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In the present paper, we prove that the Wasserstein distance on the space of continuous sample-paths equipped with the supremum norm between the laws of a uniformly elliptic one-dimensional diffusion process and its Euler discretization with N steps is smaller than O(N -2/3+ε ) where ε is an arbitrary positive constant. This rate is intermediate between the strong error estimation in O(N -1/2 ) obtained when coupling the stochastic differential equation and the Euler scheme with the same Brownian motion and the weak error estimation O(N -1 ) obtained when comparing the expectations of the same function of the diffusion and of the Euler scheme at the terminal time T . We also check that the supremum over t ∈ [0, T ] of the Wasserstein distance on the space of probability measures on the real line between the laws of the diffusion at time t and the Euler scheme at time t behaves like O( log(N )N -1 ).

For σ : R → R and b : R → R, we are interested in the simulation of the stochastic differential equation dX t = σ(X t )dW t + b(X t )dt (0.1)

where X 0 = x 0 ∈ R and W = (W t ) t≥0 is a standard Brownian motion. We make the standard Lipschitz assumptions on the coefficients:

∃K ∈ (0, +∞), ∀x, y ∈ R, |σ(x)σ(y)| + |b(x)b(y)| ≤ K|x -y|.

For T > 0, we are interested in the approximation of X = (X t ) t∈[0,T ] by its Euler scheme X = ( Xt ) t∈[0,T ] with N ≥ 1 time-steps. We consider the regular grid {0 = t 0 < t 1 < t 2 < . . . < t N = T } of the interval [0, T ] with t k = kT N and define inductively X0 = x 0 and Xt

= Xt k + σ( Xt k )(W t -W t k ) + b( Xt k )(t -t k ) for t ∈ [t k , t k+1 ]. (0.2)
It is well known that the order of convergence of the strong error of discretization is N -1/2 . Indeed, we have (see [START_REF] Kanagawa | On the rate of convergence for Maruyama's approximate solutions of stochastic differential equations[END_REF])

∀p ≥ 1, ∃C < +∞, ∀N ≥ 1, E 1/p sup t≤T |X t -Xt | p ≤ C √ N . (0.3)
See Section 1 for a more precise statement. This upper-bound gives the correct order of convergence since according to Remark 3.6 [START_REF] Kurtz | corrections, random evolutions, and simulation schemes for SDEs[END_REF], when σ and b are continuously differentiable, ( √ N (X t -Xt )) t≤T converges in law as N goes to ∞ to some diffusion limit which is non zero as soon as σ is positive and non constant (see also [START_REF] Kurtz | Weak limit theorems for stochastic integrals and stochastic differential equations[END_REF] and [START_REF] Jacod | Asymptotic error distributions for the Euler method for stochastic differential equations[END_REF] where stable convergence is also proved). When σ is constant, then the Euler scheme coincides with the Milstein scheme and the strong order of convergence is N -1 . On the other hand, the order of convergence of the weak error of discretization is always N -1 . For example, according to [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], when σ and b are C ∞ with bounded derivatives of all orders and f : R → R is C ∞ with polynomial growth together with its derivatives then, for each integer L ≥ 1, the expansion

E[f (X T )] -E[f ( XT )] = L l=1 a l N l + O(N -(L+1) ) (0.4)
in powers of N -1 holds for the weak error. The bound |E[f ( XT )] -E[f (X T )]| ≤ C N holds when σ, b and f are C 4 with the same growth assumptions. When f is only assumed to be measurable and bounded, it is proved in [START_REF] Bally | The law of the Euler scheme for stochastic differential equations (II) : convergence rate of the density[END_REF][START_REF] Bally | The law of the Euler scheme for stochastic differential equations (I) : convergence rate of the distribution function[END_REF] that the expansion (0.4) still holds for L = 1 if b and σ are smooth functions satisfying an hypoellipticity condition. Under uniform ellipticity, [START_REF] Guyon | Euler scheme and tempered distributions[END_REF] even extends this expansion by only assuming that f is a tempered distribution acting on the densities of both X T and XT .

In view of financial applications, the weak error analysis gives the convergence rate to 0 of the discretization bias introduced when replacing X by its Euler scheme X for the computation of the price E[f (X T )] of a vanilla European option with payoff f and maturity T written on X. Let C denote the space C([0, T ], R) of continuous paths endowed with the sup norm. When dealing with exotic options with payoff F : C → R Lipschitz continuous,

E[F (X)] -E[F ( X)] ≤ E|F (X) -F ( X)| ≤ C √ N ,
where the second inequality follows from the strong error estimate. But the first inequality is very rough and prevents from taking advantage of the cancellations in the mean which occur and permit to obtain the upper-bound C N for vanilla options. The weak error analysis has been performed for specific path-dependent payoffs, typically when F (X) = f (X T , Y T ) with Y t a function of (X s ) 0≤s≤t such that ((X t , Y t )) 0≤t≤T is a Markov process. The cases Y t = t 0 X s ds and Y t = max 0≤s≤t X s respectively correspond to Asian [START_REF] Temam | Couverture approchée d'options exotiques. Pricing des options asiatiques[END_REF] and barrier [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF][START_REF] Gobet | Euler Schemes and Half-Space Approximation for the Simulation of Diffusion in a Domain[END_REF][START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF] or lookback options [START_REF] Seumen Tonou | Méthodes numériques probabilistes pour la résolution d'équations du transport et pour l'évaluation d'options exotiques[END_REF]. But no general theory has been developped so far to analyse the weak trajectorial error. The Wasserstein distance between the laws L(X) and L( X) of X and X defined by W 1 (L(X), L( X )) = sup

F :C→R:Lip(F )≤1 |E[F ( X)] -E[F (X)]|,
where Lip(F ) denotes the Lipschitz constant of F is the appropriate measure to deal with the whole class of exotic Lipschitz payoffs. Notice that this distance has already been used in the context of discretization schemes for SDEs : in the multidimensional setting, by a clever rotation of the driving Brownian motion, Cruzeiro, Malliavin and Thalmaier [START_REF] Cruzeiro | Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation[END_REF] construct a modified Milstein scheme which does not involve the simulation of iterated Brownian integrals and with order of convergence N -1 for the Wasserstein distance. A simpler scheme with the same convergence properties is exhibited in [START_REF] Jourdain | High order discretization schemes for stochastic volatility models[END_REF] for usual stochastic volatility models.

The weak and strong error estimations recalled above imply that

∃c, C < +∞, ∀N ≥ 1, c N ≤ W 1 (L(X), L( X)) ≤ C √ N . (0.5) 
A very nice feature of the Wasserstein distance is its primal representation in the Kantorovitch duality theory. This representation is obtained by choosing p = 1, E = C and (µ, ν) = (L(X), L( X)) in the general definition

W p (µ, ν) = inf π∈Π(µ,ν) E×E
|x -y| p π(dx, dy)

1/p (0.6)
where p ∈ [1, +∞), (E, | |) is a normed vector space, µ and ν are two probability measures on E endowed with its Borel sigma-field and the infimum is computed on the set Π(µ, ν) of probability measures on E × E with respective marginals µ and ν (see for instance Remark 6.5 p95 [START_REF] Villani | Optimal transport. Old and new[END_REF]).

When one is able to exhibit some coupling (Y, Ȳ ) with Y L = X and Ȳ L = X, then the law of (Y, Ȳ ) belongs to Π(L(X), L( X)) and necessarily W p (L(X), L( X )) ≤ E 1/p sup t∈[0,T ] |Y t -Ȳt | p . For the obvious coupling (Y, Ȳ ) = (X, X) obtained by choosing the same driving Brownian motion for the diffusion and its Euler scheme, one recovers the upper-bound in (0.5) from the strong error analysis. The main result of the present paper is the construction of a better coupling which leads to the upper-bound

∀p ≥ 1, ∀ε > 0, ∃C < +∞, ∀N ≥ 1, W p (L(X), L( X)) ≤ C N 2 3 -ε
proved in Section 3 under additional regularity assumptions on the coefficients and uniform ellipticity. To construct this coupling, we first obtain in Section 2 a time-uniform estimation of the Wasserstein distance between the respective laws L(X t ) and L( Xt ) of X t and Xt :

∀p ≥ 1, ∃C < +∞, ∀N ≥ 1, sup t∈[0,T ] W p (L(X t ), L( Xt )) ≤ C log(N ) N .
Before, in Section 1, we recall well-known results concerning the moments and the dependence on the initial condition of the solution to the SDE (0.1) and its Euler scheme. Also, we explicit the dependence of the strong error estimations

E[sup s≤t | Xs -X s |] with respect to t ∈ [0, T ],
which will play a key role in our analysis.

1 Basic estimates on the SDE and its Euler scheme

We recall some well-known results concerning the flow defined by (0.1) (see e.g. Karatzas and Shreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], p 306) and its Euler approximation.

Proposition 1.1 Let us denote by (X x t ) t∈[0,T ] the solution of (0.1), starting from x ∈ R. One has that for any p ≥ 1, the existence of a positive constant C ≡ C(p, T ) such that:

∀x ∈ R, E sup t∈[0,T ] |X x t | p ≤ C(1 + |x|) p (1.1) ∀x ∈ R, ∀s ≤ t ≤ T, E sup u∈[s,t] |X x u -X x s | p ≤ C(1 + |x|) p (t -s) p 2 (1.2) ∀x, y ∈ R, E sup t∈[0,T ] |X x t -X y t | p ≤ C|y -x| p (1.3) Proposition 1.2 Let ( Xx t ) t∈[0,T ] denote the Euler scheme (0.2) starting from x. For any p ∈ [1, ∞), there exists a positive constant C ≡ C(p, T ) such that ∀N ≥ 1, ∀x ∈ R, E sup t∈[0,T ] | Xx t | p ≤ C(1 + |x|) p (1.4) ∀N ≥ 1, ∀x ∈ R, ∀t ∈ [0, T ], E sup r∈[0,t] | Xx r -X x r | p ≤ Ct p 2 (1 + |x|) p N p 2
.

