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Abstract

We report on the mathematical analysis of two different, FFT-based, numerical schemes for the homogenization of composite media

within the framework of linear elasticity: the basic scheme of Moulinec and Suquet (1994, 1998), and the energy-based scheme of

Brisard and Dormieux (2010). Casting these two schemes as Galerkin approximations of the same variational problem allows us to

assert their well-posedness and convergence. More importantly, we extend in this work their domains of application, by relieving

some stringent conditions on the reference material which were previously thought necessary. The origins of the flaws of each

scheme are identified, and a third scheme is proposed, which seems to combine the strengths of the basic and energy-based schemes,

while leaving out their weaknesses. Finally, a rule is proposed for handling heterogeneous pixels/voxels, a situation frequently met

when images of real materials are used as input to these schemes.

Key words: Galerkin approximation, Heterogeneous media, Linear elasticity, Numerical homogenization, Polarization, Variational

problem

1. Introduction

Determination of the effective properties is a crucial point in

the analysis and design of composite materials. While closed-

form homogenization schemes (such as Mori-Tanaka [1, 2], self-

consistent [3], or generalized self-consistent [4, 5]) have been

known to provide satisfactory estimates within the framework of

linear elasticity, they may at times prove insufficient due to the

limited microstructural information they account for. Indeed, the

numerical input of these formulas reduces to volume fractions,

any higher-order information (such as shape, relative sizes or

positions) being at best accounted for in a qualitative way.

In order to faithfully account for the finest details of the mi-

crostructure, it is often necessary to resort to full-field numerical

simulation of the composite. The need for such an accurate

calculation is felt even more strongly when dealing with long-

term effective behaviour (since creep can induce high stiffness

contrasts, as argued in [6]; see also [7]), or non-linearities. Of

course, the price to pay for this increased accuracy is time.

This is particularly true of the standard finite element method,

which would probably first come to mind. Indeed, this approach

requires each sub-domain to be meshed, a time-consuming oper-

ation for highly heterogeneous composites. In such a situation,

numerical methods formulated on regular grids (e.g. custom

finite element [8], finite difference [6], or FFT-based methods

[9, 10]) might be preferred.

Regardless of the actual discretization scheme, inversion

of a (presumably large) linear system is always required, and
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iterative linear solvers [11] must generally be invoked. These

solvers work by iteratively performing matrix-vector products;

inversion can be fast if this product is implemented efficiently.

These considerations led Moulinec and Suquet [9, 10] to a

now popular numerical method based on the fast Fourier trans-

form (FFT). The so-called basic scheme results from the intro-

duction of a reference material leading to the Lippmann-Schwin-

ger equation [12] (see also section 4.3), which is then discretized.

In the framework of periodic elasticity, it is natural to solve the

resulting system in the Fourier space, where costly matrix-vector

products are shown to reduce to comparatively cheaper direct

(element-by-element) products.

Building on the same ideas, Brisard and Dormieux [13]

recently proposed another scheme, based on the energy principle

of Hashin and Shtrikman [14] (see also section 2.3). It was

found [13] that at a given resolution (grid fineness), inversion of

the linear system underlying this energy-based scheme could be

performed in much less iterations than would be necessary for

the basic scheme.

Nearly simultaneously, Zeman et al. [15] also proposed a

modified FFT-based scheme, where substitution of CG/BiCG

iterative solvers to the fixed-point iterations initially proposed

by Moulinec and Suquet [9, 10] was shown to lead to substantial

acceleration.

Both the equation of Lippmann and Schwinger and the prin-

ciple of Hashin and Shtrikman require the introduction of a

so-called reference material (see below), upon which some con-

ditions apply. For the basic scheme, these conditions are stated

in [16, eq. (22)]; it is always possible to enforce them. This is

not true of the energy-based scheme, for which the reference

material must be either stiffer or softer (in a sense which will be
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made more precise later) than all the constituants of the com-

posite. The energy-based scheme can therefore not be applied

to composites containing both pores and rigid inclusions, a sit-

uation of high practical interest. It should be noted that (for

different reasons) the basic scheme suffers from the same kind

of limitations, since it was shown to fail in the presence of pores

[16].

Our initial purpose was to try and alleviate some of these

limitations. Reviewing [16] and [13] with this goal in mind, we

came to the conclusion that the requirements on the reference

material stated in these papers are sufficient; whether they are

necessary remained an open question at that time. In other words:

is it relevant to use a reference material which violates the above

mentioned requirements? The answer to this question demanded

a rigorous mathematical analysis, in the course of which we

soon realized that both basic and energy-based schemes could

be regarded as Galerkin discretizations of the same variational

problem [17]. This proved a very effective approach, since the

classical results coming from the finite element literature could

be applied.

In the present paper, the main steps of the theoretical analysis

of both basic and energy-based numerical schemes are detailed.

Only the essential results are stated, and some of the corre-

sponding proofs are outlined; more details can be found in the

appendices. These results have deep practical implications.

First, our variational approach results in an unambiguous

separation between discretization of the continuous problem of

Hashin and Shtrikman (see below) and inversion of the resulting

linear system. More precisely, it will be seen that both basic-

and energy-based schemes provide an estimate τh of the true

polarization field τ. τh is a cell-wise constant field on a regular

grid (where h denotes the size of each square/cubic cell); τh

is the unique solution of a linear system. Since this system is

clearly identified, solving it via fixed-point iterations, as pro-

posed by Moulinec and Suquet [9, 10], is no longer required.

Instead, we can freely invoke more robust solvers; whether or

not the iterations of the linear solver converge is therefore a well-

documented problem of numerical analysis. As such, it will be

completely disregarded in this paper, where we rather focus on

the convergence of the approximate, cell-wise constant solution

τh to the true polarization field τ as the size h of the cells goes

to 0. When confusion might occur between convergence of the

iterative solver, and convergence with h, the latter will be refered

to as h–convergence.

Second, it is shown that all conditions on the reference

material can be removed, provided that its stiffness is positive

definite. More precisely, for any choice of the reference material,

h–convergence (in the L2–sense) is observed for both schemes.

Their application to cases previously considered as forbidden

is therefore possible, and absence of convergence of the basic

scheme in the presence of pores [16] can be overcome at the

cost of very limited alterations (fixed-point iterations must be

replaced by a more robust solver).

Third, heterogeneous cells can be given equivalent elastic

properties, based on a consistent rule. This is a critical point,

which guarantees the successful coupling of these methods with

experimental imaging techniques.

The paper is organized as follows. In section 2, the funda-

mental equations for the analysis of heterogeneous media within

the framework of periodic linear elasticity are stated. Following

the classical approach of Hashin and Shtrikman [14], a quadratic

formH(τ) on the space of polarization fields is introduced. The

unique critical point ofH gives the solution to the local problem

of micromechanics. Finding this critical point is effectively a

variational problem, which will be called the problem of Hashin

and Shtrikman.

In section 3, the problem of Hashin and Shtrikman is studied

in detail from the mathematical viewpoint. It is shown that,

under mild conditions on the reference material as well as the

microstructure, this problem is well-posed.

In section 4, it is shown that a slightly altered version of the

basic scheme of Moulinec and Suquet [9, 10], as well as the

energy-based scheme of Brisard and Dormieux [13], are well-

posed, Galerkin-like approximations of the problem of Hashin

and Shtrikman. h–convergence of the approximate solutions

to the true solution will be proved; this is one of the essential

results of this paper.

In section 5, some numerical examples are proposed to il-

lustrate the mathematical results established theoretically. The

performances of both basic and energy-based schemes are com-

pared, and a new, intermediate scheme is proposed. This new

scheme seems very promising, as it combines the assets of both

its ancestors, while avoiding their weaknesses.

The paper closes with a discussion of some possible exten-

sions of the present work.

2. Background

2.1. The local problem of micromechanics

Following Hill [18], the determination of the overall elastic

properties of a heterogeneous medium Ω ⊂ R
d amounts to

finding the local stresses σ and strains ε at (elastic) equilibrium,

subjected to appropriate boundary conditions. By definition,

the effective elastic moduli Ceff then provide the relationship

between σ and ε

σ = Ceff : ε,

where B denotes the volume average of the local quantity B.

Various boundary conditions, namely kinematic or static

uniform boundary conditions [19], as well as periodic boundary

conditions can be adopted; for a sufficiently large domain Ω

(larger than the representative volume element), the effective

properties do not depend on the actual boundary conditions.

This paper is restricted to periodic boundary conditions.

Besides a convenient formulation of the local problem in Fourier

space, such conditions are known to be very favorable for the

numerical homogenization of heterogeneous media. Indeed,

convergence of the effective properties is observed with domains

significantly smaller than kinematic or static uniform boundary

would require [20].
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In periodic homogenization, Ω reduces to the unit cell, Ω =

[0, L1] × . . . × [0, Ld] (d = 2 for plane strain problems1, d =

3 for three-dimensional problems); the local stiffness C(x) is

(L1, . . . , Ld)-periodic. The domain is subjected to a macroscopic

strain E, and the resulting displacement field u(x) fluctuates

locally about its macroscopic counterpart E ·x; these fluctuations

are assumed to be (L1, . . . , Ld)-periodic. Within this framework,

the local problem of micromechanics therefore reads

div [C(x) : ε(x)] = 0, (1a)

2εi j(x) = ∂iu j(x) + ∂ jui(x), (1b)

u (x + Liei) = u(x) + LiE · ei, (1c)

σ (x + Liei) · ei = σ(x) · ei, (1d)

where x ∈ R
d, i, j = 1, . . . , d and e1, . . . , ed denote the basis

vectors (no summation on repeated indices in the above expres-

sions). Then

Ceff : E = C : ε,

where ε solves problem (1).

Irrespective of the boundary conditions, exact solution of the

local problem of micromechanics is generally untractable due

to the heterogeneity of the medium. In this paper, we present

a unified mathematical formulation of two FFT-based numeri-

cal methods for the approximate solution of problem (1). The

principle of Hashin and Shtrikman (see section 2.3) is a valuable

tool for the analysis of both schemes. This principle requires the

introduction of the Green operator for strains, see section 2.2.

2.2. The Green operator for strains [3]

Formulation of the principle of Hashin and Shtrikman re-

quires the introduction of a so-called reference medium, of ho-

mogeneous stiffness C0, occupying the same domain Ω as the

real, heterogeneous material. We further define the fourth-rank

Green operator for strains Γ0 associated with C0 and the shape

of Ω. This operator is formally defined [3] as the resolvent of

the following auxiliary problem (x ∈ R
d, i, j = 1, . . . , d; no

summation on repeated indices)

div [C0 : ε(x) + τ(x)] = 0, (2a)

2εi j(x) = ∂iu j(x) + ∂ jui(x), (2b)

u (x + Liei) = u(x), (2c)

σ (x + Liei) · ei = σ(x) · ei, (2d)

where the so-called (given) polarization field τ(x) is a second-

rank symmetric tensor, defined on Ω. It should be noted that

problem (2) merely corresponds to the elastic equilibrium of a

linearly elastic, homogeneous body, subjected to periodic bound-

ary conditions. By definition, the strain field ε(x) which solves

problem (2) reads

ε(x) = − (Γ0 ∗ τ) (x),

1The present work also applies to plane stress elasticity, provided that the

usual substitutions for the shear modulus and Poisson ratio are performed.

where ’∗’ is to be understood as a convolution product, reading

in Fourier space

(Γ0 ∗ τ) (x) =
∑

b∈Zd

Γ̂0 (kb) : τ̂ (kb) exp (ıkb · x) , (3)

with

kb =
2πb1

L1

e1 + · · · +
2πbd

Ld

ed, for b ∈ Zd. (4)

In the remainder of this paper, the following rule will be

adopted: greek multi-indices (such as β ∈ Zd) refer to the real

space, while latin multi-indices (such as b ∈ Z
d) refer to the

Fourier space.

