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Abstract. We review work on extreme events, their causes
and consequences, by a group of European and American
researchers involved in a three-year project on these topics.
The review covers theoretical aspects of time series analysis
and of extreme value theory, as well as of the determinis-
tic modeling of extreme events, via continuous and discrete
dynamic models. The applications include climatic, seismic
and socio-economic events, along with their prediction.

Two important results refer to (i) the complementarity of
spectral analysis of a time series in terms of the continuous
and the discrete part of its power spectrum; and (ii) the need
for coupled modeling of natural and socio-economic sys-
tems. Both these results have implications for the study and
prediction of natural hazards and their human impacts.
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1 Introduction and motivation

Extreme events are a key manifestation of complex systems,
in both the natural and human world. Their economic and so-
cial consequences are a matter of enormous concern. Much
of science, though, has concentrated – until two or three
decades ago – on understanding the mean behavior of phys-
ical, biological, environmental or social systems and their
“normal” variability. Extreme events, due to their rarity, have
been hard to study and even harder to predict.

Recently, a considerable literature has been devoted to
these events; see, for instance, Katz et al. (2002), Smith
(2004), Sornette (2004), Albeverio et al. (2005) and refer-
ences therein. Still, much of this literature has relied heav-
ily on classical extreme value theory (EVT) or on study-
ing frequency-size distributions with a heavy-tailed charac-
ter. Prediction has therefore been limited, by-and-large, to
the expected time for the occurrence of an event above a cer-
tain size.

This review paper does not set out to cover the extensive
knowledge accumulated recently on the theory and applica-
tions of extreme events: the task would have required at least
a book, which would rapidly be overtaken by ongoing re-
search. Instead, this paper is trying to summarize and exam-
ine critically the numerous results of a project on “Extreme
Events: Causes and Consequences (E2–C2)” that brought
together, over more than three years, 70–80 researchers be-
longing to 17 institutions in nine countries. The project pro-
duced well over 100 research papers in the refereed literature
and providing some perspective on all this work might have
therefore some merit.

We set out to develop methods for the description, under-
standing and prediction of extreme events across a range of
natural and socio-economic phenomena. Good definitions
for an object of study only get formulated as that study nears
completion; hence there is no generally accepted definition
of extreme events in the broad sense we wished to study them
in the E2C2 project. Still, one can use the following oper-
ating definition, proposed by Kantz et al. (2005). Extreme
events (i) are rare, (ii) they occur irregularly, (iii) they ex-
hibit an observable that takes on an extreme value, and (iv)
they are inherent to the system under study, rather than being
due to external shocks.

General tools were developed to extract the distribution
of these events from existing data sets. Models that are an-
chored in complex-systems concepts were constructed to in-
corporate a priori knowledge about the phenomena and to re-
produce the data-derived distribution of events. These mod-
els were then used to predict the likelihood of extreme events
in prescribed time intervals. The methodology was applied to
three sets of problems: (i) natural disasters from the realms
of hydrology, seismology, and geomorphology; (ii) socio-
economic crises, including those associated with recessions,
criminality, and unemployment; and (iii) rapid, potentially

catastrophic changes in the interaction between economic ac-
tivity and climate variability.

The paper is organized as follows. In Sect. 2 we intro-
duce several advanced methods of time series analysis, for
the detection and description of spectral peaks, as well as for
the study of the continuous spectrum. Section 3 addresses
EVT, including multivariate EVT, nonstationarity and long-
memory effects; some technical details appear in Appendices
A and B.

Dynamical modeling of extreme events is described in
Sect. 4. Both discrete-valued models, like cellular automata
and Boolean delay equations (BDEs), and continuous-valued
models, like maps and differential equations, are covered.
Several applications are described in Sect. 5, for modeling
as well as for time series analysis. It is here that we refer
the reader to a few of the other papers in this special is-
sue, for many more applications. Nonequilibrium macroeco-
nomic models are outlined in Sect. 6, where we show how the
use of such models affects the conclusions about the impact
of natural hazards on the economy. Prediction of extreme
events is addressed in Sect. 7. Here we distinguish between
the prediction of extremes in continuous, typically differen-
tiable functions, like temperatures, and point processes, like
earthquakes and homicide surges. The paper concludes with
Sect. 8 that provides a quick summary and some interesting
directions of future development. Appendix E lists the nu-
merous acronyms that appear in this fairly multidisciplinary
review.

This review paper is part of a Special Issue on “Ex-
treme Events: Nonlinear Dynamics and Time Series Anal-
ysis”, built around the results of the E2-C2 project, but
not restricted to its participants. The Special Issue is in-
troduced by the Guest Editors – B. Malamud, H. W. Rust
and P. Yiou – and contains 14 research papers on the theory
of extreme events and its applications to many phenomena
in the geosciences. Theoretical developments are covered
by Abaimov et al. (2007); Bernacchia and Naveau (2008);
Blender et al. (2008); Schölzel and Friederichs (2008) and
Serinaldi (2009), while the applications cover the fields of
meteorology and climate dynamics (Vannitsem and Naveau,
2007; Vrac et al., 2007a; Bernacchia et al., 2008; Ghil et al.,
2008b; Taricco et al., 2008; Yiou et al., 2008), seismology
(Soloviev, 2008; Narteau et al., 2008) and geomagnetism
(Anh et al., 2007). Many other peer-reviewed papers were
published over the duration of the project and data sets and
other unrefereed products can be found on the web sites of
the participating institutions.

2 Time series analysis

2.1 Background

This section gives a quick perspective on the “nonlinear rev-
olution” in time series analysis. In the 1960s and 1970s, the
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scientific community realized that much of the irregularity in
observed time series, which had traditionally been attributed
to the random “pumping” of a linear system by infinitely
many (independent) degrees of freedom (DOF), could be
generated by the nonlinear interaction of a few DOF (Lorenz,
1963; Smale, 1967; Ruelle and Takens, 1971). This realiza-
tion of the possibility of deterministic aperiodicity or “chaos”
(Gleick, 1987) created quite a stir.

The purpose of this section is to describe briefly some
of the implications of this change in outlook for time series
analysis, with a special emphasis on environmental time se-
ries. Many general aspects of nonlinear time series analysis
are reviewed by Drazin and King (1992), Ott et al. (1994),
Abarbanel (1996), and Kantz and Schreiber (2004). We con-
centrate here on those aspects that deal with regularities and
have proven most useful in studying environmental variabil-
ity.

A connection between deterministically chaotic time se-
ries and the nonlinear dynamics generating them was at-
tempted fairly early in the young history of “chaos theory”.
The basic idea was to consider specifically a scalar, or uni-
variate, time series with apparently irregular behavior, gener-
ated by a deterministic or stochastic system. This time series
could be exploited, so the thinking went, in order to ascer-
tain, first, whether the underlying system has a finite number
of DOF. An upper bound on this number would imply that
the system is deterministic, rather than stochastic, in nature.
Next, we might be able to verify that the observed irregular-
ity arises from the fractal nature of the deterministic system’s
invariant set, which would yield a fractional, rather than inte-
ger, value of this set’s dimension. Finally, one could maybe
reconstruct the invariant set or even the equations governing
the dynamics from the data.

Environmental time series, as well as most other time se-
ries from nature or the laboratory, are likely to be generated
by forced dissipative systems (Lorenz, 1963; Ghil and Chil-
dress, 1987, Chap. 5). The invariant sets associated with
irregularity here are “strange attractors” (Ruelle and Tak-
ens, 1971), toward which all solutions tend asymptotically;
long-term irregular behavior in such systems is associated
with such attractors. Proving rigorously the existence of
these objects and their fractal character, however, has been
hard (Guckenheimer and Holmes, 1997; Lasota and Mackey,
1994; Tucker, 1999).

Under general assumptions, most physical systems and
many biological and socio-economic ones can be described
by a system of nonlinear differential equations:

Ẋi = Fi(X1,...,Xj ,...,Xp),1≤ i,j ≤ p, (1)

whereX = (X1,...,Xp) is a vector of variables and theFi on
the right-hand side are continuously differentiable functions.
The phase spaceX of the system (1) lies in the Euclidean
spaceRp.

In general, theFi ’s are not well known, and an observer
has only access to one time seriesX̂(t) = Xi0(t), for some

1≤ i0 ≤ p and for a finite time. A challenge is thus to as-
sess the properties of the underlying attractor of the system
(1), given partial knowledge of only one of its components.
The ambitious program to do so (Packard et al., 1980; Roux
et al., 1980; Ruelle, 1981) relied essentially on themethod of
delays, based on the Whitney (1936) embedding lemma and
the Mãné (1981) and Takens (1981) theorems.

First of all, the dataX̂(t) are typically given at discrete
timest = n1t only. Next, one has to admit that it is hard to
actually get the right-hand sidesFi ; instead, one attempts to
reconstruct the invariant set on which the solutions of Eq. (1)
lie.

Mañé (1981), Ruelle (1981) and Takens (1981) had the
idea, developed further by Sauer et al. (1991), that a single
observed time serieŝX = Xi0 or, more generally, some scalar
function ofX,

X̂(t) = φ(X1(t),...,Xp(t)),

could be used to reconstruct the attractor of a forced dissi-
pative system. The basis for this reconstruction idea is es-
sentially the fact that, subject to certain technical conditions,
such a solution covers the attractor densely; thus, as time
increases, it will pass arbitrarily close to any point on the
attractor. Time series observed in the natural environment,
however, have finite length and sampling rate, as well as sig-
nificant measurement noise.

The embedding idea has been applied therefore most suc-
cessfully to time series generated numerically or by labo-
ratory experiments in which sufficiently long series could
be obtained and noise was controlled better than in nature.
Broomhead and King (1986), for instance, successfully ap-
plied singular spectrum analysis (SSA) to the reconstruction
of the Lorenz (1963) attractor. As we shall see below, for
time series in the geosciences and other natural and socio-
economic sciences, it might only be possible to attain a more
modest goal: to describe merely a “skeleton” of the attractor,
which is formed by a few robust periodic orbits. This moti-
vates the next section on SSA. Applications are discussed in
Sect. 5.1.

2.2 Oscillatory phenomena and periodicities

2.2.1 Singular spectrum analysis (SSA)

Given a discretely sampled time seriesX(t), the goal of SSA
is to determine properties of a reconstructed attractor – more
precisely, to find its skeleton, formed by the least unstable
periodic orbits on it – by the method of delays. SSA can
also serve for data compression or smoothing, in preparation
for the application of other spectral-analysis methods; see
Sect. 2.2.2.

The main idea is to exploit the covariance matrix of
the sequence of “delayed” vectorsX(t) = (Xt ,...,Xt+M−1),
where 1≤ t ≤ N −M +1, in a well-chosen phase-space di-
mensionM. The eigenelements of this covariance matrix
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provide the directions and degree of extension of the attrac-
tor of the underlying system.

By analogy with the meteorological literature, the eigen-
vectors are generally calledempirical orthogonal functions
(EOFs). Each EOFρk carries a fraction of the variance ofX

that is proportional to the corresponding eigenvalueλk. The
projectionAk of the time seriesX on each EOFρk is called
a principal component (PC),

Ak(t) =

M∑
j=1

X(t +j −1)ρk(j). (2)

If a setK of meaningful modes is identified, it can provide a
mode-wise filter of the seriesX with so-called reconstructed
components (RCs):

RK(t) =
1

Mt

∑
k∈K

Ut∑
j=Lt

Ak(t −j +1)ρk(j). (3)

The normalization factorMt , as well as the summation
boundsLt andUt , differ between the central part of the time
series and its end points; see Ghil et al. (2002) for the exact
values.

Vautard and Ghil (1989) made the crucial observation that
pairs of nearly equal eigenvalues may correspond to oscilla-
tory modes, especially when the corresponding EOF and PC
pairs are in phase quadrature. Moreover, the RCs have the
property of capturing the phase of the time series in a well-
defined least-squares sense, so thatX(t) andRK(t) can be
superimposed on the same time scale, 1≤ t ≤ N . Hence, no
information is lost in the reconstruction process, since the
sum of all individual RCs gives back the original time series
(Ghil and Vautard, 1991).

In the process of developing a methodology for applying
SSA to climatic time series, a number of heuristic (Vautard
and Ghil, 1989; Ghil and Mo, 1991; Unal and Ghil, 1995)
or Monte Carlo-type (Ghil and Vautard, 1991; Vautard et al.,
1992) methods have been devised for signal-to-noise separa-
tion and for the reliable identification of oscillatory pairs of
eigenelements. They are all essentially attempts to discrimi-
nate between the significant signal as a whole, or individual
pairs, and white noise, which has a flat spectrum. A more
stringent “null hypothesis” (Allen, 1992; Allen and Smith,
1996) is that of so-called red noise, since most geophysi-
cal and many other time series tend to have larger power at
lower frequencies (Hasselmann, 1976; Mitchell, 1976; Ghil
and Childress, 1987) .

An important generalization of SSA is its application to
multivariate time series, dubbed multi-channel SSA (Kep-
penne and Ghil, 1993; Plaut and Vautard, 1994; Ghil et al.,
2002). Another significant extension of SSA is multi-scale
SSA, which was devised to provide a data-adaptive method
for analysing nonstationary, self-similar or heavy-tailed time
series (Yiou et al., 2000).
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Fig. 1. Annual minima of Nile River water levels for the 1300 years between 622 A.D. (i.e., 1 A.H.) and 1921

A.D. (solid black line). The large gaps in the time series that occur after 1479 A.D. have been filled using SSA

(cf. Sect. 2.2.1) (smooth red curve). The straight horizontal line (solid blue) shows the mean value for the
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Fig. 2. Periodogram of the time series of Nile River minima (see Fig. 1), in log-log coordinates, including the

straight line of the Geweke and Porter-Hudak (1983) (GPH) estimator (blue) and a fractionally differenced (FD)

model (red). In both cases we obtain β̂ = 0.76 and thus a Hurst exponent of Ĥ = 0.88; asymptotic standard

deviations for β̂ are 0.09 for the GPH estimate and 0.05 for the FD model.

92

Fig. 1. Annual minima of Nile River water levels for the 1300 yr
between 622 AD (i.e., 1 AH) and 1921 AD (solid black line). The
large gaps in the time series that occur after 1479 AD have been
filled using SSA (cf. Sect. 2.2.1) (smooth red curve). The straight
horizontal line (solid blue) shows the mean value for the 622–1479
AD interval, in which no large gaps occur; time intervals of large,
persistent excursions from the mean are marked by red shading.