(1.5)

The moment bound (1.4) for the Euler scheme holds in fact as soon as the drift and the diffusion coefficients have a sublinear growth. The strong convergence order is established in Kanagawa [START_REF] Kanagawa | On the rate of convergence for Maruyama's approximate solutions of stochastic differential equations[END_REF] for Lipschitz and bounded coefficients. In fact, it is straightforward to extend Kanagawa's proof to merely Lipschitz coefficients by using the estimates (1.1) and (1.4) and obtain

∀N ≥ 1, ∀x ∈ R, ∀t ∈ [0, T ], E sup r∈[0,t] | Xx r -X x r | p ≤ C(1 + |x|) p N p 2
.

(1.6)

The estimate (1.5) precises the dependence on t. This slight improvement will in fact play a crucial role to construct the coupling between the diffusion and the Euler scheme. We prove it for the sake of completeness even though the arguments are really standard.

Proof of (1.5). Let τ s = sup{t i , t i ≤ s} denote the last discretization time before s. We have Xx

t -X x t = t 0 b( Xx τs ) -b(X x s )ds + t 0 σ( Xx τs ) -σ(X x s )dW s
. By Jensen's and Burkholder-Davis-Gundy inequalities,

E sup r∈[0,t] | Xx r -X x r | p ≤ 2 p E t 0 |b( Xx τs ) -b(X x s )|ds p + C p E t 0 (σ( Xx τs ) -σ(X x s )) 2 ds p 2 ≤ 2 p t p-1 t 0 E |b( Xx τs ) -b(X x s )| p ds + C p t p 2 -1 t 0 E |σ( Xx τs ) -σ(X x s )| p ds Denoting by Lip(σ) the finite Lipschitz constant of σ, we have |σ( Xx τs )-σ(X x s )| ≤ Lip(σ)(| Xx τs - X x τs | + |X x τs -X x s |). Thus, (1.2) and (1.6) yield E[|σ( Xx τs ) -σ(X x s )| p ] ≤ C(1+|x|) p N p 2
, and the same bound holds for b replacing σ. Since t p ≤ T p/2 t p/2 , we easily conclude.

The Wasserstein distance between the marginal laws

In this section, we are interested in finding an upper bound for the Wasserstein distance between the marginal laws of the SDE (0.1) and its Euler scheme. It is well known that the optimal coupling between two one-dimensional random variables is obtained by the inverse transform sampling. Thus, let F t and Ft denote the respective cumulative distribution functions of X t and Xt . The p-Wasserstein distance between the time-marginals of the solution to the SDE and its Euler scheme is given by (see Theorem 3.1.2 in [START_REF] Rachev | Mass Transportation problems[END_REF]):

W p (L(X t ), L( Xt )) = 1 0 |F -1 t (u) -F -1 t (u)| p du 1/p . ( 2.1) 
Let us state now the main result of this Section. We set:

C k b = {f : R → R k times continuously differentiable s.t. f (i) ∞ < ∞, 0 ≤ i ≤ k}.
Hypothesis 2.1 Let a = σ 2 . We assume that

∃a > 0, ∀x ∈ R, a(x) ≥ a (uniform ellipticity), a ∈ C 2 b and a ′′ is globally γ-Hölder continuous with γ > 0, b ∈ C 2 b .
Since σ is Lipschitz continuous, under Hypothesis 2.1, we have either σ ≡ √ a or σ ≡ -√ a.

From now on, we assume without loss of generality that σ ≡ √ a which is a C 2 b function bounded from below by the positive constant σ = √ a.

Theorem 2.2 Under Hypothesis 2.1, we have for any p ≥ 1,

∀N ≥ 1, sup t∈[0,T ] W p (L(X t ), L( Xt )) ≤ C log(N ) N ,
where C is a positive constant that only depends on p, T , a and (

a (i) ∞ , b (i) ∞ , 0 ≤ i ≤ 2)
and does not depend on the initial condition x ∈ R.

Remark 2.3 When p = 1, the slightly better bound sup t∈[0,T ] W 1 (L(X t ), L( Xt )) ≤ C N holds if σ is uniformly elliptic, according to [START_REF] Sbai | Modélisation de la dépendance et simulation de processus en finance[END_REF] chapter 3. This is proved in a multidimensional setting for C ∞ coefficients σ and b with bounded derivatives by extending the results of [START_REF] Guyon | Euler scheme and tempered distributions[END_REF] but can also be derived from a result of Gobet and Labart [START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF] only supposing that b, σ ∈ C 3 b . Let p t (x, y) and pt (x, y) denote respectively the density of X 0,x t and X0,x t . Then, Theorem 2.3 in [START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF] gives:

∀(t, x, y) ∈ (0, T ] × R 2 , |p t (x, y) -pt (x, y)| ≤ T K(T ) N t exp - c|x -y| 2 t .
As remarked in [START_REF] Sbai | Modélisation de la dépendance et simulation de processus en finance[END_REF] chapter 3, for f : R → R a Lipschitz continuous function with Lipschitz constant not greater than one, one deduces that

|E[f (X t )] -E[f ( Xt )]| = R (f (y) -f (x))(p t (x, y) -pt (x, y))dy ≤ K(T )T N t R |y -x| exp - c|x -y| 2 t dy = K(T )T cN ,
which gives sup t≤T W 1 (L(X t ), L( Xt )) ≤ CT N by the dual formulation of the 1-Wasserstein distance.

Our approach consists in controlling the time evolution of the Wasserstein distance. To do so, we need to compute the evolution of both F -1 t (u) and F -1 t (u). In the two next propositions, we derive partial differential equations satisfied by these functions by integrating in space the Fokker-Planck equations and then applying the implicit function theorem. Proposition 2.4 Assume that Hypothesis 2.1 holds.Then for any t ∈ (0, T ], the cumulative distribution function x → F t (x) is invertible with inverse denoted by F -1 t (u). Moreover, the function (t, u) → F -1 t (u) is C 1,2 on (0, T ] × (0, 1)and satisfies 

∂ t F -1 t (u) = - 1 2 ∂ u a(F -1 t (u)) ∂ u F -1 t (u) + b(F -1 t (u)). ( 2 
∂ t F -1 t (u) = - 1 2 ∂ u α t (u) ∂ u F -1 t (u) + β t (u). (2.3) 
where α t (u) = E[a( Xt k )| Xt = F -1 t (u)] and β t (u) = E[b( Xt k )| Xt = F -1 t (u)].
∂ t W p p (L(X t ), L( Xt )) ≤ C W p p (L(X t ), L( Xt )) + 1 0 |F -1 t (u) -F -1 t (u)| p-1 |b( F -1 t (u)) -β t (u)|du + 1 0 |F -1 t (u) -F -1 t (u)| p-2 a( F -1 t (u)) -α t (u) 2 du , (2.4) 
where C is a positive constant that only depends on p, a, a ′ ∞ and b ′ ∞ .

The last ingredient of the proof of Theorem 2.2 is the next Lemma, the proof of which is also postponed in Appendix A.

Lemma 2.7 Let τ t = sup{t i , t i ≤ t} denote the last discretization time before t. Under Hypothesis 2.1, we have for all p ≥ 1 :

∃C < +∞, ∀N ≥ 1, ∀t ∈ [0, T ], E E W t -W τt | Xt p ≤ C 1 N ∨ (N 2 t) p/2 .
Proof of Theorem 2.2. Since W p (L(X t ), L( Xt )) ≤ W p ′ (L(X t ), L( Xt )) for p ≤ p ′ , it is enough to prove the estimation for p ≥ 2. Therefore we suppose without loss of generality that p ≥ 2. Let ψ p (t) = W 2 p (L(X t ), L( Xt )) and

for any integer k ≥ 1, h k (x) = k -2/p h(kx) where h(x) = x 2/p if x ≥ 1, 1 + 2 p (x -1)
otherwise. Since h k is C 1 and non-decreasing, Lemma 2.6 and Hölder's inequality imply that

h k ψ p/2 p (t) = h k W p p (L(X 0 ), L( X0 )) + t 0 h ′ k ψ p/2 p (s) ∂ s W p p (L(X s ), L( Xs ))ds ≤ h k (0) + C t 0 h ′ k ψ p/2 p (s) ψ p/2 p (s) + ψ (p-1)/2 p (s) 1 0 |b( F -1 s (u)) -β s (u)| p du 1/p + ψ (p-2)/2 p (s) 1 0 |a( F -1 s (u)) -α s (u)| p du 2/p
ds.