Assuming the reference medium to be isotropic with shear

modulus µ0 and Poisson ratio ν0, Γ̂0(k) is known in closed-form

[21]

Γ̂0,i jhl (k) =
1

4µ0

(

δihn jnl + δiln jnh + δ jhninl + δ jlninh

)

−
1

2µ0 (1 − ν0)
nin jnhnl,

(5)

with n = k/k and k = ‖k‖ (k , 0). Equation (5) can be recast

̟ : Γ̂0 (k) : τ =
1

µ0

n ·̟ · τ · n

−
1

2µ0 (1 − ν0)
(n ·̟ · n) (n · τ · n) ,

for any two symmetric tensors τ and̟ and wave-vector k. Then,

from the Cauchy-Schwarz inequality

|̟ : Γ̂0 (k) : τ| ≤
3 − 2ν0

2µ0 (1 − ν0)
‖̟‖‖τ‖, (6)

where ‖τ‖ denotes the usual hermitian norm for symmetric,

second-rank tensors ‖τ‖ = (τ∗ : τ)1/2 (where τ∗ stands for the

component-wise complex conjugate of τ). Finally (substituting

̟ = Γ̂0(k) : τ)

‖Γ̂0 (k) : τ‖ ≤
3 − 2ν0

2µ0 (1 − ν0)
‖τ‖, (7)

for any symmetric tensor τ.

2.3. The principle of Hashin and Shtrikman [14]

The so-called “energy principle” of Hashin and Shtrikman

[14] is a theorem for the characterization of the critical points of

the following functional

H(̟) = E : ̟ − 1
2
̟ : (C − C0)−1 : ̟ − 1

2
̟ : (Γ0 ∗̟),

defined for any test field̟. Let ε be the solution of the initial

problem (1), and

τ(x) = [C(x) − C0] : ε(x), (8)

the corresponding polarization field within the heterogeneous

medium at equilibrium. Theorems 1 and 2 below were first

proved by Hashin and Shtrikman [14].
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Theorem 1. For any reference material C0, the polarization

field τ corresponding to the solution ε of problem (1) is a critical

point ofH . In other words, for any test field̟

̟ : (C − C0)−1 : τ +̟ : (Γ0 ∗ τ) = E : ̟. (9)

Furthermore

H(τ) = 1
2
E : (Ceff − C0) : E.

Theorem 1 states that regardless of the actual stiffness C0 of

the reference material,H is stationary at τ defined by (8), where

ε solves (1). Theorem 2 below provides sufficient conditions on

the stiffness C0 of the reference material forH to be extremum.

Theorem 2. If the reference material C0 is stiffer (resp. softer)

than the heterogeneous material, then H is minimum (resp.

maximum) at τ. More precisely,

i. if C(x) − C0 is positive semidefinite at every point x ∈ Ω,

thenH is maximum at τ,

ii. if C(x) − C0 is negative semidefinite at every point x ∈ Ω,

thenH is minimum at τ.

It is recalled that, given two fourth-rank, symmetric tensors

A and B, A ≥ B (resp. A > B) stands for “A − B is positive

semidefinite” (resp. positive definite).

2.4. Variational formulation of theorem 1

The remainder of this paper is dedicated to the analysis of

two numerical schemes for the approximate solution of problem

(1). In this section, we introduce the variational formulation of

theorem 1, which will prove for both schemes to be a natural

and convenient mathematical framework.

We start with the energy-based scheme of Brisard and Dor-

mieux [13], which is based on theorem 2. Instead of seeking

the absolute optimum ofH , this functional is optimized on the

sub-space of cell-wise constant polarization fields, where it can

be computed exactly and efficiently by FFT. Besides providing

an approximate map of the local polarization field, this approach

also leads to rigorous (exact) bounds on the macroscopic proper-

ties of the composite.

Despite its efficiency, this scheme has some limitations. In-

deed, in practical applications, the assumptions of theorem 2

cannot always be fulfilled. For example, when the composite

contains both pores and rigid phases, no reference material (with

finite stiffness) can be found, which is stiffer (resp. softer) than

all constituants of the composite. In such a case, only theorem

1 remains relevant, and the polarization field τ is no longer an

extremum of H , but merely a saddle-point, which we would

like to estimate. In other words, general analysis of the scheme

proposed in [13] must rely on theorem 1, and not on theorem 2.

While in theorem 1, equation (9) was derived with refer-

ence to the original elasticity problem (1), the point of departure

adopted in the remainder of this work is slightly different. In-

deed, in what follows, (9) will be considered as the equation to

be solved, with no direct reference to the original elasticity prob-

lem. From this perspective, the principal unknown is now the

polarization field τ (in place of the strain field ε), and theorem 1

takes the standard variational form

Find τ ∈ V such that a (τ,̟) = ℓ (̟) for all ̟ ∈ V, (10)

where the following bilinear (resp. linear) form a (resp. ℓ) has

been introduced

a (τ,̟) = ̟ : (C − C0)−1 : τ +̟ : (Γ0 ∗ τ), (11a)

ℓ (̟) = E : ̟, (11b)

and the functional space V remains to be defined. Using a

formulation such as (10) is attractive for several reasons. It will

obviously allow us to resort to standard mathematical tools of

the finite element theory [17, 22].

Most importantly, it can easily be verified that (10) is in fact

the weak form of the Lippmann-Schwinger equation, on which

the basic scheme of Moulinec and Suquet [9, 10] is based. From

this perspective, the variational approach (10) unifies the basic

and energy-based schemes (see section 4.3).

Before we address its discretization, we must first carry out

the mathematical analysis of the initial problem (10) itself. This

is done in section 3.

3. Mathematical analysis of problem (10)

3.1. Outline of this section

The aim of section 3 is to show that (10) is a well-posed vari-

ational problem in the sense of Hadamard [17]. Such analysis

requires an appropriate mathematical setting. First of all, the

space V of polarization fields must be defined. This is done in

section 3.2, where the boundedness of a is further established

under assumption 1 stated below.

In section 3.3, two alternative expressions (namely (14a) and

(14b)) of a are then obtained. Although similar expressions can

already be found in [23], the underlying regularity assumptions

are incompatible with the functional space V
h; new, detailed

proofs are therefore provided in Appendix A.1. Expressions

(14a) and (14b) in turn lead to bounds on a, see equation (15).

All ingredients are then gathered to study the well-posedness

of problem (10), the proof of which is sketched in section 3.4

(all details being provided in Appendix A.2). It reduces to the

verification of the hypotheses of the Banach–Nečas–Babuška

theorem (see e.g. [17, theorem 2.6], or [22, theorem 5.2.1]).

3.2. On the space of polarization fields V

The appropriate functional space V is hinted at by the very

structure of (10). Given that the following volume average

τ1 : τ2 =
1

|Ω|

∫

Ω

τ1(x) : τ2(x) dΩ (12)

defines a scalar product on the space of symmetric, square inte-

grable tensors, it is natural to define V as follows

V =
{

τ, τi j = τ ji ∈ L2(Ω), i, j = 1, . . . , d
}

.
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It is well-known [24] that the scalar product (12) confers the

structure of Hilbert space to V; the associated norm reads

‖τ‖V =
(

τ : τ
)1/2
=

[

1

|Ω|

∫

Ω

‖τ(x)‖2 dΩ

]1/2

.

It has already been assumed that the reference material C0

was isotropic, with shear modulus µ0, and Poisson ratio ν0. For

convenience, the present analysis is restricted to isotropic com-

posites. More precisely, the material at every point x ∈ Ω is

isotropic, with bulk (resp. shear) modulus κ(x) (resp. µ(x))

C(x) = dκ(x)J + 2µ(x)K

where d = 2, 3 is the dimension of the physical space, J = i⊗ i /d

is the fourth rank spherical projector, and K = I− J is the fourth

rank deviatoric projector. In the remainder of this paper, we will

also require C to be square-integrable.

It is clear from (6) and Parseval’s theorem that the bilinear

form

(τ,̟) ∈ V2 7→ ̟ : (Γ0 ∗ τ)

is well-defined, and bounded. In order to prove that the first

term of a (see equation (11a)) is also well-defined, and bounded,

some further assumptions must be made.

Indeed, because of the factor [C(x) − C0]−1, occurences of

the case C(x) = C0 must be eliminated. In fact, in order to

ensure boundedness, a minimum constrast between the stiffness

of the reference material and the local stiffness of the composite

will be required.

Assumption 1. There exists λ > 0 such that at any point x ∈ Ω

either [C(x) − C0 − λI] is positive semidefinite,

or [C(x) − C0 + λI] is negative semidefinite.

Under assumption 1, it is readily verified that for any polar-

ization fields τ,̟ ∈ V

|̟ : (C − C0)−1 : τ| ≤
1

λ
‖̟‖V‖τ‖V,

from which the boundedness of a follows.

Assumption 1 might seem stringent. However, the proofs

presented here could be readily extended to a slightly more

general case, which would cover most practical applications.

In this more general case, the local stiffness C(x) is allowed to

coincide with the stiffness of the reference materials C0 for all

x ∈ Ω0 ⊂ Ω. For all x < Ω0, assumption 1 must be verified.

Then all results presented here remain valid, provided that an

additional constraint is imposed on the polarization field τ

For all x ∈ Ω0, τ(x) = 0,

which is easily implemented numerically. For the sake of sim-

plicity, this presentation is restricted to the less general frame-

work of assumption 1.

3.3. Alternative expressions of a

The following theorem 3 and its corollary are the key to

the proof of the well-posedness of problem (10). They have

previously been stated by Willis [23], and are proved here with-

out making any regularity assumptions on the polarization field

(besides square-integrability).

Theorem 3. Let τ1, τ2 ∈ V be two arbitrary polarization fields,

and consider the associated strain fields εi ∈ V and stress fields

σi ∈ V (i = 1, 2)

εi = −Γ0 ∗ τi, σi = C0 : εi + τi. (13)

Then

a (τ1, τ2) = τ1 : (C − C0)−1 : τ2 + ε1 : C0 : ε2, (14a)

= τ1 : S0 : (S0 − S)−1 : S0 : τ2 − σ1 : S0 : σ2, (14b)

where S(x) = C(x)−1, and S0 = C−1
0

are the local and reference

compliances.