Kondrashov et al. (2005) proposed a data-adaptive algo-
rithm to fill gaps in time series, based on the covariance
structures identified by SSA. They applied this method to
the 1300-yr-long time series (622–1921 AD) of Nile River
records; see Fig. 1. We shall use this time series in Sect. 5.1
to illustrate the complementarity between the analysis of
the continuous background, cf. Sects. 2.3 and 2.4, and that
of the peaks rising above this backgound, as described in
Sect. 2.2.2.

2.2.2 Spectral density and spectral peaks

Both deterministic (Eckmann and Ruelle, 1985) and stochas-
tic (Hannan, 1960) processes can, in principle, be character-
ized by a functionS of frequencyf , rather than timet . This
functionS(f ) is called thepower spectrumin the engineer-
ing literature or thespectral densityin the mathematical one.
A very irregular time series – in the sense defined at the be-
ginning of Sect. 2.1 – possesses a spectrum that is continuous
and fairly smooth, indicating that all frequencies in a given
band are excited by the process generating such a time se-
ries. On the other hand, a purely periodic or quasi-periodic
process is described by a single sharp peak or by a finite num-
ber of such peaks in the frequency domain. Between these
two end members, nonlinear deterministic but “chaotic” pro-
cesses can have spectral peaks superimposed on a continu-
ous and wiggly background (Ghil and Jiang, 1998; Ghil and
Childress, 1987, Sect. 12.6).

In theory, for a spectral densityS(f ) to exist and be well
defined, the dynamics generating the time series has to be er-
godic and allow the definition of an invariant measure, with
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respect to which the first and second moments of the gener-
ating process are computed as an ensemble average. In prac-
tice, the distinction between deterministically chaotic and
truly random processes via spectral analysis can be as tricky
as the attempted distinctions based on the dimension of the
invariant set. In both cases, the difficulty is due to the short-
ness and noisiness of measured time series, whether coming
from the natural or socio-economic sciences.

The spectral densityS(f ) is composed of a continuous
part – often referred to as broad-band noise – and a discrete
part. In theory, the latter is made up of Diracδ functions –
also referred to as spectral lines: they correspond to purely
periodic parts of the signal (Hannan, 1960; Priestley, 1992).
In practice, spectral analysis methods attempt to estimate ei-
ther the continuous part of the spectrum or the lines or both.
The lines are often estimated from discrete and noisy data
as more or less sharp “peaks.” The estimation and dynam-
ical interpretation of the latter, when present, are at times
more robust and easier to understand than the nature of the
processes that might generate the broad-band background,
whether deterministic or stochastic.

The numerical computation of the power spectrum of a
random process is an ill-posed inverse problem (Jenkins and
Watts, 1968; Thomson, 1982). For example, a straightfor-
ward calculation of the discrete Fourier transform of a ran-
dom time series, which has a continuous spectrum, will pro-
vide a spectral estimate whose variance is equal to the esti-
mate itself (Jenkins and Watts, 1968; Box and Jenkins, 1970).
There are several approaches to reduce this variance.

The periodogram estimate ofS(f ) is the square Fourier
transform of the time seriesX(t).

Ŝ(f ) =
1

N

∣∣∣∣∣ N∑
t=1

X(t)exp(−2πif t)

∣∣∣∣∣
2

. (4)

This estimate harbors two complementary problems: (i) its
variance grows like the lengthN of the time series; and (ii)
for a finite-length, discretely sampled time series, there is
“power leakage” outside of any frequency band. The meth-
ods to overcome these problems (Percival and Walden, 1993;
Ghil et al., 2002) differ in terms of precision, accuracy and
robustness.

Among these, the multi-taper method (MTM: Thomson,
1982) offers a range of tests to check the statistical signif-
icance of the spectral features it identifies, with respect to
various null hypotheses (Thomson, 1982; Mann and Lees,
1996). MTM is based on obtaining a set optimal weights,
called the tapers, forX(t); these tapers provide a compro-
mise between the two above-mentioned problems: each taper
minimizes spectral leakage and optimizes the spectral resolu-
tion, while averaging over several spectral estimates reduces
the variance of the final estimate.

A challenge in the spectral estimate of short and noisy
time series is to determine the statistical significance of the
peaks. Mann and Lees (1996) devised a heuristic test for

MTM spectral peaks with respect to a null hypothesis of red
noise. Red noise is simply a Gaussian auto-regressive pro-
cess of order 1, i.e., one that favours low frequencies and has
no local maximum. Such a random process is a good candi-
date to test short and noisy time series, as already discussed
in Sect. 2.2.1 above.

The key features of a few spectral-analysis methods are
summarized in Table 3 of Ghil et al. (2002). The methods
in that table include the Blackman-Tukey or correlogram
method, the maximum-entropy method (MEM), MTM, SSA,
and wavelets; the table indicates some of their strengths and
weaknesses. Ghil et al. (2002) also describe precisely when
and why SSA is advantageous as a data-adaptive pre-filter,
and how it can improve the sharpness and robustness of
subsequent peak detection by the correlogram method or
MEM.

2.2.3 Significance and reliability issues

More generally, none of the spectral analysis methods men-
tioned above can provide entirely reliable results all by itself,
since every statistical test is based on certain probabilistic as-
sumptions about the nature of the physical process that gen-
erates the time series of interest. Such mathematical assump-
tions are rarely, if ever, met in practice.

To establish higher and higher confidence in a spectral re-
sult, such as the existence of an oscillatory mode, a number
of steps can be taken. First, the mode’s manifestation is ver-
ified for a given data set by the best battery of tests available
for a particular spectral method. Second, additional methods
are brought to bear, along with their significance tests, on the
given time series. Vautard et al. (1992) and Yiou et al. (1996),
for instance, have illustrated this approach by applying it to
a number of synthetic time series, as well as to climatic time
series.

The application of the different univariate methods de-
scribed here and of their respective batteries of significance
tests to a given time series is facilitated by the SSA-MTM
Toolkit, which was originally developed by Dettinger et al.
(1995). This Toolkit has evolved as freeware over the last
decade-and-a-half to become more effective, reliable, and
versatile; its latest version is available at http://www.atmos.
ucla.edu/tcd/ssa.

The next step in gaining confidence with respect to a tenta-
tively detected oscillatory mode is to obtain additional time
series produced by the phenomenon under study. The final
and most difficult step on the road of confidence building is
that of providing a convincing physical explanation for an
oscillation, once we have full statistical confirmation of its
existence. This step consists of building and validating a
hierarchy of models for the oscillation of interest, cf. Ghil
and Robertson (2000). The modeling step is distinct from
and thus fairly independent of the statistical analysis steps
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discussed up to this point. It can be carried out before, after,
or in parallel with the other steps.

2.3 Geoscientific records with heavy-tailed distributions

2.3.1 Introduction

After obvious periodicities and trends have been removed
from a time seriesX(t), we are left with the component that
corresponds to the continuous part ofS(f ). We shall refer
to this component as the “stochastic” one, although we have
seen in Sect. 2.2 that deterministically chaotic processes can
also produce continuous spectra.

We can broadly describe the properties of such a stochas-
tic time series in two complementary ways: (i) the frequency-
size distribution of values, i.e., how many values lie in a given
size range; and (ii) the correlations among those values, i.e.
how successive values cluster together. One also speaks of
one-point and two-point (or many-point) properties; the lat-
ter reflect the “memory” of the process generating the time
series and are discussed in Sect. 2.4. In this subsection, we
briefly review frequency-size distributions. After discussing
frequency-size distributions in general, we enter into some
of the practicalities to consider when proposing heavy-tailed
distributions as a model fit to data. We also refer the reader
to Sect. 3 of this paper for an in-depth description of EVT.
An example of such good practices is given by Rossi et al.
(2010), who examined heavy-tailed frequency-size distribu-
tions for natural hazards.

2.3.2 Frequency-size distributions

Frequency-size distributions are fundamental for a better un-
derstanding of models, data and processes when considering
extreme events. In particular, such distributions have been
widely used for the study of risk. A standard approach has
been to assume that the frequency-size distribution of all val-
ues in a given time series approaches a Gaussian, i.e., that the
Central Limit Theorem applies. In a large number of cases,
this approach is appropriate and provides correct statistical
distributions. In many other cases, it is appropriate to con-
sider a broader class of statistical distributions, such as log-
normal, Ĺevy, Fŕechet, Gumbel or Weibull (Stedinger et al.,
1993; Evans et al., 2000; White et al., 2008).

Extreme events are characterized by the very largest (or
smallest) values in a time series, namely those values that
are larger (or smaller) than a given threshold. These are the
“tails” of the probability distributions – the far right or far
left of a univariate distribution, say – and can be broadly di-
vided into two classes, thin tails and heavy tails: thin tails
are those that fall off exponentially or faster, e.g., the tail of a
normal, Gaussian distribution; heavy tails, also called fat or
long tails, are those that fall off more slowly. There is still
some confusion in the literature as to the use of the terms
long, fat or heavy tails. Current usage, however, is tending

towards the idea that heavy-tailed distributions are those that
have power-law frequency-size distributions, and where not
all moments are finite; these distributions arise from scale-
invariant processes.

In contrast to the Central Limit Theorem, where all the
values in a time series are considered, EVT studies the con-
vergence of the values in the tail of a distribution towards
Fréchet, Gumbel or Weibull probability distributions; it is
discussed in detail in Sect. 3. We now consider some practi-
cal issues in the study of heavy-tailed distributions.

2.3.3 Heavy-tailed distributions: practical issues

As part of the nonlinear revolution in time series analy-
sis (see Sect. 2.1), there has been a growing understand-
ing that many natural processes, as well as socio-economic
ones, have heavy-tailed frequency-size distributions (Mala-
mud, 2004; Sornette, 2004). The use of such distributions
in the refereed literature – including Pareto and generalized
Pareto or Zipf’s law – has increased dramatically over the last
two decades, in particular in relationship to extreme events,
risk, and natural or man-made hazards; e.g., Mitzenmacher
(2003).

Practical issues that face researchers working with heavy-
tailed distributions include:

Finding the best power-law fit to data, when such a model
is proposed. Issues in preparing the data set and fitting
frequency-size distributions to it:

1. use of cumulative vs. noncumulative data,

2. whether and how to “bin” data (linear vs. logarithmic
bins, size of the bins),

3. proper normalization of the bin width,

4. use of advanced estimators for fitting frequency-size
data, such as kernel density estimation or maximum
likelihood estimation (MLE),

5. discrete vs. continuous data,

6. number of data points in the sample and, if bins are
used, number of data points in each bin.

A common example of incorrectly fitting a model to data
is to count the number of data valuesn that occur in a bin
with width r to r +1r, use bins with different sizes (e.g.,
logarithmically increasing) and not normalize by the size of
the bin1r, but rather just fitn as a function ofr. If using
logarithmic bins andn-counts in each bin that are not prop-
erly normalized, the power-law exponent will be off by 1.0.
One should also carefully examine the data being used for
any evidence of preliminary binning – e.g., wildfire sizes are
preferentially reported in the United States to the nearest acre
burned – and appropriately modify the subsequent treatment
of the data.

www.nonlin-processes-geophys.net/18/295/2011/ Nonlin. Processes Geophys., 18, 295–350, 2011



302 M. Ghil et al.: Extreme events: causes and consequences

White et al. (2008) compare different methods for fit-
ting data and their implications. These authors conclude
that MLE provides the most reliable estimators when fitting
power laws to data. It stands to reason, of course, that if the
data are sufficient in number and robustly follow a power-
law distribution over many orders of magnitude, then bin-
ning (with proper normalization), kernel density estimation,
and MLE should all provide broadly similar results: it is only
when the number of data is small and when they cover but
a limited range that the use of more advanced methods be-
comes important.

Another case in which extra caution is required occurs
when – as is often the case for natural hazards – the data are
reported in fixed and relatively large increments. An example
is the number of hectares of forest burnt in a widfire.

Goodness of fit, and its appropriateness for the data

When fitting frequency counts or probability densities as a
function of size, and assuming a power-law fit, a common
method is to perform a least-squares linear regression fit on
the log of the values, and “report” the correlation coefficient
as a goodness of fit. However, many more robust techniques
exist – e.g., the Kolmogorov-Smirnov test combined with
MLE – for estimating how good a fit is, and if the fit is ap-
propriate for the data. Clauset et al. (2009) have a broad
discussion on techniques for estimating whether the model is
appropriate for the data, in the context of MLE.

Narrow-range vs. broad-range fits

Although many scientists identify power-law or “fractal”
statistics in their data, often it is over a very narrow-range of
orders. In a study by Avnir et al. (1998), they examined 96
articles inPhysical Reviewjournals, over a seven year period,
with each study reporting power-law fits to their data. Of the
studies, 45 % of them reported power-law fits based on just
one order of magnitude in the size of their data, or even less,
and only 8 % of the studies were basing their power-law fits
on more than two orders of magnitude. More than a decade
on, and many researchers are still satisfied to determine that
their data support a power-law or heavy-tailed distribution
based on a fit that is valid for quite a narrow range of behav-
ior.

Correlations in the data

When using a frequency-size distribution for risk analyses,
or other interpretations, one is often making the assumption
that the data themselves are independent and identically dis-
tributed (i.i.d.) in time. In other words, that there are no
correlations or clustering of values. This assumption is often
not true, and is discussed in the next subsection (Sect. 2.4) in
the context of long-range memory or dependence.

2.4 Memory and long-range dependence (LRD)

2.4.1 Introduction

When periodicities, quasi-periodic modes or large-scale
trends have been identified and removed – e.g., by using SSA
(Sect. 2.2.1), MTM (Sect. 2.2.2) or other methods – the re-
maining component of the time series is often highly irregu-
lar but might still be of considerable interest. The increments
of this residual time series are seldom totally uncorrelated
– although even if this were the case, it would still be well
worth knowing – but often shows some form of “memory”,
which appears in the form of an auto-correlation (see below).

The characteristics of the noise processes that generate this
irregular, residual part of the time series determine, for exam-
ple, the significance levels associated with the separation of
the original, raw time series into signals, such as harmonic
oscillations or broader-peak modes, and noise (e.g., Ghil
et al., 2002). More generally, the accuracy and reliability of
parameter values estimated from the data are determined by
these characteristics: roughly speaking, noise that has both
low variance and short-range correlations only leads to small
uncertainties, while high-variance or long-range–correlated
noise renders parameter estimation more difficult, and leads
to larger uncertainties (cf. Sect. 3.4). The noisy part of a time
series, moreover, can still be useful in short-term prediction
(Brockwell and Davis, 1991).