Since for fixed x ≥ 0, the sequence (h ′ k (x)) k is non-decreasing and converges to 2 p x 2 p -1 as k → ∞, one may take the limit in this inequality thanks to the monotone convergence theorem and remark that the image of the Lebesgue measure on [0, 1] by F -1 s is the distribution of Xs to deduce

ψ p (t) ≤ 2C p t 0 ψ p (s) + ψ 1/2 p (s)E 1/p |b( Xs ) -E(b( Xτs )| Xs )| p + E 2/p |a( Xs ) -E(a( Xτs )| Xs )| p ds. (2.5) 
One has

a( Xτs ) -a( Xs ) = a ′ ( Xs )σ( Xs )(W τs -W s ) -a ′ ( Xs ) (σ( Xτs ) -σ( Xs ))(W s -W τs ) + b( Xτs )(s -τ s ) + ( Xτs -Xs ) 1 0 a ′ (v Xτs + (1 -v) Xs ) -a ′ ( Xs )dv.
Using Jensen's inequality, the boundedness assumptions on a, b and their derivatives and Lemma 2.7, one gets

E |a( Xs ) -E(a( Xτs )| Xs )| p ≤ CE |σa ′ ( Xs )| p |E(W s -W τs )| Xs )| p + CE (s -τ s ) p + |(σ( Xτs ) -σ( Xs ))(W s -W τs )| p + | Xτs -Xs | 2p ≤ C N p/2 ∨ (N p s p/2 )
.

The same bound holds with a replaced by b. With (2.5) and Young's inequality, one deduces

ψ p (t) ≤ C t 0 ψ p (s) + ψ 1/2 p (s) √ N ∨ (N √ s) + 1 N ∨ (N 2 s) ds ≤ C t 0 ψ p (s) + 1 N ∨ (N 2 s) ds.
One concludes by Gronwall's lemma.

Remark 2.8 When a(x) ≡ a is constant, the term E 2/p |a( Xs ) -E(a( Xτs )| Xs )| p in (2.5)
vanishes and the above reasoning ensures that ψp (t) defined as sup s∈[0,T ] ψ p (s) satisfies

ψp (t) ≤ C t 0 ψp (s)ds + C ψ1/2 p (t) t 0 1 √ N ∨ (N √ s) ds ≤ C t 0 ψp (s)ds + 1 2 ψp (t) + C 2 (T + 1) 2 2N .
By Gronwall's lemma, we recover the estimation sup t∈[0,T ] W p (L(X t ), L( Xt )) ≤ C N which is also a consequence of the strong order of convergence of the Euler scheme when the diffusion coefficient is constant.

The Wasserstein distance between the pathwise laws

We now state the main result of the paper.

Hypothesis 3.1 We assume that a ∈ C 4 b , b ∈ C 3 b , and ∃a > 0, ∀x ∈ R, a(x) ≥ a (uniform ellipticity).
Clearly, Hypothesis 3.1 implies Hypothesis 2.1.

Theorem 3.2 Under Hypothesis 3.1, we have:

∀p ≥ 1, ∀ε > 0, ∃C < +∞, ∀N ≥ 1, W p (L(X), L( X)) ≤ C N 2 3 -ε .
Before proving the theorem, let us state some of its consequences for the pricing of lookback options. It is well-known that if (U k ) 0≤k≤N -1 are independent random variables uniformly distributed on [0, 1] and independent from the Brownian increments

(W t k+1 -W t k ) 0≤k≤N -1 then X def = 1 2 max 0≤k≤N -1 Xt k + Xt k+1 + ( Xt k+1 -Xt k ) 2 -2σ 2 ( Xt k )t 1 ln(U k ) is such that X0 , Xt 1 , . . . , XT , X L = ( X0 , Xt 1 , . . . , XT , max t∈[0,T ] Xt ). Corollary 3.3 If f : R 2 → R is Lipschitz continuous, then, under Hypothesis 3.1, ∀ε > 0, ∃C < +∞, ∀N ≥ 1, E f X T , max t∈[0,T ] X t -E[f ( XT , X)] ≤ C N 2 3 -ε . (3.1) 
To our knowledge, this result appears to be new. Of course, when f is also differentiable with respect to its second variable, one has

E f X T , max t∈[0,T ] X t = E [f (X T , x 0 )] + +∞ x 0 E ∂ 2 f (X T , x)1 {max t∈[0,T ] Xt≥x} dx.
One could contemplate combining the weak error analysis for the first term in the right-handside with Theorem 2.3 [START_REF] Gobet | Euler Schemes and Half-Space Approximation for the Simulation of Diffusion in a Domain[END_REF] devoted to barrier options to obtain the order N -1 instead on N -2/3+ε in (3.1). In Theorem 2.3 [START_REF] Gobet | Euler Schemes and Half-Space Approximation for the Simulation of Diffusion in a Domain[END_REF], Gobet assumes C 5 b regularity and uniform ellipticity on the coefficients σ and b and it is not clear whether the estimation is preserved by integration over [x 0 , +∞). More importantly a structure condition on the payoff function implying that

∂ 2 f (x, x) = 0 for all x ≥ x 0 is needed.
Proof of Theorem 3.2. We first deduce from Theorem 2.2 some bound on the Wasserstein distance between the finite dimensional marginals of the diffusion X and its Euler scheme X on a coarse time-grid. For m ∈ {1, . . . , N -1}, we set n = ⌊N/m⌋ and define

s l = lmT N
, for l ∈ {0, . . . , n -1}, and s n = T.

Combining the next proposition, the proof of which is postponed in Appendix B with Theorem 2.2, one obtains that

W p (L(X s 1 , . . . , X sn ), L( Xs 1 , . . . , Xsn )) ≤ C √ log N m (3.2)
where the constant C does not depend on (m, N ). 

W p (L( Xx t ), L(X x t )).
There is a probability measure π(dx 1 , . . . , dx n , dx 1 , . . . , dx n ) in Π(L(X s 1 , . . . , X sn ), L( Xs 1 , . . . , Xsn )) which attains the Wasserstein distance in the left-hand-side of (3.2) (see for instance Theorem 3.3.11 [START_REF] Rachev | Mass Transportation problems[END_REF]). Let π(x 1 , . . . , x n , dx 1 , . . . , dx n ) denote a regular conditional probability of (x 1 , . . . , xn ) given (x 1 , . . . , x n ) when R 2n is endowed with π and ( Ȳs 1 , . . . , Ȳsn ) be distributed according to π(X s 1 , . . . , X sn , dx 1 , . . . , dx n ). The vector (X s 1 , . . . , X sn , Ȳs 1 , . . . , Ȳsn ) is distributed according to π so that ( Ȳs 1 , . . . , Ȳsn )

L = ( Xs 1 , . . . , Xsn ) and E 1/p max 1≤l≤n |X s l -Ȳs l | p ≤ C √ log N m . (3.3) 
Let p t (x, y) denote the transition density of the SDE (0.1) and ℓ t (x, y) = log(p t (x, y)). According to Appendix C devoted to diffusion bridges, the processes

W l t = t s l dW s -σ(X s )∂ x ℓ s l+1 -s (X s , X s l+1 )ds , t ∈ [s l , s l+1 ) 0≤l≤n-1
are independent Brownian motions independent from (X s 1 , . . . , X sn ). We suppose from now on that the vector ( Ȳs 1 , . . . , Ȳsn ) has been generated independently from these processes and so will be all the random variables and processes needed in the remaining of the proof (see in particular the construction of β below). Moreover

Z x,y t = x + t s l σ(Z x,y s )dW l s + t s l [b(Z x,y s ) + σ 2 (Z x,y s )∂ x ℓ s l+1 -s (Z x,y s , y)]ds, t ∈ [s l , s l+1 ) Z x,y s l+1 = y (3.4
) is distributed according to the conditional law of (X t ) t∈[s l ,s l+1 ] given (X s l , X s l+1 ) = (x, y) and for each l ∈ {0, . . . , n -1}, one has (Z

Xs l ,Xs l+1 t ) t∈[s l ,s l+1 ] = (X t ) t∈[s l ,s l+1 ] .
In order to construct a good coupling between L(X) and L( X), a natural idea would be to extend ( Ȳs 1 , . . . , Ȳsn ) to a process ( Ȳt ) t∈[0,T ] with law L( X) by defining for each l ∈ {0, . . . , n -1}, ( Ȳt ) t∈[s l ,s l+1 ] as an Euler scheme bridge driven by W l and starting from Ȳs l and ending at Ȳs l+1 . Unfortunately, even if the Euler scheme bridge is deduced by a simple transformation of the Brownian bridge on a single time-step, it becomes a complicated process when the difference between the starting and ending times is larger than T N because of the lack of Markov property. We are finally going to choose the difference s l+1s l of order T N 1/3 and therefore much larger than the time-step T N . In addition, it is not clear how to compare the paths of the diffusion bridge and the Euler scheme bridge driven by the same Brownian motion. That is why we are going to introduce some new process ( χt ) t∈[0,T ] such that the comparison will be performed at the diffusion bridge level, which is not so easy yet.