Proof. First, equations (A.9) and (A.10), found in the paper

by Willis [23] must be extended to V. This is carried out in

Appendix A.1 (see lemmas 1 and 2). The proof proposed in [23]

is then unchanged.

The following corollary is an immediate consequence of

theorem 3 and the positive-definiteness of the reference (resp.

local) stiffness C0 (resp. C(x)) and compliance S0 (resp. S(x)).

Corollary 1. a is self-adjoint, and for all τ ∈ V

τ : (C − C0)−1 : τ ≤ a (τ, τ) ≤ τ : S0 : (S0 − S)−1 : S0 : τ. (15)

3.4. Well-posedness of problem (10)

The well-posedness of problem (10), essential for the present

analysis, is asserted by use of the Banach–Nečas–Babuška theo-

rem. According to this theorem [17, theorem 2.6], two necessary

and sufficient conditions must be met by the bilinear form a.

That these conditions are indeed verified in the present case is

stated in theorem 4 below, the proof of which is established in

the present paper under the following assumption.

Assumption 2. There exists κmin > 0 and µmin > 0 such that at

any point x ∈ Ω

κ(x) ≥ κmin, µ(x) ≥ µmin.

It should be noted that, since κmin > 0 and µmin > 0, porous

media are excluded from the present discussion. Although nu-

merical experiments show that in situations of practical interest,

involving porous media, problem (10) seems well-posed, and

the numerical schemes developed hereafter are well-behaved,

the formal proof of these assertions is probably more involved

than the present argument, since connectivity of the non-empty

regions of Ω must presumably play a role.

Theorem 4. Under assumption 2, a has the following properties
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i. There exists α > 0 such that

inf
τ∈V

sup
̟∈V

a (τ,̟)

‖τ‖V‖̟‖V
≥ α.

ii. Let τ ∈ V. If, for any̟ ∈ V, a (τ,̟) = 0, then τ = 0.

Outline of the proof. The first statement will be proved if we

exhibit α > 0 such that, for any τ ∈ V, there exists ̟ ∈ V

verifying

a (τ,̟) ≥ α‖τ‖V‖̟‖V. (16)

The main argument of the proof comes from the fact that

(14a) states the positivity of a, if C ≥ C0 everywhere in Ω; then

̟ = τ can be shown to satisfy (16) for an appropriate choice of

α. Conversely, if C ≤ C0 everywhere in Ω, then (14b) shows

that a is negative, and̟ = −τ again verifies (16)

In the most general case, the complete proof of this theorem

must account for the fact that the set of stiffness tensors is not

totally ordered. In other words, points x ∈ Ω may be found,

where neither C(x) > C0, nor C(x) < C0.

Instead of a direct comparison of the stiffness tensors C(x)

and C0, the moduli must then be compared, which requires

the decomposition of τ into hydrostatic (τhyd) and deviatoric

(τdev) parts; at any point x ∈ Ω,̟(x) is then defined as̟(x) =

±τhyd(x) ± τdev(x).

Detailed construction of ̟, as well as verification of (16)

can be found in Appendix A.2, where the second assertion is

also proved by contradiction.

A simple application of the Banach–Nečas–Babuška theo-

rem then leads to the following conclusion.

Corollary 2. Problem (10) is well-posed.

The results presented in section 3 have very important fun-

damental consequences. In a way, they generalize the results

established by Hashin and Shtrikman [14] and Willis [23], since

existence and uniqueness of the solution of (10) is true whether

C(x) − C0 is positive, negative, or undetermined.

In general, problem (10) is not solvable analytically, and

numerical schemes must be devised to find an approximate solu-

tion. The FFT-based schemes proposed by Moulinec and Suquet

[9, 10, 16] and Brisard and Dormieux [13] are two examples of

such numerical schemes. In the next section, it will be proved

that both methods can be viewed as Galerkin finite-elements ap-

proximations of the initial problem (10). With this new approach

of existing schemes, new convergence results will be established,

and some requirements on the reference material, which were

previously thought to be necessary, will be alleviated.

4. Numerical approximation of problem (10)

4.1. General setting

Galerkin-like discretizations of problem (10) are obtained

by selecting a finite-dimensional space of trial and test functions

V
h. This space depends on a numerical parameter h, which will

ultimately tend to 0. Then (10) is replaced by the following

discretized problem

Find τh ∈ Vh such that ah(τh,̟h) = ℓ(̟h)

for all ̟h ∈ Vh,
(17)

where the bilinear form ah approximate (in a sense which will

be made more precise) a. Problem (17) evidently reduces to a

linear system, since V
h is finite-dimensional.

In this section we show that the numerical scheme of Mouli-

nec and Suquet [10], as well as the numerical scheme of Brisard

and Dormieux [13] can be viewed as two different Galerkin-like

approximations of problem (10), based on the same space of

trial functions Vh, but different approximations of a.

We start with the definition of the discretization parameter

h and the space of trial and test functions V
h. Then the two

versions of the discretized problem (17) are studied separately,

in order to assert their well-posedness and h–convergence.

It should be noted that the present analysis is greatly sim-

plified by two facts. First, the spaces of trial and test functions

coincide, and are included in the initial space V, from which

they therefore inherit the norm. Second, unlike the bilinear form

a, the linear form ℓ is computed exactly in both schemes on V
h.

We now come to the definition of the space of trial and

test functions, Vh, which is to remain unchanged throughout

this section. The origin of the success of numerical schemes

based on the discretization of the Lippmann-Schwinger equation

[9, 10, 13, 15, 16, 25, 26] lies in the fact that the matrix of

the underlying linear system is the sum of two matrices with

noteworthy properties. The first matrix is block-diagonal, and

its product with a vector is performed efficiently in the real

space. The second matrix corresponds to a translation-invariant

linear operator, and its product with a vector is computed most

efficiently in the Fourier space by use of the FFT.

Invoking the FFT requires the use of a d-dimensional regular

mesh on Ω, each cell of this mesh being a d-dimensional cube of

measure hd (pixel in plane elasticity, voxel in three-dimensional

elasticity). Let Ni be the number of cells in the i-th direction (i =

1, . . . , d), and N = N1 · · ·Nd the total number of cells. Taking

advantage of the periodic boundary conditions, it is convenient

(and equivalent) to seek an estimate of the exact polarization

field τ on Ω, translated by the vector − h
2

(e1 + · · · + ed), rather

than Ω itself. Under these conditions, cell Ωh
β

of the current

mesh is centered at point xh
β
, given by

xh
β = β1he1 + · · · + βdhed, (18)

where β denotes any multi-index in the following set

Ih = {0, . . . ,N1 − 1} × · · · × {0, . . . ,Nd − 1} .

Finally, the characteristic function of cell Ωh
β

will be denoted

x 7→ χh
β
(x). Having defined the mesh on which the approximate

solution is to be computed, we chose to use cell-wise constant

functions as trial functions. In other words, Vh is defined as the

space of polarization fields τh(x) of the form

τh(x) =
∑

β∈Ih

χh
β(x)τh

β, (19)
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where the τh
β

are constant, symmetric tensors. Vh thus defined is

obviously a sub-space of V, and can be equipped with the same

norm. The following important theorem easily follows from the

density of continuous functions in L2(Ω).

Theorem 5. The approximation setting has the approximability

property in the sense of Ern and Guermond [17], definition 2.14.

In other words

For all τ ∈ V, lim
h→0

inf
τh∈Vh
‖τ − τh‖V = 0.

It is emphasized that any cell-wise constant polarization field

τh is uniquely associated with the set of its indexed values τh
β

on cell Ωh
β
. In the remainder of this paper, τh

β
will abusively

refer either to the discrete set of values, or to the corresponding

cell-wise constant polarization field.

Sub-sections 4.2 and 4.3 are devoted to the separate analysis

of two different Galerkin-type discretizations of problem (10);

the two methods differ by the underlying approximation of the

bilinear form a. From the historical viewpoint, the basic scheme

of Moulinec and Suquet [9, 10] should logically be addressed

first. However, being a non-consistent Galerkin approximation

of (10), its theoretical analysis is more involved than the energy-

based scheme of Brisard and Dormieux [13], which is consistent.

We will therefore first discuss the energy-based scheme, then

the basic scheme.

4.2. Consistent Galerkin discretization [13]

The method proposed in [13] was based on theorem 2: an

approximate solution of (10) was found by optimization of the

energyH of Hashin and Shtrikman [14] on the space of cell-wise

constant polarization fields. Using the notation of the present

paper, this amounts to solving the following problem

Optimize H(τh) =
1

2
a(τh, τh) − ℓ(τh), for τh ∈ Vh. (20)

It was shown that this discretized problem could be ef-

ficiently solved by a combination of the conjugate gradient

method for inversion of the underlying (symmetric, definite)

linear system, as well as the FFT for the evaluation of the nec-

essary matrix-vector products. Furthermore, operators a and ℓ

were computed exactly on V
h [13].

However, one restriction of this approach lies in the assump-

tions made on the reference material (see theorem 2). Indeed,

in order to ensure existence and uniqueness of the optimum of

H , the reference material must be either stiffer, or softer than all

phases in the composite.

The initial goal of the present paper was to address the fol-

lowing question: is it mathematically sound to select a reference

material which violates the above condition? As shown below,

the answer to this question turns out to be “yes”. However, the

discretized problem at hand is now a saddle-point problem, and

well-posedness, as well as h–convergence towards the solution

of the initial problem (10) must be carefully proved. So, in place

of (20), the following discretized problem is now considered

Find τh ∈ Vh such that a(τh,̟h) = ℓ(̟h)

for all ̟h ∈ Vh.
(21)

Comparison with (17) shows that the discretized problem

(21) is indeed of the Galerkin type. It is conformal, since Vh ⊂ V,

and consistent, since operators a and ℓ are computed exactly on

V
h. In other words the solution τ ∈ V of the exact problem (10)

satisfies the approximate problem (21)

For all ̟h ∈ Vh, a(τ,̟h) = ℓ(̟h).

In order to prove the well-posedness of problem (21), use

will again be made of the Banach–Nečas–Babuška theorem.

Before we proceed to verify that this theorem applies in the

present case, a few words must be said on the exact evaluation

of a and ℓ on V
h. For any trial (resp. test) field τh ∈ Vh (resp.

̟h ∈ Vh), τh
β

(resp. ̟h
β
) is defined as in (19). It is then readily

verified that

ℓ(τh) =
1

N

∑

β∈Ih

E : τh
β,

and similarly

̟h : (C − C0)−1 : τh =
1

N

∑

β∈Ih

̟h
β :

(

Ch
β − C0

)−1
: τh
β, (22)

where Ch
β

is the consistent equivalent stiffness of the cell Ωh
β
,

defined by

(

Ch
β − C0

)−1
=

1

|Ωh
β
|

∫

Ωh
β

[C(x) − C0]−1 dΩ. (23)

From the practical point of view, the previous expression is

of great interest, since it allows the exact evaluation on V
h × Vh

of the first term of a (11a), even in the frequent case of an

heterogeneous cell. From the mathematical point of view, (23)

means that for trial and test functions in V
h, the initial composite

x 7→ C(x) is strictly equivalent to a fictitious composite x 7→

Ch(x) with cell-wise constant stiffness Ch
β

Ch(x) =
∑

β∈Ih

χh
β(x)Ch

β.