The linear part of the temporal structure in the noisy part
of the time series is given by the auto-correlation function
(ACF); this structure is also loosely referred to as persis-
tence or memory. In particular, so-calledlong memoryis
suspected to occur in many natural processes; these include
surface air temperature (e.g., Koscielny-Bunde et al., 1996;
Caballero et al., 2002; Fraedrich and Blender, 2003), river
run-off (e.g., Montanari et al., 2000; Kallache et al., 2005;
Mudelsee, 2007), ozone concentration (Vyushin et al., 2007),
among others, all of which are characterized by a slow de-
cay of the ACF. This slow decay is often referred to as the
Hurst phenomenon(Hurst, 1951); it is the opposite of the
more common, rapid decay of the ACF in time, which can be
approximated as exponential.

A typical example for the Hurst phenomenon occurs in
the time series of Nile River annual minimum water levels,
shown in Fig. 1; this figure will be further discussed in
Sect. 5.1. The data set represents a very long climatic time
series (e.g., Hurst, 1952) and covers 1300 yr, from 622 AD
to 1921 AD; the fairly large gaps were filled by using SSA
(Kondrashov et al., 2005, and references therein). This
series exhibits the typical time-domain characteristics of
long-memory processes with positive strength of persistence,
namely the relatively long excursions from the mean (solid
blue line, based on the gapless interval 622–1479 AD); such
excursions are marked by the red shaded areas in the figure.
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2.4.2 The auto-correlation function (ACF) and the
memory of time series

The ACFρ(τ) describes the linear interdependence of two
instances,X(t) andX(t+τ), of a time series separated by the
lag τ . As previously stated, the most frequently encountered
case involves a rapid, exponential decay of the linear depen-
dence ofX(t +τ) onX(t), with ρ(τ) ∼ exp(−τ/T ) whenτ

is large, whereT represents the decorrelation time. This be-
havior characterizes auto-regressive (AR) processes of order
1, also called AR[1] processes (Brockwell and Davis, 1991);
we have already alluded to them in Sect. 2.2.1 under the col-
loquial name of “red noise”.

For a discretely sampled time series, with regular sampling
at pointstn = n1t (see Sect. 2.1), we get a discrete set of lags
τk = k1t . The rapid decay of the ACF implies a finite sum∑

∞

τk=−∞
ρ(τk) = c <∞ that leads to the term finite-memory

or short-range dependence(SRD). In contrast, a diverging
sum (or infinite memory)

∞∑
τk=−∞

ρ(τk) = ∞. (5)

characterizes along-range dependent(LRD) process, also
called long-range correlated or long-memory process. The
prototype for an ACF with such a diverging sum shows an
algebraic decay for large time lagsτ

ρ(τ) ∼ τ−γ , τ → ∞, (6)

with 0< γ < 1 (Beran, 1994; Robinson, 2003).
By the Wiener-Khinchin theorem (e.g., Hannan, 1960), the

spectral densityS(f ) of Sect. 2.2.2 and the ACFρ(τ) are
Fourier transforms of each other. Hence the spectral density
S(f ) can also be used to describe the short- or long-term
memory of a given time series (Priestley, 1992). In this rep-
resentation, the LRD property manifests itself as a spectral
density that diverges at zero frequency and decays slowly
(i.e., like a power law) towards larger frequencies:S(f ) ∼

|f |
−β for |f | → 0, with an exponent 0< β = 1−γ < 1 that

is the conjugate of the behavior ofρ(τ) at infinity. A result of
this type is related to Paley-Wiener theory, which establishes
a systematic connection between the behavior of a function
at infinity and the properties of its Fourier transform (e.g.,
Yosida, 1968; Rudin, 1987).

The LRD property is also found in certain determinis-
tically chaotic systems (Manneville, 1980; Procaccia and
Schuster, 1983; Geisel et al., 1987), which form an impor-
tant class of models in the geosciences (Lorenz, 1963; Ghil
et al., 1985; Ghil and Childress, 1987; Dijkstra, 2005). Here,
the strength of the long-range correlation is functionally de-
pendent on the fractal dimension of the time series generated
by the system (e.g., Voss, 1985).

The characterization of the LRD property in this subsec-
tion emphasizes the asymptotic behavior of the ACF, cf.

Eqs. (5) and (6), and is more commonly used in the math-
ematical literature. A complementary view, more popular in
the physical literature, is based on the concept of a self-affine
stochastic process, which generates time series that are simi-
lar to the one or ones under study. This is the view taken, for
instance, in Sect. 2.4.4 and in the applications of Sect. 5.1.2.
Clearly, for a stochastic process to describe well a time se-
ries with the LRD property, its ACF must satisfy Eqs. (5)
and (6). The two approaches lead simply to different tools
for describing and estimating the LRD parameters.

2.4.3 Quantifying long-range dependence (LRD)

The parametersγ or β are only two of several parameters
used to quantify LRD properties; estimators for these param-
eters can be formulated in different ways. A straightforward
way is to estimate the ACF from the time series (Brockwell
and Davis, 1991) and fit a power-law, according to Eq. (6),
to the largest time lags. Often this is done by least-square
fitting a straight line to the ACF values plotted in log-log co-
ordinates. The exponent found in this way is an estimate for
γ . ACF estimates for largeτ , however, are in general noisy
and hence this method is not very accurate nor very reliable.

One of the earliest techniques for estimating LRD param-
eters is the rescaled-range statistic (R/S). It was originally
proposed by Hurst (1951) when studying the Nile River flow
minima (Hurst, 1952; Kondrashov et al., 2005); see the time
series shown here in Fig. 1. The estimated parameter is now
called the Hurst exponentH ; it is related to the previous two
by 2H = 2−γ = β +1. While the symbolH is sometimes
used in the nonlinear analysis of time series for the Hausdorff
dimension, we will not need the latter in the present review,
and thus no confusion is possible. The R/S technique has
been extensively discussed in the LRD literature (e.g., Man-
delbrot and Wallis, 1968b; Lo, 1991).

A method which has become popular in the geosciences is
detrended fluctuation analysis (DFA; e.g., Kantelhardt et al.,
2001). Like R/S, it yields a heuristic estimator for the Hurst
exponent. We use here the term “heuristic” in the precise
statistical sense of an estimator for which the limiting distri-
bution is not known, and hence confidence intervals are not
readily available, thus making statistical inference rather dif-
ficult.

The DFA estimator is simple to use, though, and believed
to be robust against certain types of nonstationarities (Chen
et al., 2002). It is affected, however, by jumps in the time
series; such jumps are often present in temperature records
(Rust et al., 2008). DFA has been applied to many climatic
time series (e.g., Monetti et al., 2001; Eichner et al., 2003;
Fraedrich and Blender, 2003; Bunde et al., 2004; Fraedrich
and Blender, 2004; Kiŕaly and J́anosi, 2004; Rybski et al.,
2006; Fraedrich et al., 2009), and LRD behavior has been
inferred to be present in them; the estimates obtained for the
Hurst exponent have differed, however, fairly widely from
study to study. Due to DFA’s heuristic nature and the lack
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Fig. 1. Annual minima of Nile River water levels for the 1300 years between 622 A.D. (i.e., 1 A.H.) and 1921

A.D. (solid black line). The large gaps in the time series that occur after 1479 A.D. have been filled using SSA

(cf. Sect. 2.2.1) (smooth red curve). The straight horizontal line (solid blue) shows the mean value for the

622–1479 A.D. interval, in which no large gaps occur; time intervals of large, persistent excursions from the

mean are marked by red shading.
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Fig. 2. Periodogram of the time series of Nile River minima (see Fig. 1), in log-log coordinates, including the

straight line of the Geweke and Porter-Hudak (1983) (GPH) estimator (blue) and a fractionally differenced (FD)

model (red). In both cases we obtain β̂ = 0.76 and thus a Hurst exponent of Ĥ = 0.88; asymptotic standard

deviations for β̂ are 0.09 for the GPH estimate and 0.05 for the FD model.

92

Fig. 2. Periodogram of the time series of Nile River minima (see
Fig. 1), in log-log coordinates, including the straight line of the
Geweke and Porter-Hudak (1983) (GPH) estimator (blue) and a
fractionally differenced (FD) model (red). In both cases we ob-
tain β̂ = 0.76 and thus a Hurst exponent of̂H = 0.88; asymptotic
standard deviations for̂β are 0.09 for the GPH estimate and 0.05
for the FD model.

of confidence intervals, it has been difficult to choose among
the distinct estimates, or to discriminate between them and
the trivial value ofH = 0.5 expected for SRD processes.

Taqqu et al. (1995) have discussed and analyzed DFA and
several other heuristic estimators in detail. Metzler (2003),
Maraun et al. (2004) and Rust (2007) have also provided re-
views of, and critical comments, on DFA.

As mentioned at the end of the previous subsection
(Sect. 2.4.2), one can use also the periodogramŜ(fj ) to eval-
uate LRD properties; it represents an estimator for the spec-
tral densityS(f ), cf. Eq. (4). The LRD character of a time se-
ries will manifest itself by the divergence ofŜ(fj ) at f = 0,
according toS(f ) ∼ |f |

−β . More precisely, in a neighbor-
hood of the origin,

logŜ(fj ) = logcf −β log|fj |+uj ; (7)

herecf is a positive constant,{fj = j/N : j = 1,2,...,m}

is a suitable subset of the Fourier frequencies, withm < N ,
and uj is an error term. The log-periodogram regression
in Eq. (7) yields an estimator with a normal limit distribu-
tion that has a variance ofπ2/(24m). Asymptotic confi-
dence intervals are therewith readily available and statistical
inference about LRD parameters is thus greatly facilitated
(Geweke and Porter-Hudak, 1983; Robinson, 1995). Fig-
ure 2 (blue line) shows the GPH estimator of Geweke and
Porter-Hudak (1983), as applied to the low-frequency half of
the periodogram for the time series in Fig. 1; the result, with
m = 212, is thatβ̂ = 0.76±0.09 andĤ = 0.88±0.04, with
the standard deviations indicated in the usual fashion.

For an application of log-periodogram regression to
atmospheric-circulation data, see Vyushin and Kushner
(2009); Vyushin et al. (2008) provide anR-package for esti-
mates based on the GPH approach and on wavelets. The lat-
ter approach to assess long-memory parameters is described,
for instance, by Percival and Walden (2000).

The methods discussed up to this point involve the rele-
vant asymptotic behavior of the ACF at large lags or of the
spectral density at small frequencies. The behavior of the
ACF or of the spectral density at other time or frequency
scales, respectively, is not pertinent per se. There are two
caveats to this remark. First, given a finite set of data, one
has only a limited amount of large-lag correlations and of
low-frequency information. It is not clear, therefore, whether
the limits of τ → ∞ or of f → 0 are well captured by the
available data or not.

Second, given the poor sampling of the asymptotic behav-
ior, one often uses ACF behavior at smaller lags or spectral-
density behavior at larger frequencies in computing LRD-
parameter estimates. Doing so is clearly questionable a priori
and only justified in special cases, where the asymptotic be-
havior extends beyond its normal range of validity. We return
to this issue in the next subsection and in Sect. 8.

2.4.4 Stochastic processes with the LRD property

As opposed to investigating the asymptotic behavior of the
ACF or of the spectral density, as in the previous subsection
(Sect. 2.4.3), one can aim for a description of the full ACF
or spectral density by using stochastic processes as models.
Thus, for instance, Fraedrich and Blender (2003) and? have
provided evidence of sea surface temperatures (SSTs) fol-
lowing an 1/f spectrum, also calledflicker noise, in mid-
latitudes and for low frequencies, i.e. for time scales longer
than a year, while the spectrum at shorter time scales follows
the well-known red-noise or 1/f 2 spectrum. Fraedrich et al.
(2004) then used a two-layer vertical diffusion model – with
different diffusivities in the mixed laxer and in the abyssal
ocean – to simulate this spectrum, subject to spatially depen-
dent but temporally uncorrelated atmospheric heat fluxes.

A popular class of stochastic processes used to model the
continuous part of the spectrum (see Sect. 2.2.2) consists
of the already mentioned AR[1] processes (see Sect. 2.4.2),
along with auto-regressive processes of orderp, denoted
by AR[p], and their extension to auto-regressive moving-
average processes, denoted by ARMA[p,q] (e.g., Percival
and Walden, 1993). Roughly speaking,p indicates the num-
ber of lags involved in the regression, andq the number of
lags involved in the averaging; bothp andq here are integers.

It can be shown that the ACF of an AR[p] process –
or, more generally, of a finite-order ARMA[p,q] process
– decays exponentially; this leads to a converging sum∑

∞

τk=−∞
ρ(τk) = c < ∞ and thus testifies to SRD behavior;

see Brockwell and Davis (1991) and Sect. 2.4.2 above. In
the first half of the 20th century, the statistical literature was
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dominated by AR[p] processes and models to describe ob-
served time series that exhibit slowly decaying ACFs (e.g.,
Smith, 1938; Hurst, 1951) were not available to practition-
ers.

In probability theory, though, important developments led
to a study of so-called infinitely divisible distributions and of
Lévy processes (e.g., Feller, 1968; Sato, 1999). In this con-
text, also a class of stochastic processes associated to the con-
cept of LRD were introduced into the physical literature by
Kolmogorov (1941) and were widely popularized by Man-
delbrot and Wallis (1968a) and by Mandelbrot (1982) in the
statistics community as well, under the name ofself-similar
or, more generally,self-affineprocesses.

A processYt is called self-similar if its probability dis-
tribution changes according to a simple scaling law when
changing the scale at which we resolve it. This can be writ-

ten asYt
d
= c−H Yct , whereX

d
= Y means that the two random

variablesX andY are equal in distribution;H is called the
self-similarity parameter or Hurst exponent and was already
encountered, under the latter name, in Sect. 2.4.3, whilec is
a positive constant. These processes have a time-dependent
variance and are therefore not stationary. A stationary model
can be obtained from the increment processXt = Yt −Yt−1.
In a self-affine processes, there are two or more dimensions
involved, with separate scaling parameters,d1,d2,...

When Yt is normally distributed for eacht , Yt is called
fractional Brownian motion, while Xt is commonly referred
to asfractional Gaussian noise(fGn); this was the first model
to describe observed time series with algebraically, rather
than exponentially decaying ACF at largeτ (Beran, 1994).
For 0.5< H < 1, the ACF of the increment processXt de-
cays algebraically and the process is LRD .

For an fGn process with 0< H ≤ 0.5, though, the ACF is
summable, meaning that such a process has SRD behavior;
in fact, its ACF even sums to zero. This “pathologic” situ-
ation is sometimes given the appealing name of “long-range
anti-correlation” but is rarely encountered in practice. It is
mostly the result of over-differencing the actual data (Beran,
1994). For a discussion on long-range anti-correlation in the
Southern Oscillation Index, see Ausloos and Ivanova (2001)
and the critical comment by Metzler (2003).

Self-similarity implies that all scales in the process are
governed by the scaling exponentH . A very large litera-
ture exists on whether self-similarity – or, more generally,
self-affinity – does indeed extend across many decades, or
not, in a plethora of physical and other processes. Here is
not the place to review this huge literature; see, for instance,
Mandelbrot (1982) and Sornette (2004), among many others.