To construct χ, we are going to exhibit a Brownian motion (β t ) t∈[0,T ] such that ( Ȳs 1 , . . . , Ȳsn ) are the values on the coarse time-grid of the Euler scheme with time-step T N driven by β. The extension ( Ȳt ) t∈[0,T ] with law L( X) is then simply defined as the whole Euler scheme driven by

β : Ȳt = Ȳt k + σ( Ȳt k )(β t -β t k ) + b( Ȳt k )(t -t k ), t ∈ [t k , t k+1 ], 0 ≤ k ≤ N -1.
The construction of β is postponed at the end of the present proof. One then defines

χ t = Ȳs l + t s l σ(χ s )dβ s + t s l b(χ s )ds, t ∈ [s l , s l+1 ), 0 ≤ l ≤ n -1
Notice that the process χ = (χ t ) t∈[0,T ] which evolves according to the SDE (0.1) with β replacing W on each time-interval [s l , s l+1 ) is càdlàg : discontinuities may arise at the points {s l+1 , 0 ≤ l ≤ n -1}. We denote by χ s l+1 -its left-hand limit at time s l+1 and set χ T = χ sn-. The strong error estimation (1.5) will permit to estimate the difference between the processes Ȳ and χ. Of course, there is no hope for the processes χ and X to be close. Nethertheless, the process χ obtained by setting ∀l ∈ {0, . . . , n -1}, ∀t ∈ [s l , s l+1 ), χt = Z χs l ,χ s l+1 - t and χT = χ T where Z x,y is defined in (3.4) is such that L( χ) = L(χ) by Propositions C.1 and C.3. On each coarse time-interval [s l , s l+1 ) the diffusion bridges associated with X and χ are driven by the same Brownian motion W l . Moreover the differences |X s l -Y s l | between the starting points and

|X s l+1 -χ s l+1 -| ≤ |X s l+1 -Y s l+1 | + |Y s l+1 -χ s l+1 -|
between the ending points is controlled by (3.3) and the above mentionned strong error estimation. That is why one may expect to obtain a good estimation of the difference between the processes X and χ. By the triangle inequality and since L( X) = L( Ȳ ) and

L( χ) = L(χ), W p (L( X), L(X)) ≤ W p (L( X), L(χ)) + W p (L(χ), L(X)) ≤ E 1/p sup t∈[0,T ] | Ȳt -χ t | p + E 1/p sup t∈[0,T ] |X t -χt | p , (3.5) 
where, for the definition of W p (L( X), L(χ)) and W p (L(χ), L(X)), the space of càdlàg samplepaths from [0, T ] to R is endowed with the supremum norm. Let us first estimate the first term in the right-hand-side. Let q ≥ 1. From (1.5), we get

E sup t∈[s l ,s l+1 ) | Ȳt -χ t | pq Ȳs l ≤ C m pq 2 (1 + | Ȳs l |) pq N pq
where the constant C does not depend on (N, m). We deduce that

E sup t∈[0,T ] | Ȳt -χ t | pq = E max 0≤l≤n-1 sup t∈[s l ,s l+1 ) | Ȳt -χ t | pq ≤ n-1 l=0 E E sup t∈[s l ,s l+1 ) | Ȳt -χ t | pq Ȳs l ≤ C m pq 2 N pq n-1 l=0 E (1 + | Ȳs l |) pq ≤ C m pq 2 -1 N pq-1 ,
where we used (1.4) for the last inequality. As a consequence,

E 1/p sup t∈[0,T ] | Ȳt -χ t | p ≤ E 1/pq sup t∈[0,T ] | Ȳt -χ t | pq ≤ C m 1 2 -1 pq N 1-1 pq . (3.6) 
Let us now estimate the second term in the right-hand-side of (3.5). By Proposition C.3 and since for l ∈ {0, . . . , n -1},

χ s l = Ȳs l , sup t≤T |X t -χt | = max 0≤l≤n-1 sup t∈[s l ,s l+1 ) |Z Xs l ,Xs l+1 t -Z χs l ,χ s l+1 - t | ≤ C max 0≤l≤n-1 |X s l -Ȳs l |∨|X s l+1 -χ s l+1 -|.
Since, by the triangle inequality and the continuity of Ȳ ,

|X s l+1 -χ s l+1 -| ≤ |X s l+1 -Ȳs l+1 | + | Ȳs l+1 -χ s l+1 -| ≤ |X s l+1 -Ȳs l+1 | + sup t∈[0,T ] | Ȳt -χ t |, one deduces that sup t≤T |X t -χt | ≤ C max 1≤l≤n |X s l -Ȳs l | + sup t∈[0,T ] | Ȳt -χ t | .
Combined with (3.3) and (3.6), this implies

E 1/p sup t≤T |X t -χt | p ≤ CE 1/p max 1≤l≤n |X s l -Ȳs l | p +CE 1/p sup t∈[0,T ] | Ȳt -χ t | p ≤ C √ log N m + m 1 2 -1 pq N 1-1 pq .
Plugging this inequality together with (3.6) in (3.5), we deduce that

W p (L(X), L( X)) ≤ C √ log N m + m 1 2 -1 pq N 1-1 pq
and conclude by choosing m = ⌊N 2 3 ⌋ and q ≥ 1 3pε . To end the proof, we still have to construct the Brownian motion β. We first reconstruct on the fine time grid (t k ) 1≤k≤N an Euler scheme ( Ȳt k , 0 ≤ k ≤ N ) interpolating the values on the coarse grid (s l ) 1≤l≤n . Let us denote by p(x, y) the density of the law N (x + b(x)T /N, σ(x) 2 T /N ) of the Euler scheme starting from x after one time step T /N . Thanks to the ellipticity assumption, we have p(x, y) > 0 for any x, y ∈ R. Conditionally on ( Ȳs 1 , . . . , Ȳsn ), we generate independent random vectors ( Ȳs l-1 +t 1 , . . . , Ȳs l-1 +t m-1 ) 1≤l≤n-1 and ( Ȳs n-1 +t 1 , . . . , Ȳt N-1 ) with respective densities p( Ȳs l-1 , x 1 )p(x 1 , x 2 ) . . . p(x n-1 , Ȳs l ) R n-1 p( Ȳs l-1 , y 1 )p(y 1 , y 2 ) . . . p(y n-1 , Ȳs l )dy 1 . . . dy n-1 and p( Ȳs n-1 , x 1 )p(x 1 , x 2 ) . . . p(x N -1-m(n-1) , Ȳsn )

R N-1-m(n-1) p( Ȳs n-1 , y 1 )p(y 1 , y 2 ) . . . p(y N -1-m(n-1) , Ȳsn )dy 1 . . . dy N -1-m(n-1)
and get immediately ( Ȳt k ) 0≤k≤n L = ( Xt k ) 0≤k≤n . Then, thanks to the ellipticity condition,

1 σ( Ȳt k-1 ) ( Ȳt k -Ȳt k-1 -b( Ȳt k-1 )) 1≤k≤N
are independent centered Gaussian variables with variance T /N . By using independent Brownian bridges, we can then construct a Brownian motion (β t ) t∈[0,T ] such that

β t k -β t k-1 = 1 σ( Ȳt k-1 ) ( Ȳt k -Ȳt k-1 -b( Ȳt k-1 )),
which ends the construction.

Conclusion

In this paper, we prove that the order of convergence of the Wasserstein distance W p on the space of continuous paths between the laws of a uniformly elliptic one-dimensional diffusion and its Euler scheme with N -steps is not worse that N -2/3+ε . In view of a possible extension to multidimensional settings, two main difficulties have to be overcomed. First, we took advantage of the optimality of the inverse transform coupling in dimension one to obtain a uniform bound on the Wasserstein distance between the marginal laws with optimal rate N -1 up to a logarithmic factor. In dimension d > 1, the optimal coupling between two probability measures on R d is not available, which makes the estimation of the Wasserstein distance between the marginal laws much more complicated even if, for W 1 , the order N -1 may be deduced from the results of [START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF] (see Remark 2.3). In the second place, one has to generalize the estimation on diffusion bridges given by Proposition C.3 which we deduce from the Lamperti transform in dimension d = 1.

In the perspective of the multi-level Monte Carlo method introduced by Giles [8], coupling with order of convergence N -2/3+ε the Euler schemes with N and 2N steps would also be of great interest for variance reduction, especially in multidimensional situations where the Milstein scheme is not feasible (see [START_REF] Jourdain | High order discretization schemes for stochastic volatility models[END_REF] for the implementation of this idea in the example of a discretization scheme devoted to usual stochastic volatility models). But this does not seem obvious from our non constructive coupling between the Euler scheme and its diffusion limit.

For both the derivation of the order of convergence of the Wasserstein distance on the path space and the explicitation of the coupling, the limiting step in our approach is Proposition 3.4. In this proposition, we bound the dual formulation of the Wasserstein distance between n-dimensional marginals by the Wasserstein distance between one-dimensional marginals multiplied by n.

Even if the order of convergence of the Wasserstein distance on the path space obtained in the present paper may not be optimal, it provides the first significant step from the order N 1/2 obtained with the trivial coupling where the diffusion and the Euler scheme are driven by the same Brownian motion.

A Proofs of Section 2

Proof of Proposition 2.4. According to [START_REF] Friedman | Stochastic differential equations and applications[END_REF], Theorems 5.4 and 4.7, for any t ∈ (0, T ], X t admits a density p t (x) w.r.t. the Lebesgue measure on the real line, the function (t, x) → p t (x) is C 1,2 on (0, T ] × R and, on this set, it is a classical solution of the Fokker-Planck equation

∂ t p t (x) = 1 2 ∂ xx (a(x)p t (x)) -∂ x (b(x)p t (x)). (A.1)
Moreover, the following Gaussian bounds hold

∃C > 0, ∀t ∈ (0, T ], ∀x ∈ R, |p t (x)| + √ t|∂ x p t (x)| ≤ C √ t e -(x-x 0 ) 2 Ct (A.2)
The partial derivatives ∂ x F t (x) = p t (x) and ∂ xx F t (x) = ∂ x p t (x) exist and are continuous on (0, T ] × R. For 0 < s < t ≤ T and y ≤ x, integrating (A.1) over [s, t] × [y, x], then letting y → -∞ thanks to (A.2), one obtains

F t (x) -F s (x) = t s 1 2 ∂ x (a(x)p r (x)) -b(x)p r (x)dr
. By continuity of the integrand w.r.t. (r, x) one deduces that the partial derivative ∂ t F t (x) exists and is continuous on (0, T ] × R. So, (t, x) → F t (x) is C 1,2 on (0, T ] × R and solves

∂ t F t (x) = 1 2 ∂ x (a(x)∂ x F t (x)) -b(x)∂ x F t (x). (A.3)
According to [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF], the density is also bounded from below by some Gaussian kernel : ∃c >

0, ∀(t, x) ∈ (0, T ] × R, |p t (x)| ≥ c √ t e -(x-x 0 ) 2 ct
. This enables us to apply the implicit function theorem to (t, x, u) → F t (x)u to deduce that the inverse

u → F -1 t (u) of x → F t (x) is C 1,2 in
the variables (t, u) ∈ (0, T ] × (0, 1) and solves

∂ t F -1 t (u) = - ∂ t F t ∂ x F t (F -1 t (u)) = - 1 2 ∂ x (a(x)∂ x F t (x))| x=F -1 t (u) ∂ u F -1 t (u) + b(F -1 t (u)) = - 1 2 ∂ u a(F -1 t (u)) ∂ u F -1 t (u) + b(F -1 t (u))
where we used (A.3) for the second equality and

∂ u F -1 t (u) = 1 ∂xFt(F -1 t (u))
for both the second and the third equalities. Proof of Proposition 2.5.