This equivalence will be invoked below to prove theorem 6

by analogy with theorem 4. Full evaluation of a(τh,̟h) also re-

quires the evaluation of the non-local term. In [13], the following

exact expression was derived

̟h :
(

Γ0 ∗ τh
)

=
1

N2

∑

b∈Zd

[F(hkb)]2 ˆ̟ h∗
b : Γ̂0(kb) : τ̂h

b, (24)

where the DFT ˆ̟ h
b (resp. τ̂h

b) of the finite sequence̟h
β

(τh
β
) has

been introduced

τ̂h
b =

∑

β∈Ih

exp

[

−2ıπ

(

β1b1

N1

+ · · ·
βdbd

Nd

)]

τh
β, (25)

as well as the following product of sine cardinal functions

F(K) = sinc
K1

2
· · · sinc

Kd

2
. (26)
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Owing to the periodicity of the DFT, it was further shown in

[13] that the infinite series (24) on Z
d could be reduced to the

finite sum on Ih

̟h :
(

Γ0 ∗ τh
)

=
1

N2

∑

b∈Ih

ˆ̟ h∗
b : Γ̂

h,c

0,b : τ̂h
b, (27)

introducing the Fourier components of the consistent discrete

Green operator

Γ̂
h,c

0,b =
∑

n∈Zd

[F(hkb+nN)]2
Γ̂0(kb+nN), (28)

where b+nN denotes the multi-index (b1+n1N1, . . . , bd+ndNd),

and kb is defined by (4). In a more compact form, we have, for

τh,̟h ∈ Vh

̟h :
(

Γ0 ∗ τh
)

= ̟h :
(

Γ
h,c
0
∗ τh

)

.

It should be noted that this operator was referred to as the

periodized Green operator in [13]. The new terminology em-

phasizes the difference with the non-consistent discrete Green

operator, defined in section 4.3 below.

The consistent discrete Green operator is pre-computed and

stored for further use. It can be evaluated very efficiently in

plane strain elasticity2. It is noted however that in the three-

dimensional case, the infinite series involved in (28) converge

very slowly, making the numerical evaluation of the consistent

discrete Green operator rather involved.

Finally, gathering (22), (23), (27) and (28), it is found that

a(τh,̟h) can be computed exactly and efficiently (DFTs being

computed by means of the FFT) on V
h × Vh.

We now turn to the well-posedness of the discretized prob-

lem (21). In view of invoking the Banach–Nečas–Babuška the-

orem, we must verify the conditions under which it is stated.

Since V
h is of finite dimension, it is sufficient to verify one of

the two conditions stated in theorem 4. This is done in theorem

6 below.

Theorem 6. Under assumption 2, there exists α > 0 such that

inf
τh∈Vh

sup
̟h∈Vh

a
(

τh,̟h
)

‖τh‖V‖̟h‖V
≥ α.

Proof. The equivalence between C and Ch is used to prove this

theorem. Selecting a fixed trial field τh ∈ Vh, we construct̟h

using the same procedure as for the construction of̟ in theorem

4, except that decisions are now made depending on the sign

of Ch − C0, instead of C − C0. ̟h thus constructed evidently

belongs to V
h.

Since in the consistent approach, a is computed exactly,

(14a) and (14b) apply to τh and̟h. The proof then proceeds as

in theorem 4.

Application of the Banach–Nečas–Babuška theorem in finite

dimension leads to the well-posedness of problem (21) for any

2The required formulas will be reported in a paper to come.

choice of the reference material. This means that the linear

system resulting from the discretized problem (21) always has a

unique solution, even if the reference material fails to be stiffer

(or softer) than all the constituants of the composite.

Besides, the assumptions for Céa’s lemma are satisfied (see

[17], lemma 2.28), and we therefore conclude that the piecewise-

constant solution τh to the discretized problem (21) converges

(in the L2–sense) to the solution τ to the initial problem (10).

4.3. Non-consistent Galerkin discretization [9, 10]

As noted in the previous section, the consistent Galerkin

discretization of (10) requires the calculation of the consistent

discrete Green operator (28), which is difficult –in the three-

dimensional case– because of the slow convergence of the un-

derlying series.

Moulinec and Suquet [9, 10] proposed a discretization of the

Lippmann-Schwinger equation, in which the Green operator is

simply approximated by a truncated Fourier series. Again, this

approach leads to an efficient implementation, because of the

use of the FFT for matrix-vector products.

The purpose of this section is to cast the basic scheme of

Moulinec and Suquet [9, 10] in an appropriate mathematical

framework, so as to prove its well-posedness and h–convergence

to the solution of the initial problem (10). We first show that

the basic scheme can be viewed as a Galerkin discretization of

problem (10); the bilinear form a is not computed exactly and

the approximation is in fact non-consistent. We then show that

the approximate bilinear form ah is asymptotically consistent,

which leads to convergence results of the approximate solution.

The basic scheme of Moulinec and Suquet [9, 10] finds its

roots in the strong form of equation (9)

(C − C0)−1 : τ + Γ0 ∗ τ = E

which, upon substitution of the strain field ε to the polarization

field τ, can be seen as a fixed-point problem

ε = E − Γ0 ∗ [(C − C0) : ε] ,

this equation being known as the Lippmann-Schwinger equation

[12]. The classical iterative algorithm reads

εn+1 = E − Γ0 ∗
[

(C − C0) : εn] ,

it is known to be only conditionally convergent [16].

Each iterate εn is discretized on a regular grid, leading to

a discrete set of values εh,n

β
, β ∈ Ih. Moulinec and Suquet

[9, 10] suggest that εh,n

β
should be understood as a point-wise

estimate of εn at point xβ defined by (18). However, in the

present mathematical framework, it is more natural to consider

that εh,n

β
is the step value on Ωh

β
of a cell-wise constant function

εh,n which approximates εh in the L2-sense, rather than a point-

wise estimate of εh,n(xβ)

εn(x) ≃ εh,n(x), with εh,n(x) =
∑

β∈Ih

χh
β(x)εh,n

β
.

In order to compute the direct product (C − C0) : εn, the

local stiffness C should also be discretized. However, to the best

8



of our knowledge, no consistent rule has yet been proposed to

carry out this critical operation. The analysis below shows that

the consistent discretization Ch of C defined by (23) should be

used. In other words, (C − C0) : εn is approximated as follows

(C − C0) : εn ≃
(

Ch − C0

)

: εh,n,

the right-hand side being of course cell-wise constant (product

of two cell-wise constant tensors).

Finally, the convolution product occuring in equation (3) is

approximated by truncated Fourier series, where only the modes

of lowest frequency are retained. Introducing the non-consistent

discrete Green operator Γh,nc
0

, the resulting approximation reads

Γ0 ∗
[

(C − C0) : εn] ≃ Γ
h,nc
0
∗
[(

Ch − C0

)

: εh,n
]

.

The non-consistent discrete Green operator is defined by its

Fourier components

Γ̂
h,nc

0,b+nN = Γ̂0(kb), for b ∈ Jh and n ∈ Zd, (29)

where multi-index b ∈ Jh selects the modes of lowest-frequency

Jh =

{

−
N1

2
+ 1, . . . ,

N1

2

}

× · · · ×

{

−
Nd

2
+ 1, . . . ,

Nd

2

}

, (30)

while multi-index n enforces periodicity of the discrete Green

operator (in view of invoking the FFT). For the sake of simplicity,

it is assumed that N1, . . . ,Nd are even3.

Finally, for any cell-wise constant polarization field τh, Γh,nc
0
∗

τh is defined as the cell-wise constant tensor ηh

ηh(x) =
∑

β∈Ih

χh
β(x)ηh

β, with ηh
β =

[

DFT−1
(

Γ̂
h,nc

0,b : τ̂h
b

)]

β
. (31)

The mapping τh 7→ Γ
h,nc
0
∗ τh evidently defines a linear

operator from V
h onto V

h. The iterative scheme of Moulinec

and Suquet [9, 10] finally reads

εh,n+1 = E − Γ
h,nc
0
∗
[(

Ch − C0

)

: εh,n
]

. (32)

It should be noted that, unlike its consistent counterpart (28),

the non-consistent discrete Green operator is known in closed-

form; this is a great asset of the basic scheme of Moulinec and

Suquet [9, 10], as no precomputation is necessary.

In order to retrieve a Galerkin formulation of this scheme,

we first observe that if (32) converges with n, its limit εh is the

solution of the linear system of equations

εh + Γ
h,nc
0
∗
[(

Ch − C0

)

: εh
]

= E. (33)

Michel et al. have shown that if the reference material C0

fails to satisfy the following conditions [16, eq. (22)]

2κ0 > sup
x∈Ω

κ(x), and 2µ0 > sup
x∈Ω

µ(x), (34)

3If one of the Ni is odd, then the corresponding {−Ni/2 + 1, . . . ,Ni/2} in (30)

must be replaced with {−(Ni − 1)/2, . . . , (Ni − 1)/2}; the subsequent mathemati-

cal analysis is unchanged.

the iterations (32) do not converge. However, it will be shown

below that the system (33) always has a unique solution, regard-

less of the reference material C0. Clearly, the weaknesses of the

basic scheme are to be attributed to the method used to solve the

discretized problem (namely, the fixed-point algorithm), not to

the discretization itself. This point was already recognized by

Zeman et al. [15], who replaced the fixed-point iterations with

the conjugate and bi-conjugate gradient methods. According

to these authors, convergence of these iterative solvers is insen-

sitive to the actual stiffness of the reference material (in other

words, Zeman et al. [15] showed experimentally that violation

of (34) seems to be allowed).

Keeping in mind that a better suited linear iterative solver

may be substituted to (32), we will now focus on the approxi-

mation (33) of problem (10), setting aside the iterative aspect of

the basic scheme. Using the discretized polarization τh instead

of the discretized strain εh as main unknown, (33) reads

(

Ch − C0

)−1
: τh + Γ

h,nc
0
∗ τh = E.

Equating those cell-wise constant tensors on each cell Ωh
β

gives

(

Ch
β − C0

)−1
: τh
β + η

h
β = E, for all β ∈ Ih,

where ηh = Γ
h,nc
0
∗ τh. Both sides of the previous equation

are contracted with an arbitrary test function ̟h ∈ Vh, and all

cell-values are summed

1

N

∑

β∈Ih

̟h
β :

(

Ch
β − C0

)−1
: τh
β +

1

N

∑

β∈Ih

̟h
β : ηh

β

=
1

N

∑

β∈Ih

E : ̟h
β.