Fortunately, more flexible models for LRD are available
too; these models exhibit algebraic decay of the ACF only
for large time scalesτ and not for the full range of scales,
like those that are based on self-similarity. They still satisfy
Eq. (5) but do allow for unrelated behavior on smaller time
scales. Most popular among these models are the fractional

ARIMA [p,d,q] (or FARIMA[p,d,q]) models (Brockwell
and Davis, 1991; Beran, 1994). This generalization of the
classical ARMA[p,q] processes has been possible due to the
concept offractional differencingintroduced by Granger and
Joyeux (1980) and Hosking (1981). The spectral density of
a fractionally differenced (FD) or fractionally integrated pro-
cess with parameterd estimated from the Nile River time
series of Fig. 1 is shown in Fig. 2 (red line). For small fre-
quencies, it almost coincides with the GPH straight-line fit
(blue).

If an FD process is used to drive a stationary AR[1] pro-
cess, one obtains afractional AR[1] or FAR[1] process.
Such a process has the desired asymptotic behavior for the
ACF, cf. Eq. (6), but is more flexible for smallτ , due to
the AR[1] component. The more general framework that in-
cludes the moving-average part is then provided by the class
of FARIMA [p,d,q] processes (Beran, 1994). The parame-
terd is related to the Hurst exponent byH = 0.5+d, so that
0≤ d = H −0.5< 0.5 is LRD , in which 0.5≤ H < 1. These
processes are LRD but donot show self-similar behavior,
they do not show a power-law ACF across the whole range of
lags or a power-law spectral density across the whole range
of frequencies.

Model parameters of the fGn or the FARIMA[p,d,q]

models can be estimated using maximum-likelihood estima-
tion (MLE) (Dahlhaus, 1989) or the Whittle approximation
to the MLE (Beran, 1994). These estimates are implemented
in theR-packagefarima at http://wekuw.met.fu-berlin.de/
∼HenningRust/software/farima/. Both estimation methods
provide asymptotic confidence intervals.

Another interesting aspect of this fully parametric mod-
eling approach is that the discrimination problem between
SRD and LRD behavior can be formulated as a model selec-
tion problem. In this setting, one can revert to standard model
selection procedure based on information criteria such as the
Akaike information criterion (AIC) or similar ones (Beran
et al., 1998) or to the likelihood-ratio test (Cox and Hink-
ley, 1994). A test setting that involves both SRD and LRD
processes as possible models for the time series under inves-
tigation leads to a more rigorous discrimination because the
LRD model has to compete against the most suitable SRD-
type model (Rust, 2007).

2.4.5 LRD: practical issues

A number of practical issues exist when examining long-
range persistence. Many of these are discussed in detail by
Malamud and Turcotte (1999) and include:

Range ofβ Some techniques for quantifying the strength
of persistence – e.g., power-spectral analysis and DFA –
are effective for time series that have anyβ-value, whereas
others are effective only over a given range ofβ. Thus
semivariograms are effective only over the range 1≤ β ≤ 3,
while R/S analysis is effective only over−1 ≤ β ≤ 1; see
Malamud and Turcotte (1999) for further details.Time series
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lengthAs the length of a time series is reduced, some tech-
niques are much less robust than others in appropriately es-
timating the strength of the persistence (Gallant et al., 1994)
One-point probability distributionsAs the distribution of the
point values that make up a time series becomes increasingly
non-Gaussian – e.g., log-normal or heavy-tailed – techniques
such as R/S and DFA exhibit strong biases in their estimator
of the persistence in the time series (Malamud and Turcotte,
1999). Trends and periodicitiesAny large-scale variability
stemming from other sources than LRD will influence the
persistence estimators. Rust et al. (2008), for instance, has
discussed the deleterious effects of trends and jumps in the
series on these estimators. Known periodicities, like the an-
nual or diurnal cycle, should be explicitely removed in order
to avoid biases (Markovic and Koch, 2005). More generally,
one should separate the lines and peaks from the continuous
spectrum before studying the latter (see Sect. 2.3.1). Witt
et al. (2010) showed that it is important to examine whether
temporal correlations are present in time series of natural
hazards or not. These time series are, in general, unevenly
spaced and may exhibit heavy-tailed frequency-size distribu-
tions. The combination of these two traits renders the corre-
lation analysis more delicate.

2.4.6 Simulation of fractional-noise and LRD processes

Several methods exist to generate time series from an LRD
process. The most straightforward approach is probably to
apply an AR linear filter to a white-noise sequence in the
same way as usually done for an ARMA[p,q] processes
(Brockwell and Davis, 1991). Since a FARIMA[p,d,q] pro-
cess, however, requires an infinite-order of auto-regression,
the filter has to be truncated at some point.

A different approach relies on spectral theory: the points
in a periodogram are distributed according toS(f )Z, where
Z denotes aχ2-distributed random variable with two degrees
of freedom (Priestley, 1992). If the spectral densityS(f ) is
known, this property can be exploited to straightforwardly
generate a time series by inverse Fourier filtering (Timmer
and König, 1995). Frequently used methods for generating
a time series from an LRD process are reviewed by Bardet
et al. (2003).

3 Extreme value theory (EVT)

3.1 A few basic concepts

EVT provides a solid probabilistic foundation (e.g. Beirlant
et al., 2004; De Haan and Ferreira, 2006) for studying the
distribution of extreme events in hydrology (e.g., Katz et al.,
2002), climate sciences, finance and insurance (e.g. Em-
brechts et al., 1997), and many other fields of applications.
Examples include the study of annual maxima of tempera-
tures, wind, or precipitation.

Probabilistic EVT theory is based on asymptotic argu-
ments for sequences of i.i.d. random variables; it provides
information about the distribution of the maximum value of
such an i.i.d. sample as the sample size increases. A key
result is often called thefirst EVT theoremor the Fisher-
Tippett-Gnedenko theorem. The theorem states that suit-
ably rescaled sample maxima follow asymptotically – sub-
ject to fairly general conditions – one of the three “classical”
distributions, named after Gumbel, Fréchet or Weibull (e.g.,
Coles, 2001); these are also known as extreme value distri-
butions of Type I, II and III.

For the sake of completeness, we list these three cumula-
tive distribution functions below:
Type I (Gumbel):

G(z) = exp

{
−exp

[
−

(
z−b

a

)]}
, −∞ < z < ∞; (8)

Type II (Fŕechet):

G(z) =

{
0, z ≤ b,

exp
{
−
(

z−b
a

)−1/η
}

, z >b;
(9)

Type III (Weibull):

G(z) =

{
exp

{
−

[
−
(

z−b
a

)1/η
]}

, z <b,

1, z ≥ b.
(10)

The parametersb, a > 0 andη > 0 are called, respectively,
the location, scale and shape parameter. The Gumbel dis-
tribution is unbounded, while Fréchet is bounded below by
0 and Weibull has an upper bound; the latter is unknown a
priori and needs to be determined from the data. These dis-
tributions are plotted, for instance, in Beirlant et al. (2004, p.
52).

Such a result is comparable to the Central Limit Theorem,
which states that the sample’s mean converges in distribu-
tion to a Gaussian variable, whenever the sample variance is
finite. As is the case for many other results in probability
theory, astability propertyis the key element to understand
the distributional convergence of maxima.

A random variable is said to be stable (or closed), or to
have a stable distribution, if a linear combination of two in-
dependent copies of the variable has the same distribution,
up to affine transformations, i.e. up tolocationandscalepa-
rameters. Suppose that we have drawn a sample(X1,...,Xn)

of sizen from the variableX, and letMn denote the max-
imum of this sample. We would like to know which type
of distributions are stable for the maximaMn, up to affinity,
i.e., we wish to find the class of distributions that satisfies the

equality max(X1,...,Xn)
d
= anX0 +bn for the sample-size–

dependent scale and location parametersan(> 0) and bn;
hereX0 is independent ofXi and has the same distribution

asXi , while the notationX
d
= Y was defined in Sect. 2.4.4.
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The solution of such a distributional equation is called
the group ofmax-stable distributions. For example, a unit-
Fréchet distribution is defined byP(X < x) = exp(−1/x).
Its sample maximum satisfies

P(Mn < xn)= P(X1 < xn,...,Xn < xn) (11)

= P n(X <xn) = exp(−1/x);

consequently, it belongs to the max-stable category. Intu-
itively this implies that – if the rescaled sample maximum
Mn converges in distribution to a limiting law – then this
limiting distribution has to be max-stable.

Let us assume that, for allx, the distribution of the rescaled
maximumP((Mn − bn)/an ≤ x) converges to a nondegen-
erate distribution for some suitable normalization sequences
an > 0 andbn:

P((Mn−bn)/an ≤ x)=F n(anx+bn) → G(x) asn → ∞, (12)

whereG(x) is a nondegenerate distribution. Then this limit-
ing distribution has to be max-stable and can be written as a
Generalized Extreme Value(GEV) distribution

G(x;µ,σ,ξ) = exp
(
−

{
1+ξ

x −µ

σ

}−1/ξ

+

)
, (13)

where(·)+ stands for the positive part of the quantity(·).
Hereµ replacesb as the mean or location parameter in

Eqs. (8)–(10),σ replacesa as the scale parameter, whileξ re-
placesη as the shape parameter; note thatξ no longer need be
positive. Thus, in Eq. (13),µ ∈ R, σ > 0 andξ 6= 0 are called
the GEV location, scale and shape parameters, respectively,
and they have to obey the constraint 1+ ξ(x −µ)/σ > 0.
For ξ → 0 in Eq. (13), the functionG(x;µ,σ,0) tends to
exp(−exp{−(x −µ)/σ }), i.e. to the Gumbel, or Type-I, dis-
tribution of Eq. (8). The sign ofξ is important because
G(x;µ,σ,ξ) corresponds to a heavy-tailed distribution (see
also Sect. 2.3) whenξ > 0 (Fŕechet or Type II) and to a distri-
bution with bounded tails whenξ < 0 (Weibull or Type III).

Note that the result in Eq. (12) does not state that every
rescaled maximum distribution converges to a GEV. It states
only thatif the rescaled maximum converges, then the limit
H(x) is a GEV distribution. For example, discrete random
variables do not satisfy this condition and other limiting re-
sults have to be derived for such variables. We shall return
to this point in the application of Sect. 4.2, which involves
deterministic, rather than random processes.

From a statistical point of view, it follows that the cumu-
lative probability distribution function of the sample maxi-
mum is very likely to be correctly fitted by a GEV distribu-
tion G(x;µ,σ,ξ) of the form given in Eq. (13): this form
encapsulates all univariate max-stable distributions, in par-
ticular the three above-mentioned types (e.g., Coles, 2001).

In trying to assess and predict extreme events, one often
works with so-called “block maxima”, i.e. with the maxi-
mum value of the data within a certain time interval. Al-
though the choice of the block size – such as a year, a sea-

son or a month – can be justified in many cases by geophys-
ical considerations, modeling block maxima is statistically
wasteful. For example, working with annual maxima of pre-
cipitation implies that, for each year, all rainfall observations
but one, the maximum, are disregarded in the inference pro-
cedure.

To remove this drawback, another approach consists in
modeling exceedances above a pre-chosen thresholdu. In
the so-called “peaks-over-threshold” (POT) approach, the
distributions of these exceedances are also characterized by
asymptotic results: their intensities are approximated by the
generalized Pareto distribution (GPD) and their frequencies
by a Poisson point process.

The survival functionH ξ,σ (y) of the GPDHξ,σ (y) is
given by

H ξ,σ (y) := 1−Hξ,σ (y) =


(

1+
ξ

σ
y

)−1/ξ

for ξ 6= 0 and 1+ξy/σ > 0,

e−y/σ for ξ = 0,

(14)

whereξ andσ = σ(u) > 0 are the shape and scale param-
eters of this function, andy = x −u > 0 corresponds to the
exceedance above the fixed thresholdu. Thesecond EVT the-
oremor Pickands-Balkema-De Haan theorem (e.g., De Haan
and Ferreira, 2006) then states that, for a large class of distri-
bution functionsF(x) = P(X ≤ x), we have

lim
u→τF

sup
0<y<τF −u

∣∣Fu(y)−Gξ,σ (u)(y)
∣∣= 0 (15)

for some positive scaling functionσ(u) that depends on the
thresholdu. While the first EVT theorem was developed in
the 1920s, the second one only goes back to the 1970s. In
Eq. (15),τF is the upper bound of the distribution function
andFu = P(X−u <y|X−u > 0) for y > 0.

The result of Eq. (15) allows us to describe the POT
approach. Given a thresholdun, select the observations
(Xi1,...,XiNun

) that exceed this threshold; the exceedances
(Y1,...,YNun

) are given byYj = Xij − un > 0, andNun =

card{Xi,i = 1,...,n : Xi > un} is their number. According
to the Pickands-Balkema-De Haan theorem, the distribution
function Fun of these exceedances can be approximated by
a GPD whose parametersξ andσn = σ(un) have to be esti-
mated. It follows that an estimator of the tailF(un) of Fun is
given by

F̂ (x) =
Nun

n
H ξ̂ ,̂σ (x −un), (16)

where (̂ξ ,σ̂ ) are estimators of(ξ,σ ) andNun/n is the es-
timator of F(un). Finally, a POT estimator̂xp(un) of the
p-quantilexp is obtained by inverting Eq. (16) to yield

x̂p(un) = un +
σ̂

ξ̂

{(
np

Nun

)−ξ̂

−1

}
. (17)

In practice, the choice of the thresholdun is difficult and
the estimation of the parameters(ξ,σ ) is clearly a question of
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trade-off between bias and variance. As we lowerun and thus
increase the sample sizeNun , the bias will grow since the tail
satisfies less well the convergence criterion in Eq. (15), while
if we increase the threshold, fewer observations are used and
the variance increases. Dupuis (1999) selected a threshold by
using a bias-robust scheme that gives larger weights to larger
observations. In hydrology, a pragmatic and visual approach
is to plot the estimates ofσ andξ as a function of different
threshold values. The choice ofu is made by identifying
an interval in which these estimates are rather constant with
respect tou. Thenu is chosen to be the smallest value in this
interval.

Recently, alternative methods based on mixture models
have also been studied in order to avoid the problem of
choosing a threshold. Frigessi et al. (2002) proposed a mix-
ture model with two components and a dynamic weight func-
tion that is equivalent to using a smoothed threshold. One
component of the mixture was a light-tailed parametric den-
sity – which they took to be a Weibull density – whereas the
other component was a GPD with a positive shape parameter
ξ > 0. Carreau and Bengio (2006) proposed a more flexible
mixture model in the context of conditional density estima-
tion. In contrast to the Frigessi et al. (2002) model, the num-
ber of components was not fixed a priori and each component
was a hybrid Pareto distribution, defined as a Gaussian distri-
bution whose upper-right tail was replaced by a heavy-tailed
GPD. The threshold selection problem was replaced there-
with by an estimation problem of additional parameters that
was data-driven and “unsupervised”, i.e. fully automatic.

