes.

– Contract: filtering (also called contraction) algorithms reduce the bounds of the box

with no loss of solution.

The process terminates with boxes of size smaller than a given positive ω .

Contraction algorithms comprise multidimensional interval Newton algorithms (or vari-

ants) issued from the numerical interval analysis community [14,15] along with algorithms

from constraint programming. In all our experiments, at each node of the search tree, i.e.,

between two bisections, the solving strategy uses two types of contractors (all available in

Ibex) in sequence:

10 Ignacio Araya et al.

1. (from constraint programming) the shaving/slicing contractor 3BCID [12,16] and a re-

cent constraint propagation algorithm, Mohc [2,6], exploiting monotonicity of func-

tions;

2. (from interval analysis) an interval Newton using a Hansen-Sengupta matrix, a left-

preconditioning of the matrix, and a Gauss-Seidel method to solve the interval linear

system [8].

Sixteen systems of equations have been used in our experiments. They are issued from

the COPRIN team website [13], most of them being also known in the COCONUT bench-

mark suite devoted to interval analysis and global optimization.3 They correspond to square

systems with a finite number of zero-dimensional (isolated) solutions of at least two con-

straints involving multiple occurrences of variables and requiring more than 1 second to

be solved (considering the times appearing in the COPRIN website). All experiments have

been performed on a same computer (Intel 6600 2.4 GHz).

7.1 Comparison between interval extensions

We first report a comparison between the evaluation by occurrence grouping (i.e., the diam-

eter of [f]og([V])) and several existing interval evaluations ([f]ext), including Taylor, Hansen

and monotonicity-based extensions (see Section 1). Since the Taylor and Hansen extensions

are not comparable with the natural extension, to obtain more reasonable comparisons, we

have redefined [f]t([V]) = [f]′t([V])∩ [f]([V]) and [f]h([V]) = [f]′h([V])∩ [f]n([V]), where

[f]′t and [f]′h are the actual Taylor and Hansen extensions respectively.

Table 1 Different interval extensions compared to [f]og

System [f]n [f]t [f]h [f]m [f]mr [f]mr+h [f]mr+og

Brent 0.857 0.985 0.987 0.997 0.998 0.999 1.000

ButcherA 0.480 0.742 0.863 0.666 0.786 0.963 1.028

Caprasse 0.602 0.883 0.960 0.856 0.953 1.043 1.051

Direct kin. 0.437 0.806 0.885 0.875 0.921 0.979 1.017

Eco9 0.724 0.785 0.888 0.961 0.980 0.976 1.006

Fourbar 0.268 0.718 0.919 0.380 0.427 1.040 1.038

Geneig 0.450 0.750 0.847 0.823 0.914 0.971 1.032

Hayes 0.432 0.966 0.974 0.993 0.994 0.998 1.001

I5 0.775 0.859 0.869 0.925 0.932 0.897 1.005

Katsura 0.620 0.853 0.900 0.993 0.999 0.999 1.000

Kin1 0.765 0.872 0.880 0.983 0.983 0.995 1.001

Pramanik 0.375 0.728 0.837 0.666 0.689 0.929 1.017

Redeco8 0.665 0.742 0.881 0.952 0.972 0.997 1.011

Trigexp2 0.904 0.904 0.904 0.942 0.945 0.921 1.002

Trigo1 0.483 0.766 0.766 0.814 0.814 0.895 1.000

Virasoro 0.479 0.738 0.859 0.781 0.795 1.025 1.062

Yamamura1 0.272 0.870 0.870 0.758 0.758 0.910 1.000

AVERAGE 0.564 0.822 0.888 0.845 0.874 0.973 1.016

The first column of Table 1 indicates the name of each instance. The other columns refer

to existing extensions [f]ext and report an average of ratios ρext =
Diam([f]og([V]))
Diam([f]ext ([V])) . These ratios

3 See www.mat.univie.ac.at/ ˜neum/glopt/coconut/Benchmark/Benchmark.html

An Interval Extension Based on Occurrence Grouping 11

are measured while the Branch & Contract solving strategy mentioned above4 is run to solve

the tested system of equations. They are calculated every time a constraint is handled inside

the constraint propagation, at every node of the search tree, thus avoiding biases.

The table highlights that [f]og computes, in general, sharper interval images than all the

competitors. (Only [f]mr+og achieves better evaluations, but it also uses occurrence group-

ing.) The improvements w.r.t. the two evaluation methods by monotonicity (i.e., [f]m and

[f]mr) corroborate the benefits of our approach. For example, in Fourbar, [f]og obtains an

evaluation diameter which is 42.7% of the evaluation diameter provided by [f]mr.

[f]mr+h obtains the sharpest evaluations in three benchmarks (Caprasse, Fourbar and

Virasoro). However, [f]mr+h is more expensive than [f]og. [f]mr+h requires computing

2n interval partial derivatives, thus traversing 4n times the expression tree if an automatic

differentiation method is used [8].

The extension using occurrence grouping [f]mr+og provides necessarily a better evalua-

tion than, or equal to, [f]og. However, the experiments on the tested systems show that the

gain in evaluation diameter is only 1.6% on average (between 0% and 6.2%), so that we do

not believe it constitutes a promising extension due to its additional cost.

7.2 Occurrence Grouping inside a monotonicity-based contractor

These experiments are significant in that they underline the benefits of occurrence grouping

for improving the solving of systems of constraints. Mohc [2,6] is a new constraint propaga-

tion contractor (like HC4 or Box [3]) that exploits the monotonicity of a function to improve

the contraction of the related variable intervals.