Each individual sum can be recognized as the volume aver-

age (on Ω) of the underlying cell-wise constant tensor, leading

to the compact expression

̟h :
(

Ch − C0

)−1
: τh +̟h : ηh = E : τh,

which can be recognized as a variational (discrete) problem

Find τh ∈ Vh such that ah(τh,̟h) = ℓ(̟h)

for all ̟h ∈ Vh,
(35)

where the discretized bilinear form ah reads

ah(τh,̟h) = ̟h :
(

Ch − C0

)−1
: τh +̟h :

(

Γ
h,nc
0
∗ τh

)

.

Setting aside the question of the (sub-optimal) iterative

solver, the above discussion shows that the basic scheme of

Moulinec and Suquet [9, 10] is a Galerkin-like discretization of

the variational problem (10). We will now proceed to the mathe-

matical analysis (well posedness and convergence as h→ 0) of

this scheme.

Well-posedness of problem (35) is easily assessed; detailed

proofs can be found in Appendix C.1. Quite remarkably, ah veri-

fies on V
h the same property (15) as its continuous counterpart
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on V. More precisely, for any trial field τh ∈ Vh,

τh :
(

Ch − C0

)−1
: τh ≤ ah

(

τh, τh
)

≤ τh : S0 :
(

S0 − Sh
)−1

: S0 : τh,

(36)

where Sh denotes the element-wise constant compliance Sh =

(Ch)−1. The discrete counterpart of theorem 4 can therefore

be deduced: indeed, in the proof of this theorem, the local

stiffness C(x) need only be replaced by the cell-wise constant

consistent stiffness Ch
β
. In other words, problem (35) is well-

posed, regardless of the choice of the reference material C0.

Turning now to the h–convergence of the (unique) solution

of (35) to the solution of (10), it must first be proved that the

discrete bilinear form ah approximates (in a way that will be

made more precise later) the initial bilinear form a. Since ah is

defined on V
h×Vh (not on V×V), a linear mapping Πh between

V and V
h must first be defined. In order to apply standard

theorems of the finite elements theory [17], this mapping must

have the following property

For any τ ∈ V, ‖Πhτ − τ‖V ≤ c inf
τh∈Vh
‖τ − τh‖V,

where c is independent of the polarization field τ ∈ V. It is

shown in Appendix B.2 that orthogonal projection onto V
h is

in the present case a convenient choice for Πh. Then Πhτ is the

cell-average of τ, and c = 1.

Theorem 7. Problem (35) is asymptotically consistent in the

sense of Ern and Guermond [17, definition 2.15]. More precisely,

the non-consistent Galerkin approximation of problem (10) has

the following property

lim
h→0

sup
̟h∈Vh

|ℓ(̟h) − ah(Πhτ,̟h)|

‖̟h‖V
= 0, (37)

where τ ∈ V denotes the unique solution to problem (10), and

the linear mapping Πh has been defined above.

The proof of this theorem can be found in Appendix C.2. It

should be noted that, since τ is the solution of (10), (37) reduces

to

lim
h→0

sup
̟h∈Vh

|a(τ,̟h) − ah(Πhτ,̟h)|

‖̟h‖V
= 0. (38)

Application of the lemma of Strang [17, lemma 2.27] then

shows that the solution τh to the non-consistent, discretized

problem (35) converges (in the L2-sense) to the solution of the

initial problem (10) when h→ 0, and closes the analysis of the

basic scheme.

4.4. Discussion: consistent vs. non-consistent approaches

We have shown in sub-sections 4.2 and 4.3 that two ap-

parently different numerical schemes for the simulation of het-

erogeneous materials can be reconciled. Indeed, both of these

schemes can be viewed as Galerkin approximations of the same

variational problem. The basic scheme of Moulinec and Suquet

[9, 10] is a non-consistent Galerkin approximation of problem

Figure 1: map in Fourier space of the xyxy component of the non-consistent

(left), consistent (middle), and filtered, non-consistent (right), discrete Green

operators. The calculation corresponds to a reference material with unit shear

modulus µ0 = 1, and Poisson ratio ν0 = 0.3, in 2d elasticity (plane strain).

The consistent operator is smooth, while the non-consistent operator exhibits

strong discontinuities at the center of the image (corresponding to the highest

frequencies). The filtered, non-consistent operator (described in section 5.2) is a

good compromise, combining smoothness and ease of computation.

(10), while the energy-based scheme of Brisard and Dormieux

[13] is a consistent approximation of the same problem. Both

approximations share many attractive properties.

First and foremost, the Green operator Γ0 is discretized in

both cases in such a way as to allow the use of the FFT, resulting

in very efficient schemes (in terms of CPU time). While the

calculation of the non-consistent discrete Green operator Γh,nc
0

given by (29) is straightforward, the evaluation of its consistent

counterpart Γh,c
0

(28) is more involved. In our experience, the

benefit of the latter over the former resides in the fact that it

leads to generally better behaved numerical solutions at high

contrast, where spurious oscillations might develop with the

non-consistent discrete Green operator [27]. The reason for

this is obvious on figure 1, where the xyxy component of each

discrete operator is represented in Fourier space. Indeed, while

the consistent operator is smooth in Fourier space, the non-

consistent operator exhibits a strong discontinuity at the highest

frequencies.

Another benefit of the use of the consistent operator resides

in the fact that it leads to rigorous bounds on the macroscopic

elastic properties of the composite, provided that the reference

material is stiffer or softer than all phases [13].

While of great practical interest, the derivation of bounds

is not the main concern of this paper, which rather aims at a

faithfull calculation of the local polarization τ(x). From this

perspective, one of the two main results of this paper is the fact

that the discrete problems (21) and (35) are always well-posed,

regardless of the reference material C0. This result has important

consequences for both non-consistent and consistent schemes.

For the non-consistent approach of Moulinec and Suquet

[9, 10], this means that conditions (34) on the reference material

are not necessary to ensure existence and uniqueness of solution

to the discrete problem (35); since the Neumann iterations no

longer converge [16], this solution should be computed by means

of an appropriate linear iterative solver.

For the consistent approach of Brisard and Dormieux [13],

this means that the discrete problem (21) has a unique solution,

even if the conditions of theorem 2 are not fulfilled. However,

this solution no longer provides a bound on the macroscopic

properties of the composites.

The second of the main results of this paper is the conver-

gence to the exact solution τ of (10) of the discrete solution

10



τh of (21) or (35) as the size h of the cells tends to zero (h–

convergence). In other words, for any choice of h, τh can be

viewed as a cellwise-constant estimate of τ. It is emphasized

again that this result has been proved under assumptions 1 and

2, the latter excluding porous media. However, numerical exper-

iments shown below tend to indicate that the theoretical results

presented here might be extended to this case, which should be

investigated further.

A by-product of the previous study is rule (23), which was

previously derived in the context of the consistent approach [13],

but is shown in the present work to be more general. This rule

states how consistent equivalent properties of a heterogeneous

cell can be computed. It is of great practical importance when

the present numerical schemes are coupled with real-life ex-

periments (e.g. micro-tomography). Indeed, resolution of the

imaging instruments being finite, observed pixels or voxels are

always heterogeneous, so that they cannot be attributed the elas-

tic stiffness of one of the pure phases. From this point of view,

it is interesting to note that (23) depends on the composition of

the heterogeneous cell, but not on the spatial organization of the

different phases within the cell. While the latter is by definition

inacessible, the former can be retrieved in carefully conducted

experiments by an adequate inverse analysis using minimum

prior knowledge [28].

It would appear from the above discussion that both consis-

tent and non-consistent approaches are equivalent. This is not

strictly true from the practical point of view, for two already

stated reasons: on the one hand, pre-computation of the consis-

tent discrete Green operator is difficult, while on the other hand,

the non-consistent discrete Green operator is discontinuous. In

the next section, the theoretical results stated previously are il-

lustrated on a simple two-dimensional (plane strain) application.

A third discrete operator is then introduced, on purely heuristic

grounds. Being smooth and easily computable, this operator is

shown to combine assets of both consistent and non-consistent

discrete Green operators.

5. Numerical examples

All numerical examples in this section are based on the same

bidimensional (plane strain) geometry, shown on figure 2. It

should be noted that, although this example has already been

considered in [13], the results presented here are new. A square

inclusion of size a × a is embedded in a square unit-cell, of size

L × L; in the present work, the size of the inclusion is fixed, as

well as the elastic properties of the matrix

a =
L

2
, µm = 1, νm = 0.3,

while the elastic properties of the inclusion are variable, and

denoted µi and νi. This simple composite material is submitted

to a unit macroscopic shearing strain

E = E (e1 ⊗ e2 + e2 ⊗ e1) (E = 1).

In view of studying the convergence of the approximate so-

lution τh as h→ 0, several values of h will be considered, corre-

sponding to power-of-two square grids, N1 = N2 = 4, . . . , 1024.

L

a

L

aµi, νi

µm, νm

Figure 2: geometry of the examples considered in section 5. The size of the

inclusion is a = L/2.

A reference solution is also necessary, in order to compute the

discretization error. As such reference solution does not exist

in closed-form for the problem at hand, we computed a numeri-

cal approximation on a very fine grid (2048 × 2048), using the

consistent approach. In other words, we approximate the true

solution τ with τh0,c, h0 = L/2048. For a fixed value of h > h0,

we then compute the approximate relative error

ǫ[τh] =
‖τh − τh0‖V

‖τh0‖V
. (39)

It shoul be noted that the (approximate) polarization field τh

is not intrinsic, since it depends on the reference material C0.

As the latter will be varied in the following study, it will prove

more convenient to compute the relative error on the stress field

ǫ[σh] =
‖σh − σh0‖V

‖σh0‖V
, (40)

where σh is the approximate stress field associated with the

approximate polarization field τh

σh = C0 : εh + τh = C0 :
(

E − Γh
0 ∗ τ

h
)

+ τh,

where Γh
0 denotes either the consistent or the non-consistent

discrete Green operator.

Before we proceed to the quantitative analysis of the rela-

tive error on the stress field, a few words must be said on the

implementation of the numerical schemes. We have already

mentioned that problems (21) and (35) reduce to linear systems,

the matrix of which cannot be expressed in closed-form, whereas

matrix-vector products are easily computed as follows

Input τh
β,

τ̂h
b ← FFT[τh

β]b, (41a)

For all b ∈ Ih, η̂h
b ← Γ̂

h

0,b : τh
b, (41b)

ηh
β ← FFT−1[η̂h

b]β, (41c)

For all β ∈ Ih, ηh
β ← η

h
β +

(

Ch
β − C0

)−1
: ηh
β, (41d)

Return ηh
β.

The discrete Fourier transform of the polarization field τh
β

is first computed (41a). Then, the discrete (consistent or non-

consistent) Green operator Γ̂
h

0,b is applied to each Fourier com-

ponent (41b), and the inverse discrete Fourier transform is taken
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(41c). Finally, the local part of the bilinear operator ah is added

(41d). In the above equations, the tensor field ηh
β

is the result of

the product of the matrix to be inverted, and the input vector τh
β
.