To estimate the three parameters of a GEV distribution
or the two GPD parameters, several methods have been de-
veloped, studied and compared during the last two decades.
These comparisons involve fairly technical points and are
summarized in Appendix A.

3.2 Multivariate EVT

The probabilistic foundations for the statistical study of mul-
tivariate extremes are well developed. A classical work in
this field is Resnick (1987), and the recent books by Beir-
lant et al. (2004), De Haan and Ferreira (2006), and Resnick
(2007) pay considerable attention to the multivariate case.
The aim of multivariate extreme value analysis is to charac-
terize the joint upper tail of a multivariate distribution. As in
the univariate case, two basic approaches exist, either analyz-
ing the extremes extracted from prescribed-size blocks – e.g.,
annual componentwise maxima – or alternatively studying
only the observations that exceed some threshold. In either
case, one can use different representations of the dependence
among block maxima or threshold exceedances, respectively.

For the univariate case, we saw in the previous subsection
(Sect. 3.1) that parametric GEV and GPD models character-
ize the asymptotic behavior of extremes – such as sample
maxima or exceedances above a high threshold – as the sam-
ple size increases. In the multivariate setting, the limiting

behavior of component-wise maxima has also been studied
in terms of max-stable processes, e.g. De Haan and Resnick
(1977); see Eq. (19) below for a definition of such pro-
cesses. An important distinction between the univariate and
the multivariate case, though, is that no parametric model
can entirely represent max-stable vector processes. Multi-
variate inference techniques represent a very active field of
research; see, for instance, Heffernan and Tawn (2004). For
the bivariate case, a number of flexible parametric models
have been proposed and studied; they include the Gaussian
(Smith, 1990; Ḧusler and Reiss, 1989), bilogistic (Joe et al.,
1992), and polynomial (Nadarajah, 1999) models.

There has been a growing interest in the analysis of spa-
tial extremes in recent years. For spatial data, when there
are as many variables as locations, this number is too large
and additional assumptions have to be made in order to
work with manageable models. For example, De Haan and
Pereira (2006) proposed two specific stationary models for
extreme values: both of them depend on a single parameter
that varies as a function of the distance between two points.
Davis and Mikosch (2008) proposed space-time processes
for heavy-tailed distributions by linearly filtering i.i.d. se-
quences of random fields at each location. Schlather (2002)
and Schlather and Tawn (2003) simulated stationary max-
stable random fields and studied the extremal coefficients for
such fields. Several authors have also investigated Bayesian
or latent processes for modeling extremes in space. In this
case, the spatial structure was modeled by assuming that the
extreme-value parameters were realizations of a smoothly
varying process, typically a Gaussian process with spatial de-
pendence (Coles and Casson, 1999).

3.2.1 Max-stable random vectors

To understand dependencies among extremes, it is impor-
tant to recall the definition of a max-stable vector process
(Resnick, 1987; Smith, 2004). To define such a process, we
first transform a given marginal distribution to unit Fréchet,
cf. Sect. 3.1,

P(Z(xi) ≤ ui) = exp(−1/ui), for anyui > 0 .

The distributionZ(x) is said to be max-stable if all the finite-
dimensional distributions are max-stable, i.e.,

P t (Z(x1) ≤ tu1,...,Z(xr) ≤ tur) (18)

= P (Z(x1) ≤ u1,...,Z(xr) ≤ ur) ,

for any t ≥ 0, r ≥ 1, xi , ui > 0 with i = 1,...,r. To moti-
vate the definition in Eq. (18), one could see it as a multi-
variate version of Eq. (11). Such processes can be rewrit-
ten (Schlather, 2002; Schlather and Tawn, 2003; Davis and
Resnick, 1993), forr = 2, say, as

P
(
Z(x) ≤ u(x), for all x ∈ R2

)
(19)

= exp

[
−

∫
max
x∈R2

{
g(s,x)

u(x)

}
δ(ds)

]
,
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where the functiong(·,·) is a weighting function that is
nonnegative, measurable in the first argument, upper semi-
continuous in the second, and has total weight equal to unity,∫

g(s,x)δ(ds) = 1.
To illustrate how such max-stable processes can be gener-

ated, we focus on two types of max-stable fields. A first class
was developed by Smith (1990), where points in(0,∞)×R2

are simulated according to a point process:

Z(x) = sup
(y,s)∈5

[s f (x −y)] , with x ∈ R , (20)

where5 is a Poisson point process onR2
× (0,∞) with in-

tensity s−2dyds andf is a nonnegative function such that∫
f (x)dx = 1. For example,f can be taken to be a two-

dimensional Gaussian density function with a covariance ma-
trix equal to the two-by-two identity matrix.

Schlather (2002) proposed a second type, stemming from
a Gaussian random field that is scaled by the realization
of a point process on(0,∞): Z(x) = maxs∈5sYs(x); here
the Ys are independent, identically distributed, stationary
Gaussian processes and5 is a Poisson point process on
(0,∞) with intensity

√
2πr−2dr. An R code developed by

Schlather (2006, http://cran.r-project.org, contributed pack-
ageRandomFields ) can be used to visualize these two
types of max-stable processes. A few properties of these two
examples are derived in Appendix B.

Additional contributions that deserve being mentioned
at this point are the Brown-Resnick max-stable pro-
cess of Kabluchko et al. (2009), the geometric max-
stable model in Padoan et al. (2010), and the R-package
SpatialExtremes of Ribatet (2008).

3.2.2 Multivariate varying random vectors

The concept of regular variation is fundamental to under-
stand the concept of angular measures in EVT. Regular vari-
ation can de defined as follows. LetZ = (Z1,...,Zp)t be a
nonnegative multivariate vector of finite dimension,A be any
set andt a positive scalar. Roughly speaking, the vectorZ is
said to be multivariate varying (Resnick, 2007) if, given that
the norm ofZ is greater thant , the probability thatZ/t in
A converges toν(A), ast → ∞, equals unity, whereν(·) is
a measure. An essential point is that the measureν(·) has
to obey the scaling propertyν(sA) = s−αν(A), where the
scalarα > 0 is called the tail index.

This definition implies three consequences: (i) the upper
tail of multivariate varying vectors is always heavy tailed,
with indexα. (ii) The scaling property implies that the norm
‖Z‖ of Z is asymptotically independent of the unit vec-
tor Z/‖Z‖; in other words, the dependence among extreme
events lives on the unit sphere and, independently, the inten-
sity of a multivariate extreme eventZ is fully captured by its
norm‖Z‖. (iii) The probability of rare events, i.e., to be in
a setA far away from the core of the observations, can be

deduced by rescaling the setA into a set closer to the ob-
servations; this property is essential in order to be able to go
beyond the range of the observations.

For example, property (iii) allows one to compute hydro-
logical return levels for return times that exceed the observa-
tional record length.

The multivariate varying assumption above may seem very
restrictive. Most models used in times series analysis, how-
ever, satisfy this hypothesis. These models include infinite-
variance stable processes, ARMA processes with i.i.d. reg-
ularly varying noise, GARCH processes with i.i.d. noise
having infinite support (including normally and Student-t–
distributed noise), and stochastic volatility models with i.i.d.
regularly varying noise (Davis and Mikosch, 2009).

3.2.3 Models and inference for multivariate EVT

Developing nonparametric and semi-parametric models for
multivariate extremes is an active area. Einmahl and Segers
(2009) have proposed a nonparametric, empirical MLE ap-
proach to fit an angular density to a bivariate data set. Us-
ing a semi-parametric approach, Boldi and Davison (2007)
formulated a model for the angular density of a multivari-
ate extreme value distribution of any dimension by applying
mixtures of Dirichlet distributions that meet the required mo-
ment conditions.

The work of Ledford and Tawn (1997) spurred interest
in describing and modeling dependence of extremes within
the class of asymptotic independence. A bivariate couple
(X1,X2) is termed asymptotically independent if the lim-
iting probability of X1 > x, given thatX2 > x, is null as
x → ∞. Heffernan and Tawn (2004) provided models for
extremes that included the case of asymptotic independence,
but the models were developed via bivariate conditional re-
lationships, and higher-dimensional relationships were not
made explicit. A recent paper by Ramos and Ledford (2009)
proposes a parametric model that captures both asymptotic
dependence and independence in the bivariate case. Sev-
eral metrics have been suggested to quantify the levels of
dependence found in multivariate extremes in general and
in traditional max-stable random vectors in particular: the
extremal coeffcient of Schlather and Tawn (2009), the de-
pendence measures of Coles et al. (1999) and of Davis and
Resnick (1993), as well as the madogram, which is a first-
order variogram, cf. Cooley et al. (2006).

3.3 Nonstationarity, covariates and parametric models

When studying climatological and hydrological data, for in-
stance, it is not always possible to assume that the distribu-
tion of the maxima remains unchanged in time: this is a cru-
cial problem in evaluating the effects of global warming on
various extremes (Solomon et al., 2007). Trends are often
present in the extreme value distribution of different climate-
related time series (e.g., Yiou and Nogaj, 2004; Kharin et al.,
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2007). The MLE approach, though, can easily integrate
temporal covariates within the GEV parameters (e.g., Coles,
2001; Katz et al., 2002; El Adlouni et al., 2007) and, con-
ceptually, the MLE procedure remains the same if the GEV
parameters vary in time; see El Adlouni and Ouarda (2008)
for a comparative study of different methods in nonstation-
nary GEV models.

3.3.1 Parametric and semi-parametric approaches

The introduction of covariates is necessary in many cases
when studying the behavior of environmental, hydrological
or climatic extremes. The detection of temporal trends in
extremes was already mentioned above, but other environ-
mental or climate factors, such as large-scale circulation in-
dices or weather regimes, may also affect the distribution of
extremes (e.g., Yiou and Nogaj, 2004; Robertson and Ghil,
1999).

Existing results for asymptotic behavior of extremes, given
prescribed forms of nonstationarity (Leadbetter et al., 1983),
are often too specific to be used in modeling data whose tem-
poral trend is not known a priori. A pragmatic approach,
therefore, is to simply model the parameters of the GEV dis-
tribution for block maxima or of the GPD for POT models
(see Sect. 3.1) as simple linear functions of time (e.g., Katz
et al., 2002; Smith, 1989; Garca et al., 2007). Large-scale
indices may also be used as covariates, in order to link ex-
tremes with these indices (Caires et al., 2006; Friederichs,
2010).

Since the MLE method is still straightforward to apply
in the presence of covariates (Coles, 2001), it is often fa-
vored by practitioners (Smith, 1989; Zhang et al., 2004). For
numerical stability reasons, link functions are widely used.
For example, to ensure a positive scale parameter, one may
model the logarithm of a variable as a linear function of co-
variates, instead of the variable itself.

Log-linear modeling of the GEV or GPD parameters can
be viewed as a particular case of the Vector Generalized Lin-
ear Models (VGLMs) proposed by Yee and Hastie (2003). A
Generalized Linear Model (GLM: Nelder and Wedderburn,
1972) is a linear regression model that supports dependent
variables whose distribution belongs to the so-called “ex-
ponential family”: Poisson, Gamma, binomial, and normal.
GLMs allow one to relate the linear predictor and the “natural
parameter” of the distribution under consideration, where the
natural parameter is a well-chosen function of the mean of
the dependent variable. VGLMs, in turn, are generalizations
of GLMs that extend modeling capabilities to distributions
outside the exponential family and apply to the distributions
of GEV and GPD parameters. The VGAM package of Yee
(2006) provides a practical implementation of VGLMs in R
software.

3.3.2 Smoothing extremes

When considering a nonstationary GEV or GPD distribution,
one has to study joint variations of dependent parameters.
Structural trend models are difficult to formulate in these cir-
cumstances, owing to the complex way in which different
factors combine to influence the extremes. Moreover, it is
not advisable to fit linear trend models without evidence of
their suitability. The need for flexible exploratory tools led to
the development of several approaches for smoothing sample
extremes.

Davison and Ramesh (2000) fitted nonlinear trends by
considering local likelihood in moving windows, with appli-
cations to hydrology. In Hall and Tajvidi (2000), the likeli-
hood of each observation was weighted in such windows by
using a kernel function. This approach allows one to give
more importance to observations close to the center of the
window, but results in destroying the asymptotic properties
of MLE estimators.

An alternative to the local-likelihood approach is to use
spline smoothers. Smooth modeling of position and scale
parameters of the Gumbel distribution can be achieved by
means of cubic splines; this leads to additive models adapted
to extremes. Generalized Additive Models (GAMs) (Hastie
and Tibshirani, 1990) are nonlinear extensions of GLMs (see
Sect. 3.3.1), where the natural parameter of a distribution be-
longing to the exponential family is modeled as the sum of
smooth, rather than linear functions of the covariates. Vector
Generalized Additive Models (VGAMs: Yee and Wild, 1996)
are generalizations of GAMs that, like GLMs and VGLMs,
extend modeling capabilities to distributions outside the ex-
ponential family, and apply to the distributions of interest
to us here, namely GEVs and GPDs. The GAM “backfit-
ting” algorithm proposed by Hastie and Tibshirani (1990)
was adapted to POT models by Chavez-Demoulin and Davi-
son (2005), while Yee and Stephenson (2007) used “vector
spline smoothers” for both GEV and GPD models; see Yee
(2006) for practical implementation.

Common features of these semi-parametric techniques are
that (i) few predictors should be used, say two or three at
most; and (ii) they only provide approximate pointwise con-
fidence intervals. If more precise inferences are required,
an exploratory phase should be conducted using VGAMs,
whose data-driven approach may suggest the proper linear
model. Final results may then be obtained by applying
VGLM techniques. Mestre and Halegatte (2009) illustrate
this two-stage approach in connecting the distribution of ex-
treme cyclones to large-scale climatic indices.

Finally, if time is the covariate of interest, specific extreme
state-space models may be used (Davis and Mikosch, 2008).
These approaches are rather new and new developments ap-
pear regularly.
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3.4 EVT and memory

In many practical cases, one is confronted with a set of obser-
vations that do not seem to satisfy the standard assumption of
i.i.d. random variables. The previous subsection (Sect. 3.3)
was dedicated to the case of random variables that are not
identically distributed. In the present subsection, we men-
tion some issues that arise for dependent variables, in par-
ticular for observations from LRD processes (Sect. 2.4). We
review first the application of GEV distributions to the block-
maxima approach and then the one of GPD to the peaks-over-
threshold (POT) approach (see Sect. 3.1).