For t ∈ (0, t 1 ], Xt admits the gaussian density with mean x 0 + b(x 0 )t and variance a(x 0 )t. By induction on k and independence of W t -W t k and Xt k in (0.2), one checks that for k ∈ {1, . . . , n-1}, Xt k admits a density pt k (x) and that for t ∈ (t k , t k+1 ], ( Xt k , Xt ) admits the density

ρ(t k , t, y, x) = pt k (y) e - (x-y-b(y)(t-t k )) 2 2a(y)(t-t k ) 2πa(y)(t -t k ) . The marginal density pt (x) = R pt k (y) e - (x-y-b(y)(t-t k )) 2 2a(y)(t-t k ) √ 2πa(y)(t-t k )
dy of Xt is continuous on (t k , t k+1 ] × R by Lebesgue's theorem and positive.

Let

N (x) = x -∞ e -y 2
2 dy √ 2π denote the cumulative distribution function of the standard Gaussian law and k ∈ {0, . . . , N -1}. Again by the independence structure in (0.2), for (t, x)

∈ (t k , t k+1 ]× R, Ft (x) = E N x-Xt k -b( Xt k )(t-t k ) √ a( Xt k )(t-t k )
. One has

∂ t N x -y -b(y)(t -t k ) a(y)(t -t k ) = - x -y -b(y)(t -t k ) 2 2πa(y)(t -t k ) 3 + b(y) 2πa(y)(t -t k ) e - (x-y-b(y)(t-t k )) 2 2a(y)(t-t k )
.

By the growth assumption on σ and b, one easily checks that ∀k ∈ {0, . . . , N }, E( X2 t k ) < +∞. With the uniform ellipticity assumption and Lebesgue's theorem, one deduces that Ft (x) is differentiable w.r.t. t with partial derivative

∂ t Ft (x) = -E   x -Xt k -b( Xt k )(t -t k ) 2 2πa( Xt k )(t -t k ) 3 + b( Xt k ) 2πa( Xt k )(t -t k ) e - (x-Xt k -b( Xt k )(t-t k )) 2 2a( Xt k )(t-t k )   (A.4) continuous in (t, x) ∈ (t k , t k+1 ] × R.
In the same way, one checks smoothness of Ft (x) in the spatial variable x and obtains that this function is

C 1,2 on (t k , t k+1 ] × R. When k ≥ 1, E     b( Xt k ) e - (x-Xt k -b( Xt k )(t-t k )) 2 2a( Xt k )(t-t k ) 2πa( Xt k )(t -t k )     = R b(y)ρ(t k , t, y, x)dy = E[b( Xt k )| Xt = x]p t (x).
For k = 0, even if ( X0 , Xt ) has no density, the equality between the opposite sides of this equation remains true.

Combining Lebesgue's theorem and a similar reasoning, one checks that

-E   x -Xt k -b( Xt k )(t -t k ) 2πa( Xt k )(t -t k ) 3 e - (x-Xt k -b( Xt k )(t-t k )) 2 2a( Xt k )(t-t k )   = ∂ x E     a( Xt k ) e - (x-Xt k -b( Xt k )(t-t k )) 2 2a( Xt k )(t-t k ) 2πa( Xt k )(t -t k )     = ∂ x E(a( Xt k )| Xt = x)p t (x) .
With (A.4), one deduces that

∂ t Ft (x) = 1 2 ∂ x E[a( Xt k )| Xt = x]∂ x Ft (x) -E[b( Xt k )| Xt = x]∂ x Ft (x). (A.5)
One checks that the function (t, u) → F -1 t (u) is smooth and satisfies the partial differential equation (2.3) by arguments similar to the ones given at the end of the proof of Proposition 2.4.

Remark A.1 In the same way, for k ∈ {0, . . . , N -1}, one could prove that on (t k , t k+1 ] × R, (t, x) → pt (x) is C 1,2 and satisfies the partial differential

∂ t pt (x) = 1 2 ∂ xx E[a( Xt k )| Xt = x]p t (x) -∂ x E[b( Xt k )| Xt = x]p t (x) .
obtained by spatial derivation of (A.5). This is related to [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô's differential[END_REF].

Proof of Lemma 2.6.

By the continuity of the paths of X and X and the finiteness of E sup t≤T (|X t | p+1 + | Xt | p+1 ) , one easily checks that t → W p p (L(X t ), L( Xt )) is continuous. Let k ∈ {0, . . . , N -1} and s, t ∈ (t k , t k+1 ] with s ≤ t. Combining Propositions 2.4 and 2.5 with a spatial integration by parts, one obtains for ε ∈ (0, 1/2)

1-ε ε |F -1 t (u) -F -1 t (u)| p du = 1-ε ε |F -1 s (u) -F -1 s (u)| p du + p t s 1-ε ε |F -1 r (u) -F -1 r (u)| p-2 (F -1 r (u) -F -1 r (u))(b(F -1 r (u)) -β r (u))dudr + p(p -1) 2 t s 1-ε ε |F -1 r (u) -F -1 r (u)| p-2 (∂ u F -1 r (u) -∂ u F -1 r (u)) a(F -1 r (u)) ∂ u F -1 r (u) - α r (u) ∂ u F -1 r (u) dudr + p 2 t s |F -1 r (1 -ε) -F -1 r (1 -ε)| p-2 (F -1 r (1 -ε) -F -1 r (1 -ε)) α r (1 -ε) ∂ u F -1 r (1 -ε) - a(F -1 r (1 -ε)) ∂ u F -1 r (1 -ε) dr - p 2 t s |F -1 r (ε) -F -1 r (ε)| p-2 (F -1 r (ε) -F -1 r (ε)) α r (ε) ∂ u F -1 r (ε) - a(F -1 r (ε)) ∂ u F -1 r (ε) dr (A.6)
We are now going to take the limit as ε → 0. We will check at the end of the proof that lim

u→0 + or 1 - sup r∈[s,t] a(F -1 t (u)) ∂ u F -1 t (u) |F -1 t (u) -F -1 t (u)| p-1 + sup r∈[s,t] α t (u) ∂ u F -1 t (u) |F -1 t (u) -F -1 t (u)| p-1 = 0.
(A.7) which enables us to get rid of the two last boundary terms.

Combining Young's inequality with the uniform ellipticity assumption and the positivity of

∂ u F -1 t (u) and ∂ u F -1 t (u), one obtains (∂ u F -1 r (u) -∂ u F -1 r (u)) a(F -1 r (u)) ∂ u F -1 r (u) - α r (u) ∂ u F -1 r (u) = a(F -1 r (u)) -α r (u) ∂ u F -1 r (u) -∂ u F -1 r (u) ∂ u F -1 r (u) ∨ ∂ u F -1 r (u) -a(F -1 r (u)) ((∂ u F -1 r (u) -∂ u F -1 r (u)) + ) 2 ∂ u F -1 r (u)∂ u F -1 r (u) -α r (u) ((∂ u F -1 r (u) -∂ u F -1 r (u)) + ) 2 ∂ u F -1 r (u)∂ u F -1 r (u) ≤ 1 4a a(F -1 r (u)) -α r (u) 2 + a (∂ u F -1 r (u) -∂ u F -1 r (u)) 2 (∂ u F -1 r (u) ∨ ∂ u F -1 r (u)) 2 -(a(F -1 r (u)) ∧ α r (u)) (∂ u F -1 r (u) -∂ u F -1 r (u)) 2 ∂ u F -1 r (u)∂ u F -1 r (u) ≤ 1 4a a(F -1 r (u)) -α r (u) 2 .
Hence, up to the factor p(p-1)

2

, the third term of the right-hand-side of (A.6) is equal to

t s 1-ε ε |F -1 r (u) -F -1 r (u)| p-2 (∂ u F -1 r (u) -∂ u F -1 r (u)) a(F -1 r (u)) ∂ u F -1 r (u) - α r (u) ∂ u F -1 r (u) - a(F -1 r (u)) -α r (u) 2 4a dudr + 1 4a t s 1-ε ε |F -1 r (u) -F -1 r (u)| p-2 a(F -1 r (u)) -α r (u) 2 dudr.
where the integrand in the first integral is non positive. Since

t s 1 0 |F -1 r (u) -F -1 r (u)| p-2 |F -1 r (u) -F -1 r (u)||b(F -1 r (u)) -β r (u)| + (a(F -1 r (u)) -α r (u)) 2 dudr ≤ 2 b ∞ t s W p-1 p (L(X r ), L( Xr ))dr + 4 a 2 ∞ t s W p-2 p
(L(X r ), L( Xr ))dr < +∞, one can take the limit ε → 0 in (A.6) using Lebesgue's theorem for the second term of the righthand-side and combining Lebesgue's theorem with monotone convergence for the third term to obtain

W p p (L(X t ), L( Xt )) = W p p (L(X s ), L( Xs )) + p t s 1 0 |F -1 r (u) -F -1 r (u)| p-2 (F -1 r (u) -F -1 r (u))(b(F -1 r (u)) -β r (u))dudr + p(p -1) 2 t s 1 0 |F -1 r (u) -F -1 r (u)| p-2 (∂ u F -1 r (u) -∂ u F -1 r (u)) a(F -1 r (u)) ∂ u F -1 r (u) - α r (u) ∂ u F -1 r (u)
dudr.