Then the linear system reads

For all β ∈ Ih, ηh
β = E. (42)

Standard iterative linear solvers [11] are invoked to solve

(42). These solvers need to be passed the implementation of the

matrix-vector product calculation (41), as well as a stopping-

criterion. In the present application, the iterations are stopped

when the residual ρh
β
= E − ηh

β
is small enough

‖ρh‖V ≤ δ‖E‖, (43)

where δ is a user-specified relative tolerance.

At this point, it is worth emphasizing again that (as argued

in [13]) the entries of the matrix of the linear system to be

solved need never be computed and stored: indeed, only the

implementation of a routine for the computation of matrix-vector

products (following the procedure (41)) is required.

In sections 5.1 and 5.2, two applications are considered, with

two different values of µi.

5.1. The case of finite contrast

By finite contrast, we mean that the shear modulus of the

inclusion is here neither null (pore) nor infinite (rigid inclusion).

The elastic properties of the inclusion selected in the present

application are

µi = 0.01, νi = 0.2,

hence assumption 2 is satisfied. The theoretical analysis of

section 4 then shows that any reference material is permitted.

All calculations presented here were carried out with δ = 10−10,

resulting in a very stringent stopping criterion.

For the first series of calculations, we selected C0 = Cm.

As previously mentioned, this requires a slight modification of

(21) and (35), which must then be solved under the additional

constraint that the discretized polarization field be null in the

matrix. Such a constraint is easily accounted for within the

framework of linear iterative solvers. Inequalities (15) and (36)

then show that both consistent and non-consistent approches lead

to negative-definite systems, to which the (unpreconditioned)

conjugate gradient method can be applied. Figure 3 clearly

shows the h–convergence of both consistent (C01) and non-

consistent (NC01) approaches. It is experimentally observed

that the consistent method is slightly more accurate than the

non-consistent method, both methods being approximately of

order one in h.

Figure 4 shows how the relative error on the stresses tends

to zero as h tends to zero. This graph is important, as it allows

the comparison of simulations carried out with different refer-

ence materials (in which case comparing the polarization fields

becomes meaningless).

The previous choice C0 = Cm was consistent with previously

published requirements for both the non-consistent [16] and

10-3

10-2

10-1

100

100 101 102 103

ε[
τh ]

N1=N2

NC01
C01

Figure 3: relative error (39) on the polarization for the problem sketched on

figure 2, with µi = 0.01, νi = 0.3. NC01: non-consistent scheme, µ0 = 1.0,

ν0 = 0.3; C01: consistent scheme, µ0 = 1.0, ν0 = 0.3.

10-3
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10-1

100

100 101 102 103

ε[
σh ]

N1=N2

NC01
C01

NC02
C03

Figure 4: relative error (40) on the stresses for the problem sketched on figure

2, with µi = 0.01, νi = 0.3. NC01: non-consistent scheme, µ0 = 1.0, ν0 = 0.3;

C01: consistent scheme, µ0 = 1.0, ν0 = 0.3; NC02: non-consistent scheme,

µ0 = 0.001, ν0 = 0.3; C03: consistent scheme, µ0 = 0.5, ν0 = 0.3.
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Solver δ 2562 5122 10242

NC01 CG 10−10 143 142 139

C01 CG 10−10 140 138 136

NC02 SYMMLQ 10−10 302 296 285

C03 SYMMLQ 10−10 343 343 337

NC04 CG 5 × 10−4 545 779 574

AL04 [16] 5 × 10−4 2591 686 267

C04 CG 5 × 10−4 68 44 29

FNC04 CG 5 × 10−4 73 50 33

Table 1: Performance of the iterative solvers on each case, for 256 × 256,

512× 512 and 1024× 1024 meshes. Reported here is the number of iterations to

reach the desired accuracy.

consistent approaches [13]. The following experiments show

that h–convergence still occurs when these requirements are not

met.

For the non-consistent scheme first, we selected a reference

material which fails to have elastic constants greater than half

the elastic constants of any phase in the composite [16, equation

(23)]: µ0 = 0.001 and ν0 = 0.3; the corresponding curve on

figure 4 is labelled NC02.

We then selected for the consistent scheme a reference ma-

terial which is neither stiffer nor softer than the phases in the

composite: µ0 = 0.5 and ν0 = 0.3; the corresponding curve on

figure 4 is labelled C03.

As expected from the theoretical analysis of section 4, both

curves indicate h–convergence of the corresponding schemes

as h → 0. It should be noticed that curves NC01 and NC02

on the one hand, C01 and C03 on the other hand are barely

distinguishable. This means that both non-consistent and con-

sistent schemes are not very sensitive to the actual choice of

the reference material (the consistent scheme being in any case

slightly more accurate than the non-consistent scheme).

While the h–convergence is not really affected by the choice

of the reference material, the situation is more contrasted for

the actual inversion of the linear system (h being fixed). Indeed,

the linear systems arising from the cases NC01 and C01 are

negative definite, and can be solved by means of the conjugate

gradient method. This is no longer true of the cases NC02 and

C03, for which convergence of the conjugate gradient method is

not guaranteed; the results presented here were obtained with the

solver SYMMLQ [29]. Table 1 shows that inversion of the linear

system required more iterations for cases NC02 and C03 than

for cases NC01 and C01. It should be noted at this point that

each iteration of either CG or SYMMLQ requires one matrix-

vector product, the cost of which is dominated by the two FFTs.

Therefore, comparison of the different cases gathered in table 1

is fair.

5.2. The case of infinite contrast and the filtered, non-consistent

Green operator

In this section, we address the case of infinite contrast. More

precisely, we consider here that the inclusion is a pore, µi = 0.

Assumption 2 is no longer valid, and the theoretical results

from sections 3 and 4 do not apply. The numerical experiments

presented here should therefore be considered as exploratory,

prior to more rigorous mathematical backing.

In its original form, the basic scheme of Moulinec and Su-

quet [9, 10] is known not to be convergent at fixed h. While in

the case of finite contrast, this difficulty was overcome in section

5.1 by an appropriate change of the linear iterative solver, this

no longer holds in the case of infinite contrast. In fact, the linear

system arising from the non-consistent approach seems to be ill-

conditioned. We propose an alternative non-consistent approach

(the filtered non-consistent approach) which is apparently more

robust.

As for the consistent approach, it has already been demon-

strated [13] that the conjugate gradient iterations converge with

porous composites. In the present work, the focus is put on the

h–convergence, and we will quantify how the relative error (40)

on the stress tensor tends to zero as h→ 0.

Generally speaking, convergence of the iterative solver is

much slower than in the previous case; we therefore allowed for

a higher value of the residual, selecting δ = 5 × 10−4; still, the

number of iterations is rather high (see table 1). Four different

schemes were tested, the results being shown on figure 5. Ob-

viously, all four calculations converge when h→ 0, and all are

approximately of the same order in h.

The non-consistent approach (NC04) is closely related to

the basic scheme of Moulinec and Suquet [9, 10]; however, at

fixed h, the former is convergent (albeit slowly), while the latter

is not.

As a comparison, we also implemented the augmented la-

grangian scheme (AL04) first proposed by Michel et al. [16]

to overcome the incompatibility of the basic scheme with infi-

nite contrast. For the AL04 calculation, we also used (43) as

a stopping criterion, so that direct comparisons in table 1 are

meaningful. Interestingly, for both NC04 and AL04 calculations,

the number of iterations decreases significantly as the mesh gets

finer.

Contrary to the non-consistent approach, the consistent ap-

proach (C04) is much better behaved, and can be seen to con-

verge in less than 100 iterations for any refinement h of the

mesh. Figure 5 furthermore shows that this scheme is slightly

more accurate than both the non-consistent and the augmented

Lagrangian approaches.

This indicates again that from the purely numerical per-

spective, the consistent scheme is superior to its non-consistent

counterpart. However, the major drawback of the former lies

in the complexity of the calculation of the consistent discrete

Green operator (28). This led us to try and derive an alterna-

tive, non-consistent discrete Green operator, which would be

fairly easy to compute, while leading to well-behaved (easily

invertible) linear systems.

The starting point of the heuristic process which led us to

the so-called filtered, non-consistent discrete Green operator, is

the qualitative comparison of the stress fields obtained in cal-

culations NC04 and C04. Figure 6 shows the xy component of

σh, for a 32 × 32 grid. While the result of the consistent calcu-

lation (C04, middle) is smooth, the result of the non-consistent

calculation (NC04, left) exhibits a “checkerboard” pattern.

This observation suggests that the shortcomings of the non-
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Figure 5: relative error (40) on the stresses for the problem sketched on figure

2, with µi = 0, µ0 = 1.0 and ν0 = 0.3. NC04: non-consistent scheme; AL04:

augmented Lagrangian scheme [16]; C04: consistent scheme; FNC04: filtered,

non-consistent scheme.

Figure 6: the xy component of the stress tensor σh, resulting from a calculation

on a 32 × 32 grid. In this calculation, µi = 0 (pore), µ0 = µm, ν0 = νm.

Three different schemes were used: the non-consistent scheme (NC04, left),

the consistent scheme (C04, middle) and the filtered, non-consistent scheme

(FNC04, right).

consistent scheme originate in an inaccurate treatment of the

highest frequencies, which is in fact confirmed by the sharp

discontinuity in Fourier space of the non-consistent discrete

Green operator (see figure 1). Comparison of the corners of

the left and middle images on figure 1 indicate that the lowest

frequencies (say, up to Ni/4, i = 1, . . . , d) of the consistent and

non-consistent operators are close enough.

To sum up, discretizing τ on a N1×· · ·×Nd grid theoretically

gives access to frequencies up to Ni/2, i = 1, . . . , d. However, if

we use the non-consistent discrete Green operator Γh,nc
0

instead

of the consistent discrete Green operator, the highest frequencies

get polluted. It is then tempting to use the non-consistent Green

operator discretized on a finer grid, and filter out the (unreliable)

high frequencies. This is done in three steps

i. τh ∈ V
h is cell-wise constant on cells of size h. It is

therefore also cell-wise constant on cells of size h/2. In

other words, τh ∈ Vh/2,

ii. Γ
h/2,nc

0
can then be applied to τh ∈ Vh/2

ηh/2 = Γ
h/2,nc

0
∗ τh,

iii. finally, an element ηh ∈ V
h is constructed by averaging

ηh/2 on all 2d sub-cells of size h/2 of one cell of size h.

We define the filtered, non-consistent, discrete Green opera-

tor Γ
h,fnc
0

as the operator mapping τh onto ηh thus derived

ηh = Γ
h,fnc
0
∗ τh,

and straightforward manipulations lead to the following simple

expression of the Fourier components of this new discrete Green

operator

Γ̂
h,fnc

0,b =
∑

n∈{−1,0}d

[G(hkb+nN)]2
Γ̂0(kb+nN), for b ∈ Ih, (44)

with

G(K) = cos
K1

4
· · · cos

Kd

4
. (45)

The formal similarity of (44) and (45) with (28) and (26) is

striking. The benefit of the new operator lies of course in the

fact that the sum in (44) is finite (it contains only 2d terms). The

filtered, non-consistent discrete Green operator can therefore be

evaluated almost as cheaply as the non-filtered, non-consistent

discrete Green operator. Besides, this new operator can also be

proved to be asymptotically consistent, which means that under

assumptions 1 and 2, this operator leads to estimates τh that tend

to the solution τ of (10) as h → 0. Figure 1 (right) shows in

Fourier space a map of the xyxy component (plane strain elastic-

ity) of Γh,fnc
0

. Obviously, the discontinuity has been removed; on

the whole, Γh,fnc
0

appears to be a much better approximation of

the consistent operator Γh,c
0

than Γh,nc
0

.