Table 2 shows the results of Mohcwithout the OG algorithm (¬OG), and with Occurrence-

Grouping (OG), i.e., when the function f is transformed into f og before applying the main

MohcRevise(f og) procedure. We observe that, for 7 of the 16 benchmarks, Occurrence-

Grouping is able to improve significantly the results of Mohc; in Butcher, Fourbar, Vira-

soro and Yamamura1 the gains in CPU time (¬OG
OG

) obtained are greater than 30, 11, 7.5 and

5.4 respectively.

7.3 Practical time complexity

We have first compared the performance of two Occurrence Grouping implementations:

using our ad-hoc algorithm (Occurrence Grouping) and using a Simplex method. The

basic Simplex implementation [7] we have used is not rigorous, i.e., it does not take into

account rounding errors due to floating point arithmetic. Adding this feature should make

the algorithm run more slowly. Two important results have been obtained. First, we have

checked experimentally that our algorithm is correct, i.e., it obtains the minimum value

for the objective function G. Second, just as we expected, the performance of the general-

purpose Simplex method is worse than the performance of our algorithm. It runs between

2.32 (Brent) and 10 (Virasoro) times more slowly.

Two results highlight that the CPU time required by Occurrence Grouping is very

interesting in practice. In Table 7.2 indeed, for instances like Brent, Eco9 or Trigexp2,

Occurrence Grouping is called a large number of times with roughly no effect on solving:

similar number of choice points is reported with and without occurrence grouping. However,

the overall CPU is also very similar. Another experiment is reported in [1].
4 Similar results are obtained by other strategies.

12 Ignacio Araya et al.

Table 2 Experimental results using the monotonicity-based contractor Mohc inside a solving strategy. The
first column indicates the name of each instance, along with its number of variables/equations (left) and
solutions (right). The second column reports the CPU time (first row of a multi-row) and the number of
nodes (second row) obtained by a strategy using 3BCID(Mohc) without OG. The third column report the
results of our strategy using 3BCID(OG+Mohc). The fourth column indicates the (large) number of calls to
Occurrence Grouping during the solving process.

System Mohc

¬OG OG #OG calls

ButcherA >1 day 1722
8 3 288,773 16,772,045

Brent 20 20.3
10 1008 3811 3805 30,867

Caprasse 2.57 2.71
4 18 1251 867 60,073

Eco9 13.31 13.96
9 16 6161 6025 70,499

Fourbar 4277 385
4 3 1,069,963 57,377 8,265,730

Geneig 328 111
6 10 76,465 13,705 2,982,275

Hayes 17.62 17.45
8 1 4599 4415 5316

I5 57.25 58.12
10 30 10,399 9757 835,130

Katsura 100 103
12 7 3711 3625 39,659

Kin1 1.82 1.79
6 16 85 83 316

Pramanik 67.98 21.23
3 2 51,877 12,651 395,083

Redeco8 5.98 6.12
8 8 2285 2209 56,312

Trigexp2 90.5 88.2
11 0 14,299 14301 338,489

Trigo1 137 57
10 9 1513 443 75,237

Virasoro 6790 901
8 24 619,471 38,389 5,633,140

Yamamura1 11.59 2.15
8 7 2663 343 43,589

8 Conclusion

We have proposed a new method to improve the monotonicity-based evaluation of a func-

tion f . This Occurrence Grouping method creates for each variable of f three auxiliary,

respectively increasing, decreasing and non monotonic variables. It then transforms f into a

function f og that replaces the occurrences of every variable by a convex linear combination

of these auxiliary variables. The evaluation by monotonicity of f og defines the evaluation

by occurrence grouping of f and is better than the evaluation by monotonicity of f .

The extension by occurrence grouping computes at a low cost sharper interval images

than existing interval extensions do. The main benefits of occurrence grouping lie in the

improvement of an efficient contraction algorithm, called Mohc, that exploits monotonic-

ity of functions. Occurrence grouping transforms, with nearly no overhead in practice, the

constraints on the fly, during the constraint propagation and the solving process.

An Interval Extension Based on Occurrence Grouping 13

References

1. Araya, I., Neveu, B., Trombettoni, G.: An Interval Extension Based on Occurrence Grouping: Method
and Properties. Tech. Rep. 7806, INRIA (2011)

2. Araya, I., Trombettoni, G., Neveu, B.: Exploiting Monotonicity in Interval Constraint Propagation. In:
Proc. AAAI, pp. 9–14. AAAI Press (2010)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Consistency. In: Proc.
ICLP, pp. 230–244 (1999)

4. Chabert, G.: Ibex – An Interval Based EXplorer. www.ibex-lib.org (2010)
5. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100 (2009)
6. Chabert, G., Jaulin, L.: Hull Consistency Under Monotonicity. In: Proc. Constraint Programming CP,

LNCS 5732, pp. 188–195 (2009)
7. Flannery, B., Press, W., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Press Syndicate of the

University of Cambridge, New York (1992)
8. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker inc. (1992)
9. Horner, W.G.: A new Method of Solving Numerical Equations of all Orders, by Continuous Approxima-

tion. Philosophical Transactions of the Royal Society of London 109, 308–335 (1819)
10. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer (2001)
11. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Pro-

cessing and Interval Computations. Kluwer (1997)
12. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Proc. IJCAI, pp. 232–238 (1993)
13. Merlet, J.P.: The COPRIN examples page. www-sop.inria.fr/coprin/logiciels/ALIAS/

Benches/benches.html (2010)
14. Moore, R.: Interval Analysis. Prentice Hall (1966)
15. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1990)
16. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Proc. CP, LNCS 4741, pp. 635–650

(2007)