(A.8)

The last term which belongs to [-∞, +∞) is finite since so are all the other terms. We deduce integrability of (r, u)

→ |F -1 r (u) -F -1 r (u)| p-2 (∂ u F -1 r (u) -∂ u F -1 r (u)) a(F -1 r (u)) ∂ u F -1 r (u) - α r (u) ∂ u F -1 r (u)
on [s, t] × (0, 1). Similar arguments show that the integrability property and (A.8) remain true for s = t k . By summation, they remain true for 0 ≤ s ≤ t ≤ T . So integrability holds on [0, T ] for the distribution derivative

∂ t W p p (L(X t ), L( Xt )) = p 1 0 |F -1 t (u) -F -1 t (u)| p-2 (F -1 t (u) -F -1 t (u))(b(F -1 t (u)) -β t (u))du + p(p -1) 2 1 0 |F -1 t (u) -F -1 t (u)| p-2 (∂ u F -1 t (u) -∂ u F -1 t (u)) a(F -1 t (u)) ∂ u F -1 t (u) - α t (u) ∂ u F -1 t (u) du ≤ p 1 0 |F -1 t (u) -F -1 t (u)| p-2 (F -1 t (u) -F -1 t (u))(b(F -1 t (u)) -β t (u)) + (p -1) a(F -1 t (u)) -α t (u) 2 8a du.
Equation (2.4) follows by remarking that

a(F -1 r (u)) -α r (u) 2 ≤ 2 a ′ 2 ∞ |F -1 t (u) -F -1 t (u)| 2 + a( F -1 t (u)) -α t (u)
2 and using a similar idea for |b(F -1 t (u))β t (u)|.

To prove (A.7) for 0 < s ≤ t ≤ T , we use the Aronson estimates recalled in the proof of Proposition 2.4 for X t and deduced from Theorem 2.1 [START_REF] Lemaire | On some non asymptotic bounds for the Euler scheme[END_REF] for the Euler scheme.

c √ r exp - (x -x 0 ) 2 cr ≤ p r (x) ∧ pr (x) ≤ p r (x) ∨ pr (x) ≤ C √ r exp - (x -x 0 ) 2 Cr , (A.9) Setting K 1 = c √ t , c 1 = cs/2, K 2 = C √ s and c 2 = Ct/2, one has ∀r ∈ [s, t], ∀x ∈ R, K 1 exp - (x -x 0 ) 2 2c 1 ≤ ρ r (x) ≤ K 2 exp - (x -x 0 ) 2 2c 2 . (A.10)
where ρ r denotes either p r or pr . The four limits in (A.7) can be obtained similarly, and we focus on the one of sup r∈[s,t]

a(F -1 r (u)) ∂uF -1 r (u) |F -1 r (u) -F -1 r (u)| p-1 .
Up to modifying K 1 > 0 and decreasing c 1 > 0, we get from (A.10) that

∀r ∈ [s, t], ∀x ≤ x 0 -1, K 1 (x 0 -x) exp - (x -x 0 ) 2 2c 1 ≤ ρ r (x) ≤ K 2 (x 0 -x) exp - (x -x 0 ) 2 2c 2 , which leads to ∀x ≤ x 0 -1, K 1 c 1 exp - (x -x 0 ) 2 2c 1 ≤ G r (x) ≤ K 2 c 2 exp - (x -x 0 ) 2 2c 2 ,
where G r denotes either F r or Fr . Thus, the inverse function satisfies

x 0 --2c 2 log( u K 2 c 2 ) ≤ F -1 r (u) ≤ x 0 --2c 1 log( u K 1 c 1 ) (A.11)
for u small enough. The two last inequalities imply that when x → -∞,

∀r ∈ [s, t], F -1 r (F r (x)) ≥ x 0 --2c 2 log( K 1 c 1 K 2 c 2 ) - (x -x 0 ) 2 2c 1 and sup r∈[s,t] |x -F -1 r (F r (x))| = x→-∞ O(x).
With the boundedness of a and (A.10), we easily deduce that lim

x→-∞ sup r∈[s,t] a(x)p r (x)|x -F -1 r (F r (x))| p-1 = 0.
Since, by (A.11), F -1 r (u) converges to -∞ uniformly in r ∈ [s, t] as u tends to 0, we conclude that lim

u→0 + sup r∈[s,t] a(F -1 r (u)) ∂ u F -1 r (u) |F -1 r (u) -F -1 r (u)| p-1 = 0.
Proof of Lemma 2.7. By Jensen's inequality,

E |E(W t -W τt | Xt )| p ≤ E [|W t -W τt | p ] ≤ C N p/2 .
Let us now check that the left-hand-side is also smaller than C t p/2 N p . To do this, we will study

E (W t -W τt )g( Xt )
where g is any smooth real valued function.

In order to continue, we need to do various estimations on the Euler scheme and its stochastic derivatives. Let η t = min{t i ; t ≤ t i } denote the discretization time just after t. We have D u Xt = 0 for u > t, and

D u Xt = 1 {t≤ηu} σ( Xτt ) + 1 {t>ηu} 1 + σ ′ ( Xτt )(W t -W τt ) + b ′ ( Xτt )(t -τ t ) D u Xτt for u ≤ t.
Then by induction, one clearly obtains that for u ≤ t,

D u Xt = σ( Xτu ) Ēu,t , Ēu,t =            1 if τ t ≤ η u 1 + b ′ ( Xτt )(t -τ t ) + σ ′ ( Xτt )(W t -W τt ) if η u = τ t Nτ t T -1 i= Nηu T 1 + b ′ ( Xt i )(t i+1 -t i ) + σ ′ ( Xt i )(W t i+1 -W t i ) if η u < τ t × 1 + b ′ ( Xτt )(t -τ t ) + σ ′ ( Xτt )(W t -W τt ) .
Note that Ē satisfies the following properties: 1. Ēu,t = Ēη(u),t and 2. Ēt i ,t j Ēt j ,t = Ēt i ,t for t i ≤ t j ≤ t. We also introduce the process E defined by

E u,t = exp t u b ′ (X s ) - 1 2 σ ′ (X s ) 2 ds + t u σ ′ (X s )dW s .
The next lemma, the proof of which is postponed at the end of the present proof states some useful properties of the processes E and Ē.

Lemma A.2 Let us assume that b, σ ∈ C 2 b . Then, we have:

sup 0≤s≤t≤T E E -p s,t + E E p s,t ≤ C, sup 0≤s≤t≤T E Ēp s,t ≤ C, (A.12) sup 0≤s,u≤t≤T E |D u Ēs,t | p + |D u E s,t | p ≤ C, (A.13) sup 0≤t≤T E E 0,t -Ē0,t p ≤ C N p 2 , (A.14)
where C is a positive constant depending only on p and T .

We next define the localization given by

ψ = ϕ E -1 0,t E 0,t -Ē0,t .
Here ϕ : R →[0, 1] is a C ∞ symmetric function so that

ϕ(x) = 0, if |x| > 1 2 1, if |x| < 1 4 . One has E (W t -W τt )g( Xt ) = E (W t -W τt )g( Xt )ψ + E (W t -W τt )g( Xt )(1 -ψ) = t τt E ψg ′ ( Xt )D u Xt du + E g( Xt ) t τt D u ψdu + E (W t -W τt )g( Xt )(1 -ψ)
where the second equality follows from the duality formula (see e.g. Definition 1.3.1 in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]). Since for τ t ≤ u ≤ t

E ψg ′ ( Xt )D u Xt = E ψg ′ ( Xt )σ( Xτt ) = t -1 E t 0 D s g( Xt ) ψσ( Xτt ) D s Xt ds = t -1 E g( Xt ) t 0 ψσ( Xτt )σ -1 Xτs Ē-1 s,t δW s ,
one deduces

E W t -W τt | Xt = t -1 t τt E t 0 ψσ( Xτt )σ -1 Xτs Ē-1 s,t δW s Xt du + E t τt D u ψdu Xt + E (W t -W τt ) (1 -ψ)| Xt . (A.15)
Here δW denotes the Skorohod integral. In order to obtain the conclusion of the Lemma, we need to bound the L p -norm of each term on the right-hand-side of (A.15). In particular, we will use the following estimate (which also proves the existence of the Skorohod integral on the left side below) which can be found in Proposition 1.5.4 in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]: . By Jensen's inequality for p ≥ 2, we have

t 0 ψσ( Xτt )σ -1 Xτs Ē-1 s,t δW s p ≤ C(p) ψσ( Xτt )σ -1 Xτ• Ē-1
F • p 1,p ≤ t p/2-1 t 0 E[|F s | p ]ds + t p-2 t 0 t 0 E[|D u F s | p ]dsdu, (A.17)
and we will use this inequality to upper bound (A.16). When 1 ≤ p ≤ 2, we will use alternatively the following upper bound

F • p 1,p ≤ t 0 E[F 2 s ]ds p/2 + t 0 t 0 E[(D u F s ) 2 ]dsdu p/2
that comes from Hölder's inequality.