The filtered, non-consistent discrete Green operator was

used to compute a Galerkin approximation of the solution to

the problem at hand (the calculation is labelled FNC04). Again,

the theoretical results of section 4 do not apply to this case.
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However, numerical experiments show that the new scheme

behaves very satisfactorily, even in the case of infinite contrast.

Indeed, both consistent and filtered, non-consistent schemes

have similar properties in terms of number of iterations for

h fixed (see table 1), and relative error ǫ[σh] as h → 0 (see

figure 5, where the curves corresponding to C04 and FNC04 are

practically undistinguishable). This application suggests that

the new operator Γh,fnc
0

realizes the desired compromise between

accuracy and ease of computation.

6. Conclusion

In this paper, we have presented a mathematical analysis of

two FFT-based schemes for the numerical homogenization of

composites within the framework of linear elasticity: the basic

scheme of Moulinec and Suquet [9, 10] and the energy-based

scheme of Brisard and Dormieux [13]. This work was moti-

vated by practical considerations, and led to important practical

conclusions.

We have shown that a slightly modified version of the basic

scheme, as well as the energy-based scheme can be regarded

as Galerkin discretizations of the same continuous problem

(namely, the Lippmann-Schwinger equation); the former is non-

consistent, whereas the latter is consistent. We then proved that

both approaches lead to L2 estimates of the true polarization

field within the composite.

We focused on the discretization of the continuous prob-

lem, while the inversion of the discretized problem is obtained

with the help of standard iterative solvers (conjugate gradient,

SYMMLQ, . . . ) and was not considered here. This distinction

revealed that the shortcomings of the basic scheme lie mainly

in the inversion step. Theoretical analysis indeed shows that re-

placing the fixed-point iterations by a more appropriate iterative

solver effectively removes the difficulties encountered by Michel

et al. [16]; in other words, the basic scheme provides a satisfac-

tory solution for any choice of the reference material. However,

simple examples indicate that at high contrast, the numerical

solution exhibits undesirable oscillations (“checkerboard” pat-

tern). This is to be attributed to the discretization of the Green

operator, which poorly reproduces the high-frequencies.

As for the energy-based scheme, the theoretical analysis

again led to the result that any reference material was admissible.

Of course, if the conditions of the principle of Hashin and Shtrik-

man [14] are not fulfilled, then the estimate of the macroscopic

properties is no longer a bound on the real effective properties.

The main drawback of the energy-based scheme is the necessary

precomputation of the consistent discrete Green operator.

It is worth noting at this point that the present work focused

on h–convergence. From this perspective, any reference material

is satisfactory, in the sense that it is always true that τh → τ

when h → 0. However, at fixed resolution h, the quality of

the estimates of the local mechanical fields (stresses, strains)

can sometimes improve if the reference material is carefully

selected. Determination of the optimal reference material at

fixed resolution is one of the perspectives of this paper.

Our work allowed to reconcile both basic and energy-based

schemes from the theoretical point of view as well as the prac-

tical point of view. Indeed their implementations are almost

identical, the only difference being the discrete Green operator

itself. This led us to try and derive a third discrete Green oper-

ator, which would combine the strengths of the non-consistent

discrete Green operator (ease of computation) with those of the

consistent discrete Green operator (absence of spurious oscil-

lations). We thus proposed the filtered, non-consistent Green

operator, which realizes a very satisfactory compromise.

In this work, we also proposed a consistent rule for the de-

termination of the equivalent properties of heterogeneous cells.

This is of paramount importance in the context of homogeniza-

tion of real materials, whose microstructure has been obtained

by finite-resolution imaging techniques. We have shown that the

rule previously introduced in [13] for the energy-based scheme

can be extended to the basic scheme as well.

As a final remark, we note that all the mathematical results

presented here are established under two assumptions, which

are not verified with porous media. Numerical experiments

presented here and elsewhere indicate that these results remain

valid even when pores are present. It is our goal to try and

extend the present work to this case. We believe that this further

mathematical analysis will improve our practical understanding

of the two numerical schemes.

Appendix A. On the mathematical analysis of the continu-

ous problem

Appendix A.1. Two lemmas supporting the proof of theorem 3

The proof of theorem 3 is directly inspired by [23] (ap-

pendix). In its original form however, it is established with

reference to the initial boundary-value problem of linear elas-

ticity, and makes use of some celebrated differential geometry

identities (namely, Stokes’ theorem).

In contrast, in the present work, problem (10) is considered

independently from the initial elasticity problem (2); besides,

(10) is stated in V, where derivatives are not necessarily meaning-

ful, and application of Stokes’ theorem would be questionable.

It was therefore deemed necessary to rewrite this proof, in order

to make sure that theorem 3 remains valid in V.

We start by extending to V two results (lemmas 1 and 2)

which are well-known in the framework of continuum mechanics

[30].

Lemma 1. For any polarization field τ ∈ V

Γ0 ∗ [C0 : (Γ0 ∗ τ)] = Γ0 ∗ τ. (A.1)

Proof. Starting from (5), simple algebra shows that for any

b ∈ Zd,

Γ̂0(kb) : C0 : Γ̂0(kb) = Γ̂0(kb). (A.2)

Summation of the corresponding Fourier series shows that equal-

ity (A.1) holds in the L2-sense.

Lemma 2 (A particular case of Hill’s lemma.). With the same

notation as in theorem 3, the following identities hold

σ1 : ε2 = σ2 : ε1 = 0. (A.3)
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Proof. It is first noted that taking the Fourier transform of both

relations in (13) leads to

ε̂i (k) = −Γ̂0 (k) : τ̂i (k) , σ̂i (k) = C0 : ε̂i (k) + τ̂i (k) ,

which, combined with (A.2), brings

σ̂∗1 (k) : ε̂2 (k) = τ̂1 (k) :
[

Γ̂0 (k) : C0 : Γ̂0 (k) − Γ̂0 (k)
]

: τ̂2 (k)

= 0,

by application of lemma 1. Invoking Parseval’s theorem, the

scalar product σ1 : ε2 is evaluated in Fourier space, which

proves (A.3), since each term of the Parseval series is zero.

With these two lemmas at hand, the proof of theorem 3 is

straightforward, and can be found in e.g. [23].

Appendix A.2. Proof of theorem 4

Proof. It will prove convenient to introduce the following indi-

cator functions, defined for all x ∈ Ω

1κ>κ0 (x) =















1 if κ(x) > κ0

0 if κ(x) ≤ κ0
, 1κ<κ0 (x) =















1 if κ(x) < κ0

0 if κ(x) ≥ κ0
,

as well as the corresponding functions 1µ>µ0
and 1µ<µ0

.

The first statement in theorem 4 will be proved if we exhibit

α > 0 such that, for any τ ∈ V, there exists̟ ∈ V verifying

a (τ,̟) ≥ α‖τ‖V‖̟‖V.

Let τ ∈ V be an arbitrary polarization field; a specific po-

larization field̟ ∈ V is then built upon τ. In order to do so, τ

is first decomposed into hydrostatic (τhyd) and deviatoric (τdev)

parts

τhyd =
1

d
tr τ i, τdev = τ − τhyd.

and the following polarization fields τ+ and τ− are introduced

τ+ = 1κ>κ0τ
hyd + 1µ>µ0

τdev, τ− = 1κ<κ0τ
hyd + 1µ<µ0

τdev,

so that τ = τ+ + τ−. Introducing the polarization field ̟ =

τ+−τ−, it is readily verified that̟ ∈ V. Owing to the symmetry

of the bilinear form a, and making use of corollary 1

a(τ,̟) = a(τ+ + τ−, τ+ − τ−) = a(τ+, τ+) − a(τ−, τ−)

≥ τ+ : (C − C0)−1 : τ+ + τ− : S0 : (S − S0)−1 : S0 : τ−.

Taking advantage of the isotropy of both local and reference

materials, the above volume averages can be expanded

τ+ : (C − C0)−1 : τ+ =
1

|Ω|

∫

κ(x)>κ0

‖τhyd(x)‖2

d [κ(x) − κ0]
dΩ

+
1

|Ω|

∫

µ(x)>µ0

‖τdev(x)‖2

2
[

µ(x) − µ0

] dΩ,

and

τ− : S0 : (S − S0)−1 : S0 : τ− =
1

|Ω|

∫

κ(x)<κ0

κ(x) ‖τhyd(x)‖2

dκ0 [κ(x) − κ0]
dΩ

+
1

|Ω|

∫

µ(x)<µ0

µ(x) ‖τdev(x)‖2

2µ0

[

µ(x) − µ0

] dΩ,

from which the following bound results

a (τ,̟) ≥
α

|Ω|

∫

Ω

[

‖τhyd(x)‖2 + ‖τdev(x)‖2
]

dΩ = α‖τ‖2
V
, (A.4)

with

α = min

{

inf
κ>κ0

1

d [κ(x) − κ0]
, inf
κ<κ0

κ(x)

dκ0 [κ0 − κ(x)]
,

inf
µ>µ0

1

2
[

µ(x) − µ0

] , inf
µ<µ0

µ(x)

2µ0

[

µ0 − µ(x)
]

}

,

and the proof of the first statement is complete, since ‖̟‖V =

‖τ‖V, and assumption 1 ensures that α > 0.

Proof of the second statement is not needed, as the first

statement is necessary and sufficient when the bilinear form a is

symmetric.

Appendix B. On the set of trial and test functions, Vh

In this appendix, we prove some useful properties of cell-

wise constant functions. In particular, we establish for̟h ∈ Vh

a link between the Fourier coefficients ˆ̟ h(kb) and the discrete

Fourier transform ˆ̟ h
b of the indexed values̟h

β
.

Appendix B.1. Fourier coefficients of̟h ∈ Vh

The natural setting of problem (10) is the space of square-

integrable functions. It is therefore natural to seek the expression

of the Fourier coefficients of any test function̟h ∈ Vh. Straight-

forward calculations show that, for any multi-index b ∈ Zd

ˆ̟ h(kb) =
1

|Ω|

∫

Ω

̟h(x) exp(−ıkb · x) dΩ

=
1

N
F(hkb)

∑

β∈Ih

exp(−ıkb · x
h
β)̟

h
β =

1

N
F(hkb) ˆ̟ h

b, (B.1)

where we have introduced the discrete Fourier transform ˆ̟ h
b

of the sequence ̟h
β
, defined as in (25), as well as function F,

defined by (26).