The return periods that can be derived within these two
approaches, GEV and GPD (Sects. 3.4.1 and 3.4.2, respec-
tively), are the expected (or mean) time intervals between re-
current events. Recently, several authors focused on LRD
processes in studying the distribution of return times of
threshold exceedances. While mean return times do not
change, their distribution differs for dependent and indepen-
dent series (Bunde et al., 2003; Altmann and Kantz, 2005;
Blender et al., 2008).

3.4.1 Dependence and the block-maxima approach

In the block-maxima approach, one can relax the assump-
tion of independence in a straightforward way. The conver-
gence of the block-maxima distribution function towards the
GEV holds, in fact, for a wide class of stationary processes,
which satisfy a fairly general condition of near-independence
(Leadbetter et al., 1983). Consequently, EVT supports the
GEV distribution as a potentially suitable candidate for the
model block-maxima distribution in this broader class of pro-
cesses. This result also holds for a class of LRD processes,
like the FARIMA[p,d,q] processes (Sect. 2.4).

In practical applications with finite block sizes, however,
two issues arise (Rust, 2009): (a) the convergence of the
block-maxima distribution function towards the GEV dis-
tribution is slower; and (b) if the block maxima themselves
cannot be considered as independent, the uncertainty of the
estimated parameters increases. The first issue only stresses
the need for the usual verification of the GEV distribution
as a suitable model. This verification can be accomplished
by checking quantiles, using probability plots or carrying out
other statistical tests (e.g., Coles, 2001).

The second issue is more delicate, since standard proce-
dures, such as the MLE approach, yield uncertainty estimates
that are too small in the case of dependence and thus the con-
fidence in the estimated parameters and all derived quantities,
such as return levels, is too high. This problem arises basi-
cally only for LRD series (Rust, 2009) and, unfortunately,
there is no straightforward way out. A possible solution is
to obtain uncertainty estimates using Monte-Carlo or boot-
strap approaches. Doing so may be somewhat tricky (Rust
et al., 2011), but the uncertainty estimates thus obtained are
more representative than using the false assumption of inde-
pendence.

3.4.2 Clustering of extremes and the POT approach

For the POT approach (see Sect. 3.1), dependence implies a
clustering of the exceedances that are to be modeled by using
the GPD. An extreme that exceeds the threshold is usually
accompanied by neighboring threshold exceedances, which
then lead to a cluster of consecutive exceedances. A common
approach to deal with these clustering effects is to consider
only the largest event in any given cluster and disregard the
others in further analysis (Coles, 2001; Ferro, 2003). Doing
so, however, reduces the sample size for the subsequent GPD
parameter estimation and thus leads to an increase in the un-
certainty of the estimated parameter, compared to the case of
independent observations. Unlike in the GEV case, though,
the problem is treated naturally within the POT approach by
declustering methods, available for example in theR pack-
agePOTof Ribatet (2009). An alternative way to handle de-
pendence in this approach is given by Markov chain models
(Smith et al., 1997).

3.5 Statistical downscaling and weather regimes

3.5.1 Bridging time and space scales

The spatial resolution of general circulation models (GCMs;
more recently also referred to as “global climate models,”
with the same acronym), corresponds to a grid size of about
100–250 km, while that of numerical weather prediction
models is of about 25–50 km. Impact studies, on the other
hand, often concentrate on an isolated location, such as a
weather station or a city, or on a limited region, such as a
river basin. The latter are of fundamental importance for
hydrologists, climatologists, decision makers and risk man-
agers. Downscaling methods aim at linking these different
scales and they have been developed and tested for the last
couple of decades. One of their main goals is to generate
realistic local-scale climate or meteorological time series –
e.g., temperature, winds or precipitation – based on large-
scale atmospheric conditions.

Downscaling has essentially been applied within three dif-
ferent frameworks. In theclimatological and climate change
context, statistical downscaling methods (SDMs) are used to
estimate the statistics of local-scale variables, given large-
scale atmospheric GCM simulations (Zwiers and Kharin,
1998; Kharin and Zwiers, 2000; Busuioc and von Storch,
2003; Widmann et al., 2003; Haylock and Goodess, 2004;
Sanchez-Gomez and Terray, 2005; Kharin et al., 2007; Min
et al., 2009; Schmidli et al., 2007). The aim is to assess fu-
ture local variations from large-scale circulations changes.
Hence, an underlying assumption is that relationships be-
tween large-scale fields and local-scale variables remain
valid in the future. This point is crucial and has to be tested
on past changes before generating future time series (Vrac
et al., 2007d).
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In weather forecasting, downscaling has been understood
as the transformation of large-scale model forecasts – or
reanalyses that combine observational data sets with past
model forecasts (Kalnay et al., 1996) – to the fine scale
where observations are available. For instance, the large-
scale state of the atmosphere may be described by the pre-
vailing weather pattern for a specific day or week, over some
region, either by a forecast or a (re)analysis (Vislocky and
Young, 1989; Zorita and von Storch, 1998; Robertson and
Ghil, 1999; Bremnes, 2004; Hamill and Whitaker, 2006;
Friederichs and Hense, 2007). Downscaling provides vari-
ous statistical outputs, e.g., the probability of occurrence or
intensity of precipitation at one station location during that
day or week.

Downscaling of weather forecasts can also help correct for
systematic model errors. In this context, downscaling is very
close to model post-processing or re-calibration methods –
such as the perfect prog method (Klein, 1971), model output
statistics (Glahn and Lowry, 1972) or the automated fore-
casting method (Ghil et al., 1979) – in the sense that these
approaches apply a similar class of statistical (Klein, 1971;
Glahn and Lowry, 1972) or physics-based (Ghil et al., 1979)
models (see below) to describe relationships between large-
scale situations and local-scale variables (Marzban et al.,
2005; Friederichs and Hense, 2008).

A third approach to downscaling is based onobservations
only and focuses ontemporal-scale changesalone. In this
case, downscaling aims at estimating statistical characteris-
tics of a variable at a small temporal scale (short accumu-
lation time), given observations with a long accumulation
time. This approach – sometimes called temporal down-
scaling – assumes, for instance, that accumulated rainfall
has scaling properties, which imply that statistical moments
computed at different accumulation times are related (Perica
and Foufoula-Georgiou, 1996; Deidda, 2000).

3.5.2 Downscaling methodologies

The methods used in statistical downscaling for climatol-
ogy or in post-processing for weather prediction fall into
three categories (Wilby and Wigley, 1997): regression-based
methods, stochastic weather generator methods, and weather
typing approaches. Inregression-based models, the rela-
tionships between large-scale variables and location-specific
values are directly estimated (or “translated”) via paramet-
ric or nonparametric methods, which can in turn be linear or
nonlinear. These approaches include multiple linear regres-
sion (Wigley et al., 1990; Huth, 2002), kriging (Biau et al.,
1999), neural networks (Snell et al., 2000; Cannon and Whit-
field, 2002; Hewitson and Crane, 2002), logistic regression or
quantile regression (Koenker and Bassett, 1978). Friederichs
et al. (2009) reviewed the performance of different regression
approaches in modeling wind gust observations, while Vrac
et al. (2007b) and Salameh et al. (2009) discussed a nonlinear
extension of these approaches using GAM models.

A stochastic weather generator(SWG) is a statistical
model that generates realizations of local-scale variables,
driven by large-scale model outputs (Wilks, 1998, 1999;
Wilks and Wilby, 1999; Busuioc and von Storch, 2003; Chen
et al., 2006; Orlowsky and Fraedrich, 2009; Orlowsky et al.,
2010). An SWG has two main stochastic aspects: first, it
often relates, for example, the probability of rain occurrence
on dayd to the event “rain” or “no-rain” on dayd −1; this
1-day lagged relationship is often modeled through Markov
chains (Katz, 1977). The second stochastic aspect of SWGs
refers to the fact that the local-scale realizations are randomly
drawn from a statistical distribution that is adapted to the data
set. Hence, unlike in regression-based methods, providing
the same large-scale input twice to an SWG can result in two
different outputs. SWGs are also of particular interest in as-
sessing local climate changes (Semenov and Barrow, 1997;
Semenov et al., 1998).

The weather typing approachencapsulates a wide range
of methods that share an algorithmic step in which recur-
rent large-scale or regional atmospheric patterns are identi-
fied through clustering methods applied over a large spatial
area (Ghil and Robertson, 2002). Downscaling models can
then be developed conditionally on the weather patterns or
“weather regimes” so obtained (Zorita et al., 1993; Schnur
and Lettenmaier, 1998; Huth, 2001). Introducing the inter-
mediate layer of weather regimes in a downscaling procedure
provides much greater modeling flexibility.

The analog method of Lorenz (1969) can be adapted to
yield a special case of the weather-typing approach. In this
case, there are as many weather patterns as there are days
available for the calibration, and one uses as a forecast the
local observation associated with the closest large-scale sit-
uation, i.e. the closet analog, in the historical record. One
drawback in the context of studying extremes is that this
method does not produce new values, and hence is not appro-
priate for risk assessment, in which one needs to extrapolate
the data set outside the recorded set of values. This analog
method has been successfully used, however, in numerous
prediction studies (Barnett and Preisendorfer, 1978; Zorita
and von Storch, 1998; Wetterhall et al., 2005; Bliefernicht
and B̀ardossy, 2007).

Many statistical downscaling methods use combinations
of the three categories mentioned above. Some methods are
compared in Schmidli et al. (2007), while Vrac and Naveau
(2007) and Vrac et al. (2007c) combined weather typing and
an SWG. Finally, Maraun et al. (2010) provide a comprehen-
sive review on downscaling methods for precipitation.

3.5.3 Two approaches to downscaling extremes

In the context of downscaling extreme values, two ap-
proaches exist. The first one consists in downscaling di-
rectly an index of extreme events, such as the number of days
with precipitation higher than a given value or the number of
consecutive dry days. These indices try to capture certain
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characteristics of the multivariate and time-dependent phe-
nomena associated with weather and climate extremes, par-
ticularly those characteristics that have large socio-economic
impacts. The goal of the joint Expert Team on Climate
Change Detection and Indices (ETCCDI; http://www.clivar.
org/organization/etccdi/etccdi.php) is to develop such indices
for climate change studies.

In the second approach, the daily time series are first
downscaled and then the local extreme values are extracted;
the associated indices can potentially be computed from the
latter. Schmidli et al. (2007) compared the pros and cons of
the two approaches through six SDMs, and found it difficult
to choose a single, overall winner: the SDM performances
vary by index, region, season, and station. This conclusion
also holds when comparing different SDMs for other-than-
extreme values (Wilby et al., 2004).

Most of the statistical downscaling methods presented in
Sects. 3.5.2 and 3.5.1 above can be directly applied to ei-
ther one of the two approaches. For example, weather typing
was applied by Davis et al. (1993) to derive a climatology of
severe storms in Virginia (USA), and by Plaut et al. (2001)
to characterize heavy precipitation events in several Alpine
sub-regions. Busuioc et al. (2008) used a regression-based
approach to downscale indices of winter extreme precipita-
tion in a climate context. In the same context, Haylock et al.
(2006) concluded that SDMs based on artificial neural net-
works are best at representing the interannual variability of
heavy precipitation indices but underestimate extremes.

In contrast to the downscaling of climate extremes, which
aims at estimating their slowly changing statistics, down-
scaling of extremes in the context of weather forecasting in-
tends to estimate the actual risk of a weather extreme to oc-
cur. All national weather services issue warnings of severe
or extreme weather. In general, occurrence probabilities of
extreme weather are based on global ensemble simulations,
where the extreme forecast index is related to a comparison
between the distribution of the model climate and that of the
forecasts (Lalaurette, 2003).

In the weather forecasting context, downscaling is usually
achieved using limited-area models (LAMs; e.g., Montani
et al., 2003; Marsigli et al., 2005; Brankovic et al., 2008);
this methodology is calleddynamical downscaling. Statisti-
cal downscaling and model post-processing are often ham-
pered by the scarcity of historical data and homogeneous
model simulations to train the statistical model (Hamill et al.,
2006). It would clearly be desirable to combine dynamical
and statistical downscaling methods based on LAMs, but we
are not aware so far of studies that would try to derive condi-
tional probabilities for extremes on the basis of LAMs, while
using EVT theory.

In downscaling time series according to the second ap-
proach of this subsection, some recent SDMs relied on EVT
results presented in Sects. 3.1–3.4. Such methods take ad-
vantage of the GPD – for values larger than a given, suffi-
ciently high threshold – or the GEV, for block-size maxima,

and connect their parameters with large-scale atmospheric
conditions. For example, Pryor et al. (2005) related large-
scale predictors to the parameters of a Weibull distribution
via linear regression, in order to downscale wind speed prob-
ability distributions for the end of the 21st century, while
Vrac and Naveau (2007) defined an inhomogeneous mix-
ture of a Gamma distribution and a GPD to downscale low,
medium and extreme values of precipitation. Friederichs
(2010) employed a nonstationary GPD with variable thresh-
old and a nonstationary point process of Poisson type to de-
rive conditional local-scale extreme quantiles, while Furrer
and Katz (2008) adapted the SWG approach to extreme pre-
cipitation by representing high-intensity precipitation as a
nonstationary Poisson point process.

To conclude this review of downscaling, one should keep
in mind that it is better to use a range of different “good”
SDMs than to use a single SDM, even the best. As in
the rapidly spreading practice of using ensembles of GCMs
(Solomon et al., 2007), the integration of several SDM results
allows one to capture a wider range of uncertainties.

4 Dynamical modeling

4.1 A quick overview of dynamical systems

As outlined in Sect. 1, an important motivation of the E2-
C2 project was to go beyond the mere statistics of ex-
treme events, and use dynamical and stochastic-dynamic
models for their understanding and prediction. It is well
known, for instance, that a simple, first-order AR process
(see Sect. 2.4.2) perturbed by multiplicative noise,

x(t +1) = a(t)x(t)+w(t), (21)

can generate a heavy-tailed distribution forx (Kesten, 1973;
Takayasu et al., 1997; Sornette, 1998).

It suffices forx to be heavy-tailed that the noisy coefficient
a (i) have an expected value of log(a) that is negative – for
the stochastic process defined by the equation to be station-
ary – but thata itself exceed 1 from time to time, forx to
experience intermittent amplification; and (iii) that the addi-
tive termw(t) be present to ensure repulsion from the origin
x = 0. In fact, while for a linear AR[1] processw needs to be
white noise – or, in more precise terms, a Wiener process – it
suffices forx given by Eq. (21) to have a power-law distribu-
tion thatw = const. 6= 0, provided the coefficienta satisfies
conditions (i) and (ii).