For ψ > 0, Ē0,t ≥ 1 2 E 0,t > 0. From Hypothesis 3.1, there are constants 0 < σ ≤ σ < ∞ such that 0 < σ ≤ σ ≤ σ, and one has

t 0 E ψσ( Xτt )σ -1 Xτs Ē-1 s,t p ds ≤ σ σ p t 0 E ψ p Ē-p 0,t Ēp 0,η(s) ds ≤ 2σ σ p E[E -2p 0,t ] t 0 E[| Ē0,η(s) | 2p ]ds ≤ Ct,
by using the estimates (A.12).

Next, we focus on getting an upper bound for

t 0 t 0 E D u ψσ( Xτt )σ -1 Xτs Ē-1 s,t p dsdu. (A.18)
To do so, we compute the derivative using basic derivation rules, which gives

D u ψσ( Xτt )σ -1 Xτs Ē-1 s,t = D u ψσ( Xτt )σ -1 Xτs Ē-1 s,t + ψσ ′ ( Xτt )D u Xτt σ -1 Xτs Ē-1 s,t -ψσ( Xτt )σ -2 σ ′ Xτs σ( Xτu ) Ēu,τs Ē-1 s,t 1 u≤τs -ψσ( Xτu )σ -1 Xτs Ē-2 s,t D u Ēs,t . (A.19)
One has then to get an upper bound for the L p -norm of each term. As many of the arguments are repetitive, we show the reader only some of the arguments that are involved. Let us start with the first term. We have

D u ψ = ϕ ′ E -1 0,t E 0,t -Ē0,t D u E -1 0,t E 0,t -Ē0,t ,
and

D u E -1 0,t E 0,t -Ē0,t = E -2 0,t D u E 0,t Ē0,t -E -1 0,t D u Ē0,t .
From the estimates in (A.12) and (A.13), we obtain sup

u∈[0,t] D u ψ p ≤ ϕ ′ ∞ C(p). (A.20) Since Ē-1 s,t = Ē0,η(s) Ē-1 0,t and Ē0,t ≥ 1 2 E 0,t > 0 if ϕ ′ E -1 0,t E 0,t -Ē0,t = 0, we have E D u ψσ( Xτt )σ -1 Xτs Ē-1 s,t p ≤ 2σ σ p D u ψ p 2p E E -1 0,t Ē0,η(s) 2p 1/2 .
Similar bounds hold for the three other terms. Note that the highest requirements on the derivatives of b and σ will come from the terms involving D u Ē in (A. [START_REF] Kohatsu-Higa | Weak approximations: A Malliavin calculus approach[END_REF]). Gathering all the upper bounds, we get that ψσ( Xτt )σ -1 Xτ• Ē-1 We are now in position to conclude. Using Jensen's inequality, the results (A.15), (A.12), (A.14), (A.20) and the definition of ϕ together with Chebyshev's inequality, we have for any k > 0 that

E E W t -W τt | Xt p ≤ C t -p (t -τ t ) p t 0 ψσ( Xτt )σ -1 Xτs Ē-1 s,t δW s p p + (t -τ t ) p-1 t τt D u ψ p p du + E(|W t -W τt | 2p )4 k/2 E(|E 0,t -Ē0,t | 2k )E(E -2k 0,t ) 1/4 ≤ C t -p/2 (t -τ t ) p + (t -τ t ) p + 1 N (2p+k)/4 ≤ C 1 t p/2 N p + 1 N p 2 + k 4 .
Proof of Lemma A.2. The upper bounds (A.12) on E and Ē are obvious since b ′ and σ ′ are bounded. Now, let us remark that Ē and E satisfy Thus, (A.14) can be easily obtained by noticing that ( Xt , Ē0,t ) is the Euler scheme for the SDE (X t , E 0,t ) which has Lipschitz coefficients, and by using the strong convergence order of 1/2 (see e.g. [START_REF] Kanagawa | On the rate of convergence for Maruyama's approximate solutions of stochastic differential equations[END_REF]).

E u,t = 1 + t u σ ′ (X s )E u,s dW s + t u b ′ (X s )E u,
The estimate (A.13) on D u E is given, for example, by Theorem 2.2.1 in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. On the other hand, we have for η(s) ≤ u ≤ t D u Ēηs,t = σ ′ ( Xτu ) Ēηs,τu + In order to obtain a L p (Ω) estimate, we then use (A.12), b, σ ∈ C 2 b and Gronwall's lemma.

B Proofs of Section 3

Proof of Proposition 3.4. We use the dual representation of the Wasserstein distance (0.6) deduced from Kantorovitch duality theorem (see for instance Theorem 5.10 p58 [START_REF] Villani | Optimal transport. Old and new[END_REF]) :

W p p (µ, ν) = sup φ∈L 1 (ν) E φ(x)µ(dx) - E φ(x)ν(dx)
where φ(x) = inf y∈E (φ(y) + |y -x| p ).

We also denote by (X s,x t ) t∈[s,T ] the solution to (0.1) starting from x ∈ R at time s ∈ [0, T ] and by ( Xt j ,x t

) t∈[t j ,T ] the Euler scheme starting from x at time t j with j ∈ {0, . . . , N }. It is enough to check that 

w k def = W p (L( Xs 1 , . . . , Xs k , X s k , Xs k s k+1 , . . . , X s k , Xs k sn ), L( Xs 1 , . . . , Xs k-1 , X s k-1 , Xs k-1 s k , . . . , X s k-1 , Xs k-1 sn )) is smaller than C sup 0≤t≤T,x∈R W p (L( Xx t ), L(X x t )) since W p (L(
) -f ( Xs 1 , . . . , Xs k-1 , X s k-1 , Xs k-1 s k , . . . , X s k-1 , Xs k-1 sn ) ≤ E inf y k ∈R {f ( Xs 1 , . . . , Xs k-1 , y k , X s k ,y k s k+1 , . . . , X s k ,y k sn ) + max k≤j≤n |X s k ,y k s j -X s k , Xs k s j | p } -f ( Xs 1 , . . . , Xs k-1 , X s k-1 , Xs k-1 s k , . . . , X s k-1 , Xs k-1 sn ) ≤ E inf y k ∈R {f k ( Xs 1 , . . . , Xs k-1 , y k ) + C|y k -Xs k | p } -f k ( Xs 1 , . . . , Xs k-1 , X s k-1 , Xs k-1 s k ) ≤ CE W p p (L(X s k-1 ,x s k ), L( Xs k-1 ,x s k ))| x= Xs k-1 ≤ C sup x∈R W p p (L( Xx s k -s k-1 ), L(X x s k -s k-1 )) ≤ C sup 0≤t≤T,x∈R W p p (L( Xx t ), L(X x t )).

C Some properties of diffusion bridges

Let us suppose that the SDE dX t = b(X t )dt+σ(X t )dW t , X 0 = x has a transition density p t (x, y) which is positive and of class C 1,2 with respect to (t, x) ∈ R * + × R. We check later in this section that this holds under Hypothesis 3.1. Then, the law of the diffusion bridge with time horizon T is given by (see for instance Fitzsimmons, Pitman and Yor [START_REF] Fitzsimmons | Markovian bridges: construction, Palm interpretation, and splicing[END_REF])

E[F (X u , 0 ≤ u ≤ t)|X T = y] = E F (X u , 0 ≤ u ≤ t) p T -t (X t , y) p T (x, y) , 0 ≤ t < T ,
where F : C([0, t], R) → R is a bounded measurable function. Indeed for g : R → R measurable and bounded, using that X T has the density p T (x, y) then the Markov property at time t, one checks that

E E F (X u , 0 ≤ u ≤ t) p T -t (X t , y) p T (x, y) y=X T g(X T ) = E F (X u , 0 ≤ u ≤ t) R g(y)p T -t (X t , y)dy = E [F (X u , 0 ≤ u ≤ t)E[g(X T )|X t ]] = E [F (X u , 0 ≤ u ≤ t)g(X T )] .
We thus focus on the change of probability measure

dP y dP Ft = p T -t (X t , y) p T (x, y) =: M t , so that E[F (X u , 0 ≤ u ≤ t)|X T = y] = E y [F (X u , 0 ≤ u ≤ t)
] where E y denotes the expectation with respect to P y . We define ℓ t (x, y) = log p t (x, y). The process (M t ) t∈[0,T ) is a martingale, and by Itô's formula, we get dM t = M t ∂ x ℓ T -t (X t , y)σ(X t )dW t , which gives

M t = exp t 0 ∂ x ℓ T -s (X s , y)σ(X s )dW s - 1 2 t 0 ∂ x ℓ T -s (X s , y) 2 σ(X s ) 2 ds .
Girsanov Theorem then gives that for all y ∈ R, (W y t = W t -t 0 ∂ x ℓ T -s (X s , y)σ(X s )ds) t∈[0,T ) is a Brownian motion under P y , so that (W X T t ) t∈[0,T ) is a Brownian motion independent of X T . Moreover, we have

dX t = [b(X t ) + ∂ x ℓ T -t (X t , y)σ(X t ) 2 ]dt + σ(X t )dW y t , (C.1)
which gives precisely the diffusion bridge dynamics.

Conversely, we would like now to reconstruct the diffusion from the initial and the final value by using diffusion bridges. We have the following result.