We also note that the norm of the cell-wise constant test

function̟h can be indifferently computed in the real space, or

in the Fourier space, thanks to the Plancherel theorem

‖̟h‖2
V
=

1

N

∑

β∈Ih

‖̟h
β‖

2 =
1

N2

∑

b∈Jh

‖ ˆ̟ h
b‖

2. (B.2)

Finally, a straightforward application of Parseval’s theorem

leads to the following useful identity, valid for any b ∈ Jh

∑

n∈Zd

[F(hkb+nN)]2 = 1. (B.3)
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Appendix B.2. Approximation in V
h

For any polarization field τ ∈ V, we now address the problem

of approximating τ by a cell-wise constant polarization field

τh ∈ Vh. Theorem 5 states that the approximation error ‖τ−τh‖V
can be made as small as desired, provided that h is small enough;

this simply results from the density of continuous functions in

L2(Ω), and the fact that continuous functions on Ω are uniformly

continuous (being closed and bounded, Ω is compact).

For the analysis of the well-posedness of problem (35), it

will prove convenient to provide explicit expressions of the best

estimate on Vh of any polarization field τ ∈ V. This best estimate

τh ∈ Vh minimizes ‖τ −̟h‖V for̟h ∈ Vh. In other words, it is

the orthogonal projection of τ onto V
h, which will be denoted

Πhτ.

For any polarization field τ ∈ V, the following cell-wise

constant polarization field τh ∈ Vh is defined

τh
β =

1

|Ωh
β
|

∫

Ωh
β

τ(x) dΩ. (B.4)

Simple algebra shows that (τ − τh) : τh = 0, that is to say

τh is the orthogonal projection of τ onto V
h. In other words

Πhτ = τh, and the best estimate of τ on V
h is given by the

cell-averages (B.4).

To close this section, the Fourier coefficients of τh are ex-

pressed as a function of the Fourier coefficients of τ

Theorem 8. For any trial field τ ∈ V

τ̂h
b = N

∑

n∈Zd

F(hkb+nN)τ̂(kb+nN), (B.5)

where τh denotes the cell-average of τ, defined by (B.4).

Proof. To prove this identity, we first invoke (B.3), as well as

periodicity of the discrete Fourier Transform τ̂h
b. In what follows,

b is a fixed multi-index

τ̂h
b − N

∑

n∈Zd

F(hkb+nN)τ̂(kb+nN)

=
∑

n∈Zd

[

F(hkb+nN)2τ̂h
b+nN − NF(hkb+nN)τ̂(kb+nN)

]

,

= N
∑

n∈Zd

F(hkb+nN)

[

1

N
F(hkb+nN)τ̂h

b+nN − τ̂(kb+nN)

]

,

= N
∑

n∈Zd

F(hkb+nN)
[

τ̂h(kb+nN) − τ̂(kb+nN)
]

, (B.6)

where (B.1) has been used. Multi-index b still being fixed, we

then introduce the auxiliary function

Φb(x) =
∑

β∈Ih

χh
β(x) exp(ıkb · x

h
β) (x ∈ Ω).

It should be noted that at any point x ∈ Ω, at most one term

in the above sum is non-zero; besides, straightforward algebra

leads to the Fourier coefficients of Φb

Φ̂b(ka) =















F(hka) if a = b + nN,

0 otherwise,

and equation (B.6) can be recast as

τ̂h
b − N

∑

n∈Zd

F(hkb+nN)τ̂(kb+nN)

= N
∑

a∈Zd

Φ̂∗b(ka)
[

τ̂h(ka) − τ̂(ka)
]

,

=
N

|Ω|

∫

x∈Ω

Φb(x)
[

τh(x) − τ(x)
]

dΩ,

where the last equality results from Parseval’s theorem. The

above integral is the scalar product of the cell-wise constant

auxiliary function Φb with τh−τ, which is orthogonal to the sub-

space of cell-wise constant functions. This integral is therefore

null, which proves (B.5).

Appendix C. On the mathematical analysis of the non-con-

sistent approximation

Appendix C.1. Well-posedness

The proof of the well-posedness of the discrete problem

(35) is very similar to the proof of the well-posedness of the

continuous problem (10), because lemmas 1 and 2 can be stated

for ah as well as a.

Lemma 3. For any trial field τh ∈ Vh

Γ
h,nc
0
∗
[

C0 :
(

Γ
h,nc
0
∗ τh

)]

= Γ
h,nc
0
∗ τh.

Outline of the proof. This is a simple application, in Fourier

space, of (31), as well as (A.2).

Lemma 4. Let τh
1
, τh

2
∈ V

h be two arbitrary trial fields, and

consider the element-wise constant fields εh
i
∈ Vh and σh

i
∈ Vh

εh
i = −Γ

h,nc
0
∗ τi, σh

i = C0 : εh
i + τi.

Then

σh
1

: εh
2
= σh

2
: εh

1
= 0.

Outline of the proof. The proof is similar to that of lemma 2,

using discrete Fourier transforms and (31) instead of continuous

Fourier transforms, and (3). Finally, lemma 3 and Plancherel’s

identity are invoked instead of lemma 1 and Parseval’s identity.

Theorem 9. With the same notation as in lemma 4, the following

alternative expressions of the approximate bilinear form ah hold

for any two trial fields τh
1
, τh

2
∈ Vh

ah(τh
1, τ

h
2) = τh

1
:
(

Ch − C0

)−1
: τh

2
+ εh

1
: C0 : εh

2
,

ah(τh
1, τ

h
2) = τh

1
: S0 :

(

S0 − Sh
)−1

: S0 : τh
2
− σh

1
: S0 : σh

2
.

Outline of the proof. Invoking lemma 3 (resp. lemma 4), in

place of lemma 1 (resp. lemma 2), the proof is identical to

theorem 3.

Inequality (36) follows immediately from the above theorem,

and well-posedness of problem (35) can be established in a way

almost identical to problem (10).
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Appendix C.2. Asymptotic consistency

Proof of theorem 7. Let τ ∈ V be the unique solution of prob-

lem (10), and τh = Πhτ its orthogonal projection onto V
h. To

prove the asymptotic consistency of (35), we need to compare,

for any ̟h ∈ V
h, the value of a(τ,̟h) with ah(Πhτ,̟h) =

ah(τh,̟h) (see equation (38)).

The difference a(τ,̟h)− ah(τh,̟h) comprises two families

of terms: the local terms, which involve the local stiffness of the

composite, and the non-local terms, which involve the Green

operators Γ0 and Γh,nc
0

. We first address the local terms, namely

̟h : (C − C0)−1 : τ −̟h :
(

Ch − C0

)−1
: τh

= ̟h : (C − C0)−1 :
(

τ − τh
)

,

where the equivalence on V
h between Ch and C has been used.

From assumption 1,

|̟h : (C − C0)−1 :
(

τ − τh
)

| ≤
1

λ
‖̟h‖V‖τ − τ

h‖V. (C.2)

The non-local term of a(τ,̟h) is transformed with the help

of (B.1), taking advantage of the fact that the discrete Fourier

transform is periodic

̟h : (Γ0 ∗ τ) =
∑

b∈Zd

ˆ̟ h∗(kb) : Γ̂0(kb) : τ̂(kb)

=
1

N

∑

b∈Jh

ˆ̟ h∗
b :

∑

n∈Zd

F(hkb+nN)Γ̂0(kb+nN) : τ̂(kb+nN),
(C.3)

while definition (31), combined with Plancherel’s theorem and

(B.5) lead to

̟h : (Γh,nc
0
∗ τh) =

1

N2

∑

b∈Jh

ˆ̟ h∗
b : Γ̂0(kb) : τ̂h

b

=
1

N

∑

b∈Jh

ˆ̟ h∗
b :

∑

n∈Zd

F(hkb+nN)Γ̂0(kb) : τ̂(kb+nN),

(C.4)

and, gathering (C.3) and (C.4)

̟h : (Γ0 ∗ τ) −̟h : (Γh,nc
0
∗ τh) =

1

N

∑

b∈Jh

ˆ̟ h∗
b : η̂h

b, (C.5)

where

η̂h
b =

∑

n∈Zd

F(hkb+nN)
[

Γ̂0(kb+nN) − Γ̂0(kb)
]

: τ̂(kb+nN). (C.6)

Applying the inequality of Cauchy-Schwarz to (C.5), and

substituting (B.2)

|̟h : (Γ0 ∗ τ) −̟h : (Γh,nc
0
∗ τh)|

≤
1

N



















∑

b∈Jh

‖ ˆ̟ h
b‖

2



















1/2 

















∑

b∈Jh

‖η̂h
b‖

2



















1/2

≤ ‖̟h‖V



















∑

b∈Jh

‖η̂h
b‖

2



















1/2

. (C.7)

Then, from (C.6), (B.3), (7) and the inequality of Cauchy-

Schwarz

‖η̂h
b‖ ≤

3 − 2ν0

µ0 (1 − ν0)

∑

n∈Zd

n,(0,...,0)

|F(hkb+nN)| ‖τ̂(kb+nN)‖

≤
3 − 2ν0

µ0 (1 − ν0)





























∑

n∈Zd

n,(0,...,0)

|F(hkb+nN)|2





























1/2 



























∑

n∈Zd

n,(0,...,0)

‖τ̂(kb+nN)‖2





























1/2

≤
3 − 2ν0

µ0 (1 − ν0)





























∑

n∈Zd

n,(0,...,0)

‖τ̂(kb+nN)‖2





























1/2

, (C.8)

Regrouping (C.7) and (C.8) finally leads to the following

upper-bound

|̟h : (Γ0 ∗ τ) −̟h : (Γh,nc
0
∗ τh)|

≤
3 − 2ν0

µ0 (1 − ν0)
‖̟h‖V





























∑

b∈Jh

∑

n∈Zd

n,(0,...,0)

‖τ̂(kb+nN)‖2





























1/2

≤
3 − 2ν0

µ0 (1 − ν0)
‖̟h‖V



















‖τ‖2
V
−

∑

b∈Jh

‖τ̂(kb)‖2



















1/2

, (C.9)

which obviously tends to 0 as h→ 0 (see e.g. Parseval’s identity).

Asymptotic consistency of ah, that is

lim
h→0

sup
̟h∈Vh

|a(τ,̟h) − ah(τh,̟h)|

‖̟h‖V
= 0,

then results from (C.2) and (C.9).
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[3] E. Kröner, Bounds for effective elastic moduli of disordered materials,

Journal of the Mechanics and Physics of Solids 25 (1977) 137–155.

[4] R. M. Christensen, K. H. Lo, Solutions for effective shear properties in

three phase sphere and cylinder models, Journal of the Mechanics and

Physics of Solids 27 (1979) 315–330.

[5] R. M. Christensen, Two theoretical elasticity micromechanics models,

Journal of Elasticity 50 (1998) 15–25.

[6] J. Sanahuja, C. Toulemonde, Numerical homogenization of concrete

microstructures without explicit meshes, Cement and Concrete Research

41 (2011) 1320–1329.
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l’Académie des sciences série II 311 (1990) 769–774.
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