This extremely simple way of generating a heavy-tailed
distribution (see Sect. 2.3) is not, however, terribly infor-
mative in more specific situations, in which various other
types of mathematical models might be in wide use. We
start, therefore, by a quick tour of dynamical systems used
throughout the geosciences and elsewhere, in Fig. 3. This
will be followed, in Sect. 4.2, by a glimpse of simple deter-
ministic systems in which the distribution of extreme events
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deviates from the one given by classical EVT theory. We
concentrate next, in Sect. 4.3, on Boolean delay equations
(BDEs: Dee and Ghil, 1984; Ghil and Mullhaupt, 1985; Ghil
et al., 2008a), a fairly novel type of deterministic dynamical
systems that facilitates the study of extreme events and clus-
tering in complex systems for which the governing laws are
known only very crudely.

Here goes our quick tour of Fig. 3: systems in which both
variables and time are continuous are calledflows(Arnol’d,
1983; Smale, 1967) (upper corner in the rhomboid of the fig-
ure). Vector fields, ordinary and partial differential equations
(ODEs and PDEs), functional and delay-differential equa-
tions (FDEs and DDEs) – as well as stochastic differential
equations (SDEs), like Eq. (21) – belong to this category.
Ghil et al. (2008b) provide an example of studying extremes
in a DDE model of the Tropical Pacific, namely warm (El
Niño) and cold (La Nĩna) anomalies in its sea surface temper-
atures; see also Sect. 5.2.1 below. Systems with continuous
variables and discrete time (middle left corner) are known as
maps(Collet and Eckmann, 1980; H́enon, 1966) and include
diffeomorphisms, as well as ordinary and partial difference
equations (O4Es and P4Es).

In automata (lower corner) both the time and the vari-
ables are discrete; cellular automata (CAs) and all Tur-
ing machines (including real-world computers) are part of
this group (Gutowitz, 1991; Wolfram, 1994; Von Neumann,
1966), and so are Boolean random networks (Kauffman,
1995, 1993) in their synchronous version. BDEs and their
predecessors, kinetic (Thomas, 1979) and conservative logic,
complete the rhomboid in the figure and occupy the remain-
ing middle right corner.

In Fig. 3, we have outlined by labeled arrows the processes
that can lead from the dynamical systems in one corner of
the rhomboid to the systems in each one of the adjacent cor-
ners. The connections between flows and maps are fairly
well understood, as they both fall in the broader category of
differentiable dynamical systems(DDS: Smale, 1967; Col-
let and Eckmann, 1980; Arnol’d, 1983). Poincaré maps (“P-
maps” in Fig. 3), which are obtained from flows by intersec-
tion with a plane (or, more generally, with a codimension-1
hyperplane) are standard tools in the study of DDS, since
they are simpler to investigate, analytically or numerically,
than the flows from which they were obtained. Their use-
fulness arises, to a great extent, from the fact that – under
suitable regularity assumptions – the process of suspension
allows one to obtain the original flow from its P-map, which
also transfers its properties to the flow.

The systems that occupy the other two corners of the
rhomboid – i.e., automata and BDEs – are referred to asdis-
crete dynamical systemsor dDS (Ghil et al., 2008a). Neither
the processes that connect the two dDS corners, automata
and BDEs, nor those that connect either type of dDS with the
adjacent-corner DDS – maps and flows, respectively – are as
well understood as the (P-map, suspension) pair of antiparal-
lel arrows that connects the two DDS corners.
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4.2 Signatures of deterministic dynamics in
extreme events

Complex deterministic dynamics encompasses models of
abrupt transitions between multiple states and spatio-
temporal chaos, along with many other types of irregular be-
havior; the latter are associated with a wide variety of phe-
nomena of considerable concern, from the physical and en-
vironmental to the social sciences. It is therefore natural to
inquire whether a theory of extremes can be built for such
systems and, if so, does it reduce, for all practical intents and
purposes to the classical EVT theory of Sect. 3 or, to the con-
trary, does it bear the imprint of the deterministic character
of the underlying dynamics?

The answer is that both types of DDS behavior have been
documented in the literature. A key difficulty is that – while
interesting generalizations do exist – classical EVT theory
deals with samples of i.i.d. variables, whereas successive
points on the trajectory of a dynamical system are certainly
not independent. Nor are they random, in the usual sense of
the word, although the ergodic theory of deterministic DDSs
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(Eckmann and Ruelle, 1985) describes the circumstances un-
der which such systems do possess invariant measures, as
well as the properties of such measures.

One might suspect that – in the interesting case in which
such a measure does exist, and the correlations among points
on the trajectory decay rapidly – certain transformations of
variables might reduce the problem of describing the extrema
on a segment of trajectory to classical EVT theory. This
idea has been successfully pursued by Freitas and Freitas
(2008a,b); Freitas et al. (2010, 2011); Gupta et al. (2011) and
Holland et al. (2011), among others. Their work did deter-
mine conditions under which EVT limit statistics holds for
time series of observables – i.e., of scalar measurements –
taken along trajectories of deterministic systems.

The opposite tack has been taken by a group of researchers
centered in Brussels, and it is the latter work that we describe
here briefly. LetXt = f t (X0) be the formal solution of the
evolution laws of a DDS. By the definition of determinism,
f is a single-valued function of the initial stateX0 and the
observation timet . Our starting point is to realize that, in a
system of this kind, the multivariate probability density to re-
alize a sequence of states(X0,...,Xn−1), sampled at equally
spaced timest0, t0+τ,...,t0+(n−1)τ , can be expressed as

ρn(X0,...,Xn−1) = P(X = X0 at t = t0)×

×

n−1∏
k=1

P(X = Xk−1 at t = t∗| X = X0 at t = t∗ −kτ). (22)

In either stochastic or deterministic systems, the first fac-
tor in Eq. (22) is given by the invariant probability density
ρ(X0). This density is a smooth function ofX0, as long
as the system possesses sufficiently strong ergodic proper-
ties. The two types of systems differ, however, by the na-
ture of the conditional probabilities inside then-fold product:
in stochastic systems these quantities are typically smooth,
while in DDS (see Sect. 4.1) they are Dirac delta functions,
δ(Xkτ −f kτ (X0)), whereτ is the sampling interval.

By definition, the cumulative probability distribution
Fn(x) – a highly relevant quantity in a theory of extremes
(see Sects. 2.3.3 and 3.1, for instance) – is then-fold integral
of ρn(X0,...,Xn−1) over itsn argumentsX0,...,Xn−1, each
taken from a finite lower bounda up to the levelx of inter-
est. This converts the delta-functions into Heaviside theta-
functions, yielding:

Fn(x) =

∫ x

a

dX0 ρ(X0) θ(x −f τ (X0))···θ(x −f (n−1)τ (X0)) (23)

In other words,Fn(x) is obtained by integratingρ(X0)

over those ranges ofX0 in which {x ≥ f τ (X0),...,x ≥

f (n−1)τ (X0)}. As the thresholdx is moved upwards, new
integration ranges are thus added, since the slopes of the suc-
cessive iteratesf kτ with respect toX0 are, typically, differ-
ent from each other, as well asX0-dependent. Each of these
ranges will open up past a threshold value where either the
values of two different iterates will cross, or an iterate will

cross the manifoldx = X0. This latter type of crossing will
occur atx-values that belong to the dynamical system’s set
of periodic orbits for all periods, up to and includingn−1.

These properties ofFn(x) entail the following conse-
quences: (i) Since a new integration range can only open up
by increasingx, and the resulting contribution is necessarily
nonnegative,Fn(x) is a monotonically increasing function of
x. (ii) More unexpectedly, the slope ofFn(x) with respect to
x will be subjected to abrupt changes at the discrete set ofx-
values that correspond to the successive threshold crossings.
At these values the slope may increase or decrease, depend-
ing on the structure of the branchesf kτ (X0) involved in the
particular crossing configuration considered. (iii) The proba-
bility density is the derivative ofFn(x) with respect tox, and
will thus possess discontinuities at the points whereFn(x) is
not differentiable; in general, it will not be monotonic.

While property (i) agrees, as expected, with statistical
EVT theory, properties (ii) and (iii) are fundamentally dif-
ferent from the familiar ones in this theory: in EVT theory
one deals with sequences of i.i.d. random variables, and the
limiting distributions, if any, are smooth functions ofx – see
again Sect. 3.1 – while here we deal with the behavior of a
time series generated by the evolution laws of a DDS. Bal-
akrishnan et al. (1995) and Nicolis et al. (2006, 2008) have
verified the predictions (i)–(iii) on prototypical DDS classes
that show fully chaotic, intermittent and quasi-periodic be-
havior; in certain cases, moreover, they also derived the full
analytic structure ofFn(x) andρn(x).

Figures 4a, b depict the cumulative distributionF(x) for
two representative examples (solid lines):

– the cusp map (Fig. 4a):

Xn+1 = 1−2|Xn|
1
2 , −1≤ Xn ≤ 1, (24)

which gives rise to intermittent chaos; and

– the twist map (Fig. 4b):

Xn+1 = a+Xn, 0≤ Xn ≤ 1, (25)

which, for a = (
√

5− 1)/3, gives rise to uniformly
quasi-periodic behavior.

We turn next to the statistics of exceedance times ofx,
whose mean value is considered to be the principal predictor
of extremes. Letrk(x) be the probability density of the time
kτ of first exceedance of levelx. Based on Eq. (22), it is
straightforward to derive the formula

rk(x) =
1

F(x)

x∫
a

dX0ρ(X0)

x∫
a

dXτ δ(Xτ −f τ (X0))···

b∫
x

dXkδ(Xkτ −f (kτ )(X0)), (26)
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Fig. 4. Cumulative probability distribution F (x) of extremes (solid lines) for two deterministic dynamical

systems. (a) For a discrete-time dynamical system that gives rise to intermittent behavior; and (b) for a uni-

form quasi-periodic motion described by two incommensurable frequencies. In panel (b), the number of slope

changes in F is indicated by vertical dotted lines and equals 3; dashed lines in both panels stand for the predic-

tion of classical EVT theory. From Nicolis et al. (2006).
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Fig. 4. Cumulative probability distributionF(x) of extremes (solid
lines) for two deterministic dynamical systems.(a) For a discrete-
time dynamical system that gives rise to intermittent behavior; and
(b) for a uniform quasi-periodic motion described by two incom-
mensurable frequencies. In panel(b), the number of slope changes
in F is indicated by vertical dotted lines and equals 3; dashed lines
in both panels stand for the prediction of classical EVT theory.
From Nicolis et al. (2006).

wherea andb are the lower and upper bounds ofX andF(x)

is the cumulative distribution of the process. Converting, as
before, the integrals of delta functions into theta functions
and using Eq. (23), one arrives at a simple relation between
rk andFk,

rk(x) = Fk(x)−Fk+1(x); (27)

this relation suggests thatrk(x) may depend in an intricate
way onx – much likeFk(x) in Fig. 4 – as well as onk (Nico-
lis and Nicolis, 2007).

Figure 5 depicts the mean exceedance time< k > for the
cusp map of Eq. (24). The difference between this result
(solid line) and the predictions of EVT theory (dashed line)
is even more striking than in Fig. 4. This discrepancy illus-
trates, once more, the importance of the differences between
the assumptions, and hence the conclusions, of the two ap-

Fig. 5. Mean exceedance time< k > for the deterministic system in Fig. 4a (solid line). The dashed line stands

for the prediction of classical EVT theory. From Nicolis and Nicolis (2007).
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Fig. 6. Spectral estimates (in blue) for the extended Nile River time series in the interannual frequency range of

5–10 yr. (a, b) Monte-Carlo SSA, and (c, d) MTM; (a,c ) high-water levels, and (b, d) low-water levels. Arrows

mark peaks that are highly significant against a null hypothesis of red noise; 95% error bars (for SSA) and 95%

confidence level (for MTM), respectively, are in red. For SSA we used a 75-yr window and 1000 red-noise

realizations, while for MTM, we took a bandwidth parameter ofNW = 6 andK = 11 tapers. See information

about other significant spectral peaks in Table 1.
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Fig. 5. Mean exceedance time< k > for the deterministic system
in Fig. 4a (solid line). The dashed line stands for the prediction of
classical EVT theory. From Nicolis and Nicolis (2007).

proaches to EVT: classical, statistical vs. deterministic, at
least in the absence of rapidly decaying correlations.

The results summarized in this subsection call for a closer
look at the experimental data available on extreme events and
at current practices prevailing in their prediction, from envi-
ronmental science to insurance policies. As always, the most
appropriate model selection for the process generating the
extremes that we are interested in – deterministic or stochas-
tic, discrete or continuous – is of utmost importance; see also
Sects. 5.2.2 and 7.2.

4.3 Boolean delay equations (BDEs)

BDEs are a novel modeling framework especially tailored
for the mathematical formulation of conceptual models of
systems that exhibit threshold behavior, multiple feedbacks
and distinct time delays (Dee and Ghil, 1984; Mullhaupt,
1984; Ghil and Mullhaupt, 1985; Ghil et al., 1987). The
formulation of BDEs was originally inspired by advances
in theoretical biology, following Jacob and Monod’s discov-
ery (Jacob and Monod, 1961) of on-off interactions between
genes, which had prompted the formulation of “kinetic logic”
(Thomas, 1973, 1978, 1979) and of Boolean regulatory net-
works (Kauffman, 1969, 1993, 1995). BDEs are intended as
a heuristic first step on the way to understanding problems
too complex to model using large systems of ODE, PDEs
or FDEs at the present time. One hopes, of course, to be
able to eventually write down and solve the exact equations
that govern the most intricate phenomena. Still, in the geo-
sciences as well as in the life sciences and elsewhere in the
natural sciences, much of the preliminary discourse is often
conceptual.

BDEs offer a formal mathematical language that may help
bridge the gap between qualitative and quantitative reason-
ing. Besides, they are fun to play with and produce beautiful
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fractals, by simple, purely deterministic rules (Ghil et al.,
2008a).

In a hierarchical modeling framework (Ghil and Robert-
son, 2000), simple conceptual models are typically used to
present hypotheses and capture isolated mechanisms, while
more detailed models try to simulate the phenomena more
realistically and test for the presence and effect of the sug-
gested mechanisms by direct confrontation with observa-
tions. BDE modeling may be the simplest representation
of the relevant physical concepts. At the same time, new
results obtained with a BDE model often capture phenom-
ena not yet found by using conventional tools (Saunders and
Ghil, 2001; Zaliapin et al., 2003a,b). BDEs suggest possible
mechanisms that may be investigated using more complex
models once their “blueprint” was seen in a simple concep-
tual model. As the study of complex systems garners in-
creasing attention and is applied to diverse areas – from mi-
crobiology to the evolution of civilizations, passing through
economics and physics – related Boolean and other discrete
models are being explored more and more (Gutowitz, 1991;
Cowan et al., 1994; Wolfram, 1994; Kauffman, 1995; Gag-
neur and Casari, 2005).