Proposition C.1 We consider an SDE dX t = b(X t )dt + σ(X t )dW t , X 0 = x with a transition density p t (x, y) positive and of class C 1,2 on (t, x) ∈ R * + × R. Let (B t , t ≥ 0) be a standard Brownian motion and Z T be a random variable with density p T (x, y) drawn independently from B. We assume that pathwise uniqueness holds for the SDE

dZ x,y t = [b(Z x,y t ) + ∂ x ℓ T -t (Z x,y t , y)σ(Z x,y t ) 2 ]dt + σ(Z x,y t )dB t , Z x,y 0 = x, t ∈ [0, T ), (C.2)
for any x, y ∈ R, and set Z t = Z x,Z T t for t ∈ [0, T ). Then, (Z t ) t∈[0,T ] and (X t ) t∈[0,T ] have the same law.

A consequence of this result is that (Z t , t ∈ [0, T ]) has continuous paths, which gives that lim t→T -Z x,y t = y a.s., dy-a.e. Proof . Let t ∈ [0, T ) and F : C([0, t], R) → R and g : R → R be bounded and measurable functions. Since pathwise uniqueness for the SDE (C.2) implies weak uniqueness, we get

E [F (Z x,y u , 0 ≤ u ≤ t)] = E y [F (X u , 0 ≤ u ≤ t)] = E F (X u , 0 ≤ u ≤ t)
p T -t (X t , y) p T (x, y) .

Thus, we have

E [F (Z u , 0 ≤ u ≤ t)g(Z T )] = E F (X u , 0 ≤ u ≤ t) R p T -t (X t , y)g(y)dy = E [F (X u , 0 ≤ u ≤ t)g(X T )] .
Hence the finite-dimensional marginals of the two processes are equal. Since (X t ) t∈[0,T ] has continuous paths and (Z t ) t∈[0,T ] has càdlàg paths (continuous on [0, T ) with a possible jump at T ), this concludes the proof.

From now on, we assume that Hypothesis 3.1 holds. We introduce the Lamperti transformation of the stochastic process (X t , t ≥ 0). We define ϕ(x) = Proof . It is well-known that we can express the transition density pt (x, ŷ) by using Girsanov theorem as an expectation on a Brownian bridge between x and ŷ. Namely, since α and its derivatives are bounded, we can apply a result stated in Gihman and Skorohod [START_REF] Gihman | Stochastic differential equations. Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] .

This is a continuous function on R + × R 2 , and we easily conclude by using the dominated convergence theorem and α ∈ C 3 b .

By straightforward calculations, we have Proof . For x, ŷ ∈ R, we consider the following SDE 

  s ds, Ēηu,t = 1 + t ηu σ ′ ( Xτs ) Ēηu,τs dW s + t ηu b ′ ( Xτs ) Ēηu,τs ds.

σ

  ′′ ( Xτr )σ( Xτu ) Ēηu,τr Ēηs,τr + σ ′ ( Xτr )D u Ēηs,τr dW r + t ηu b ′′ ( Xτr )σ( Xτu ) Ēηu,τr Ēηs,τr + b ′ ( Xτr )D u Ēηs,τr dr.

2 •

 2 ) and α(y) = b σ -σ ′ ϕ -1 (y), Xt def = ϕ(X t ) so that we haved Xt = α( Xt )dt + dW t , t ∈ [0, T ]. (C.3)By Hypothesis 3.1, ϕ is a C 5 bijection, α ∈ C 3 b and both ϕ and ϕ -1 are Lipschitz continuous. We denote by pt (x, ŷ) the transition density of X and lt (x, ŷ) = log(p t (x, ŷ)).Lemma C.2 The density pt (x, ŷ) is C 1,2 with respect to (t, x) ∈ R * + × R. Besides, we have ∂ x lt (x, ŷ) = ŷx t α(x) + g t (x,ŷ), where g t (x, ŷ) is a continuous function on R + × R 2 such that ∂ xg t (x, ŷ) and ∂ ŷ g t (x, ŷ) exist and ∀T > 0, sup t∈[0,T ], x,ŷ∈R |∂ x g t (x, ŷ)| + |∂ y g t (x, ŷ)| < ∞.

  p t (x, y) = 1 σ(y)pt (ϕ(x), ϕ(y)), and p t (x, y) is thus positive and C 1,2 with respect to (t, x). The diffusion bridge (C.1) is thus well defined. Since ∂ x ℓ t (x, y) = 1 σ(x) ∂ x lt (ϕ(x), ϕ(y)), we get by Itô formula from (C.1)d Xt = [α( Xt ) + ∂ x lT -t ( Xt , ϕ(y))]dt + dW y t , dW y t = dW t -∂ x lT -t ( Xt , ϕ(y))dt. Therefore, as one could expect, the Lamperti transform on the diffusion bridge coincides with the diffusion bridge on the Lamperti transform.Proposition C.3 Let Hypothesis 3.1 hold. There exists a deterministic constant C such that∀T ∈ (0, T ], x, x ′ , y, y ′ ∈ R, sup t∈[0,T ) |Z x,y t -Z x ′ ,y ′ t | ≤ C(|xx ′ | ∨ |yy ′ |),and in particular, pathwise uniqueness holds for (C.2).

  d(|∆ t | ∨ |ŷ -ŷ′ |) ≤ C(|∆ t | ∨ |ŷ -ŷ′ |), for some positive constant C. Gronwall's lemma gives then |∆ t | ≤ e CT (|x -x′ | ∨ |ŷ -ŷ′ |). This gives in particular pathwise uniqueness for (C.4).Now, let us assume that (Z x,y t ) t∈[0,T ) solves (C.2). Then, ϕ(Z x,y t ) solves (C.4) with x = ϕ(x) and ŷ = ϕ(y), and we necessarily have Z x,y t = ϕ -1 ( Ẑϕ(x),ϕ(y) t) by pathwise uniqueness. Both ϕ and ϕ -1 are Lipschitz, and we denote by K a common Lipschitz constant. Then, we get|Z x,y t -Z x ′ ,y ′ t | = |ϕ -1 ( Ẑϕ(x),ϕ(y) t )ϕ -1 ( Ẑϕ(x ′ ),ϕ(y ′ ) t )| ≤ K 2 e CT (|xx ′ | ∨ |yy ′ |),which gives the desired result.

  Proposition 3.4 Let R n be endowed with the norm |(x 1 , . . . , x n )| = max 1≤l≤n |x l |. For any p ≥ 1, there is a constant C not depending on n such that W p (L(X s 1 , . . . , X sn ), L( Xs 1 , . . . , Xsn )) ≤ Cn sup

	0≤t≤T,x∈R

  Xs 1 , . . . , Xsn ), L(X s 1 , . . . , X sn )) ≤ , s ≤ s k ) and using(1.3), next conditioning to σ(W s , s ≤ s k-1 ) and using the dual formulation of the Wasserstein distance, one gets E f ( Xs 1 , . . . , Xs k , X s k , Xs k s k+1 , . . . , X s k , Xs k sn

	n k=1 w k . For f : R n → R a bounded measurable function and
	f (x 1 , . . . , x n ) =	inf (y 1 ,...,yn)∈R n	{f (y 1 , . . . , y n ) + max

1≤j≤n |y jx j | p }, we set f k (x 1 , . . . , x k ) = E(f (x 1 , . . . , x k , X s k ,x k s k+1 , . . . , X s k ,x k sn

)). First choosing (y 1 , . . . , y k-1 , y k+1 , . . . , y n ) = ( Xs 1 , . . . , Xs k-1 , X s k ,y k s k+1 , . . . , X s k ,y k sn ), then conditioning to σ(W s

  (Theorem 1, Chapter 3, § 13) to get that pt (x, ŷ) is positive andClearly, lt (x, ŷ) is C 1,2 in (t, x) ∈ R *+ × R (we can use carefree the dominated convergence theorem for the third term since α ∈ C 3 b ), and we have ′′ + 2αα ′ )(x + W s + s t (ŷx -W t ))ds

	lt (x, ŷ) = -	(x -ŷ) 2 2t	+	ŷ x α(z)dz + log E e -1 2	t 0 (α ′ +α 2 )(x+Ws+ s t (ŷ-x-Wt))ds -	1 2	log(2πt).
	g t (x, ŷ) = -	1 2	E e -1 2	t 0 (α ′ +α 2 )(x+Ws+ s t (ŷ-x-Wt))ds t 0 t (α E e -1 t-s 2 t 0 (α ′ +α 2 )(x+Ws+ s t (ŷ-x-Wt))ds

  T -t ( Ẑ x,ŷ t , ŷ) dt, Ẑ x,ŷ 0 = x, t ∈ [0, T ) (C.4)that corresponds to the diffusion bridge on the Lamperti transform X. We set ∆ t = Ẑ x,ŷ t -Ẑ x′ ,ŷ ′ t for t ∈ [0, T ) and x′ , ŷ′ ∈ R. We haved∆ t = ŷ -ŷ′ -∆ t Tt + g T -t ( Ẑ x,ŷ t , ŷ)g T -t ( Ẑ x′ ,ŷ ′

	d Ẑ x,ŷ t	= dB t +	ŷ -Ẑ x,ŷ t T -t	+ g

t , ŷ′ ) dt, and thus d(|∆ t | ∨ |ŷ -ŷ′ |) = sign(∆ t )1 |∆t|≥|ŷ-ŷ ′ | d∆ t . On the one hand, we observe that 1 |∆t|≥|ŷ-ŷ ′ | [sign(∆ t )(ŷ -ŷ′ ) -|∆ t |] ≤ 0. On the other hand, g t is uniformly Lipschitz w.r.t (x, ŷ) on t ∈ [0, T ] by Lemma C.2, which leads to:
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