BDEs aresemi-discrete dynamical systems: the state vari-
ables are discrete – typically Boolean, i.e., taking the values 0
(“off”) or 1 (“on”) only – while time is allowed to be contin-
uous. As such they occupy the previously “missing corner”
in the rhomboid of Fig. 3, where dynamical systems are clas-
sified according to whether their time (t) and state variables
(x) are continuous or discrete.

The development and applications of BDEs started only
about two decades ago – a very short time span compared to
ODEs, PDEs, maps, and even cellular automata. The results
obtained so far, though, are sufficiently intriguing to warrant
further exploration.

4.3.1 Formulation

Given a system withn continuous, real-valued state vari-
ablesv = (v1,v2,...,vn) ∈ Rn for which natural thresholds
(qi ∈ R : 1≤ qi ≤ n) exist, one can associate with each vari-
ablevi ∈ R a Boolean-valued variable,xi ∈ B = {0,1}, i.e., a
variable that is either “on” or “off”, by letting

xi =

{
0, vi ≤ qi

1, vi > qi
, i = 1,...,n. (28)

The equations that describe the evolution in time of the
Boolean vectorx = (x1,x2,...,xn) ∈ Bn, due to the time-
delayed interactions between the Boolean variablesxi ∈ B
are of the form:



x1(t) = f1

[
t,x1(t −θ11),...,xn(t −θ1n)

]
,

x2(t) = f2

[
t,x1(t −θ21),...,xn(t −θ2n)

]
,

...

xn(t) = fn

[
t,x1(t −θn1),...,xn(t −θnn)

]
.

(29)

Each Boolean variablexi : R → B depends on timet and on
the state of some or all the other variablesxj in the past.
The functionsfi : Bn

→ B 1≤ i ≤ n, are defined via Boolean
equations that involve logical operators. Each delay value
θij ∈ R, 1≤ i,j ≤ n, is the length of time it takes for a change
in variablexj to affect the variablexi .

Asymptotic behavior.In spite of the simplicity of their
formulation, BDEs exhibit a considerable wealth of types of
asymptotic behavior. Among these, the following were ob-
served and analyzed in detail:(a) fixed points– the solution
reaches one of a finite number of possible states and remains
there;(b) limit cycle – the solution becomes periodic after
a finite time elapses;(c) quasi-periodicity– the solution is
a sum of several oscillatory “modes” with incommensurable
periods; and(d) growing complexity– the number of jumps
between the values 0 and 1, per unit time, increases with time
t . This number grows like a positive, but fractional power of
t (Dee and Ghil, 1984; Mullhaupt, 1984), with superimposed
log-periodic oscillations (Ghil and Mullhaupt, 1985). The
latter behavior is unique, so far, to BDEs, and seems to pro-
vide a metaphor for evolution in biological, historical, and
other setttings.

4.3.2 BDEs, cellular automata and Boolean networks

BDEs are naturally related to other dDS, to wit cellular au-
tomata and Boolean networks. We examine these relations
very briefly herein.

A cellular automaton is defined as a set ofN Boolean vari-
ables{xi : i = 1,...,N} on the sites of a regular lattice, along
with a set of logical rules for updating these variables at ev-
ery time increment: the value of each variablexj at epocht
is determined by the values of this and possibly some other
variables{xi} at the previous epocht−1. In the simplest case
– of a one-dimensional lattice and first-neighbor interactions
only – there are 28 possible updating rulesf : B3

→ B, which
give 256 differentelementary cellular automata, studied in
detail by Wolfram (1983, 1994).

For a givenf , these automata evolve according to:

xi(t) = f [xi−1(t −1),xi(t −1),xi+1(t −1)]. (30)

For a finiteN , Eq. (30) is a particular case of a BDE sys-
tem (29) with a site-independent, but otherwise arbitrary
connectivefi ≡ f and a unique delayθij ≡ 1. One speaks
ofasynchronous cellular automatawhen the variablesxi at
different sites are updated at different discrete times, accord-
ing to some deterministic scheme. Hence, for a finiteN , the
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latter dDS systems belong to the subset of BDEs that have
integer delaysθij ∈ N only.

Boolean networks are a generalization of cellular automata
in which the Boolean variables{xi} are attached to the
nodes (also called vertices) of a (possibly directed) graph and
evolve synchronously, according to deterministic Boolean
rules; these rules may vary from node to node. A further
generalization is obtained by considering randomness, in the
connections between the nodes, as well as in the choice of
updating rules.

An extensively analyzedrandom Boolean network, the
NK model, was introduced by Kauffman (1969, 1993). One
considers a system ofN Boolean variables such that each
value xi depends onK randomly chosen other variables
through a Boolean function drawn at random and indepen-

dently from 22
K

possibilities. The disorder is “quenched,” in
the sense that the connections among the nodes and the up-
dating functions are fixed for a given realization of the sys-
tem’s evolution, and one looks for average properties at long
times. Since the variables are updated synchronously, at the
same discretet-values, andN is finite, the evolution will ul-
timately reach a fixed point or a limit cycle for any network
configuration and fixed dynamics (Ghil et al., 2008a).

4.3.3 Towards hyperbolic and parabolic “partial” BDEs

In order to introduce an appropriate version of hyperbolic and
parabolic BDEs, one looks for the Boolean-variable version
of the typical hyperbolic and parabolic equations

∂

∂t
v(z,t) =

∂

∂z
v(z,t),

∂

∂t
v(z,t) =

∂2

∂z2
v(z,t), (31)

respectively. In the scalar PDE framework and in one space
dimension,v : R2

→ R, and we wish to replace the real-
valued functionv with a Boolean functionu : R2

→ B, i.e.
u(z,t) = 0,1, with z ∈ R and t ∈ R+, while conserving the
same qualitative behavior of the solutions.

For Boolean-valued functions, one is led to use the “eX-
clusive OR” (XOR) operator5 for evaluating differences,
|u−w| = u5w. Moreover, intuition dictates replacing the
increments in the independent variablest andz by thet ime

delayθt and thespatial delayθz when approximating the
partial derivatives in Eq. (31). By doing so, first-order ex-
pansions in the differences yield the equations:

u(z,t +θt )5u(z,t)= u(z+θz,t)5u(z,t), (32)

in the hyperbolic case, and

u(z,t +θt )5u(z,t)= u(z−θz,t)5u(z+θz,t) (33)

in the parabolic one, where we have used the associativity
property of (mod 2) addition inB.

Equation (32) has solutions of the form

u(z,t)= u(z+θz,t −θt ). (34)

This first step towards a partial BDE equivalent of a hy-
perbolic PDE displays therewith the expected behavior of a
“wave” propagating in the(z,t) plane. The propagation is,
respectively, from right to left for increasing times when us-
ing “forward differencing” in the right-hand side of Eq. (32),
as we did, and it is in the opposite direction when using
“backward differencing”. Notice that the solution exists and
that it is unique for all(θz,θt ) ∈ (0,1]

2, given appropriate ini-
tial datau0(z,t) with z ∈ (−∞,∞) andt ∈ [0,θt ).

In continuous space and time, Eq. (32) under considera-
tion is conservative and invertible. One can formulate for
it either a pure Cauchy problem, whenu0(z,t) is given for
z ∈ (−∞,∞) and is neither identically constant nor periodic,
or a space-periodic initial boundary value problem, when
u0(z,t) is given for z ∈ [0,Tz) and u0(z ± Tz,t) = u0(z,t).
In the latter case, the solution displaysTt -periodicity in time,
as well asTz-periodicity in space, withTt = Tzθt/θz.

5 Applications

As indicated at the end of Sect. 1, many applications ap-
pear in the accompanying papers of this Special Issue. We
select here only four applications. They illustrate first, in
Sect. 5.1, the application of two distinct methodologies to
the same problem, namely to the classical time series of Nile
River water levels: in Sect. 5.1.1 we use SSA and MTM from
Sect. 2.2, while in Sect. 5.1.2 we evaluate the LRD properties
of these time series with the methods of Sect. 2.4.

Second, we apply in Sect. 5.2 the dDS modeling of
Sect. 4.3 to two very different problems: the seasonal-to-
interannual climate variability associated with the coupling
between the Tropical Pacific and the global atmosphere, in
Sect. 5.2.1, and the seismic activity associated with plate tec-
tonics, in Sect. 5.2.2. The attentive reader can thus realize
there is considerable flexibility for the methods-oriented, as
well as the application-focused practitioner in the study of
extreme events.

5.1 Nile River flow data

As an application of the theoretical concepts and tools of the
statistical sections (Sects. 2 and 3), we consider the time
series of Nile River flow data. These time series are the
longest instrumental records of hydrological, climate-related
phenomena, and extend over 1300 yr, from 622 AD – the ini-
tial year of the Muslim calendar (1 AH) – till 1921 AD, the
year the first Aswan Dam was built. We use this time series
in order to illustrate the complementarity between the analy-
sis of the continuous background, cf. Sects. 2.3 and 2.4, and
that of the narrow peaks that rise above this backgound, as
described in Sect. 2.2.

The digital Nile River gauge data shown in Fig. 1 cor-
respond to those used in Kondrashov et al. (2005) and are
based on a compilation of primary sources (Toussoun, 1925;
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Fig. 5. Mean exceedance time< k > for the deterministic system in Fig. 4a (solid line). The dashed line stands

for the prediction of classical EVT theory. From Nicolis and Nicolis (2007).
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Fig. 6. Spectral estimates (in blue) for the extended Nile River time series in the interannual frequency range of

5–10 yr. (a, b) Monte-Carlo SSA, and (c, d) MTM; (a,c ) high-water levels, and (b, d) low-water levels. Arrows

mark peaks that are highly significant against a null hypothesis of red noise; 95% error bars (for SSA) and 95%

confidence level (for MTM), respectively, are in red. For SSA we used a 75-yr window and 1000 red-noise

realizations, while for MTM, we took a bandwidth parameter ofNW = 6 andK = 11 tapers. See information

about other significant spectral peaks in Table 1.
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Fig. 6. Spectral estimates (in blue) for the extended Nile River time series in the interannual frequency range of 5–10 yr.(a, b) Monte-Carlo
SSA, and(c, d) MTM; (a, c) high-water levels, and(b, d) low-water levels. Arrows mark peaks that are highly significant against a null
hypothesis of red noise; 95% error bars (for SSA) and 95% confidence level (for MTM), respectively, are in red. For SSA we used a 75-yr
window and 1000 red-noise realizations, while for MTM, we took a bandwidth parameter ofNW= 6 andK = 11 tapers. See information
about other significant spectral peaks in Table 1.

Ghaleb, 1951; Popper, 1951; De Putter et al., 1998; Whitcher
et al., 2002). We consider first the oscillatory modes – as
revealed by a combination of SSA (Sect. 2.2.1) with the
maximum-entropy method and MTM (Sect. 2.2.2) – and then
the LRD properties manifest in the continuous background,
after subtracting the long-term trend and oscillatory modes,
as described in Sects. 2.3 and 2.4.

5.1.1 Spectral analysis of the Nile River water levels

Following Kondrashov et al. (2005), we performed spectral
analyses of the extended (622–1922) records of highest and
lowest annual water level, with historic gaps filled by SSA
(Kondrashov and Ghil, 2006). The two leading EOFs of an
SSA analysis with a 75-yr window capture both a (nonlinear)
trend and a very low-frequency component, with a period
that is longer than the window. The SSA and MTM results
for the detrended time series – obtained by removing this
leading pair of RCs – are shown in Fig. 6; this figure focuses
on interannual variability in the 5–10-yr range.

Table 1. Significant oscillatory modes in the extended Nile river
records, 622–1922 AD The main entries give the periods in years:
bold entries without brackets indicate that the mode is significant at
the 95 % level against a null hypothesis of red noise, in both SSA
and MTM results; entries in square brackets are significant at this
level only in the MTM analysis. Entries in parentheses provide the
percentage of variance captured by the SSA mode with the given
period.

Period Low High

20–40 yr 23.2 (4.3 %)
10–20 yr 19.7 (6.9 %) [15.5] (4.1 %)

[12](5.3 %)
5–10 yr 6.25 (4.4 %) 7.35 (4.3 %)
0–5 yr 3.0 (4 %) 4.2 (3.4 %)

2.2 (3.3 %) 2.9 (3.3 %)
2.2 (3.5 %)
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Fig. 7. LRD property estimates for Nile River time series in the
622–1900 AD interval.(a) Rescaled-range (R/S) analysis; and(b)
detrended fluctuation analysis (DFA). Results for annual minimum
water levels (red triangles; see also Fig. 2) and maximum levels
(blue squares). Straight, blue and red lines are the best-fit power-law
functions for window widths of 4 yr≤ τ ≤ 128 yr. The estimated
correlation strength values ofβR/S andβDFA are given in the figure
legend; the color of the estimates matches that of the corresponding
line.

Both spectra show peaks that are significant with respect
to an AR[1] background at the 95 % level:T = 7.35 yr for
the high-water andT = 6.25 yr for the low-water levels. The
higher-frequency part of the spectra have peaks atT ' 3 yr
andT ' 2.2 yr (not shown in the figure); see detailed infor-
mation about these and other significant spectral peaks in Ta-
ble 1. The peaks in the 2–5-yr range were known from earlier
work on these records and are commonly attributed to tele-
connections with the El Niño/Southern Oscillation (ENSO)
and with the monsoonal circulations over the Indian Ocean,
especially over East Africa.

The 6–8 yr peak in the Nile river records was the main
new finding of Kondrashov et al. (2005). These authors, fol-
lowed by Feliks et al. (2010), attributed it to teleconnections
with a similar spectral peak in the North Atlantic Oscilla-
tion. This spectral peak, in turn, could be of internal oceanic
origin, arising through a gyre-mode instability of the wind-
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densities S plotted as a function of frequency f on log-log scale. Blue and red lines represent the best fitting
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range) as done for DFA and R/S (Figure 7). The estimated long-range correlation strengths (βPS) are given in

the color of the corresponding line.

Fig. 9. Devil’s staircase and fractal sunburst: A bifurcation diagram showing the average cycle length P̄ vs. the

wave delay τ for a fixed β = 0.17. Blue dots indicate purely periodic solutions; orange dots are for complex

periodic solutions; small black dots denote aperiodic solutions. The two insets show a blow-up of the overall,

approximate behavior between periodicities of two and three years (“fractal sunburst”) and of three and four

years (“Devil’s staircase”). Modified after Saunders and Ghil (2001).
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Fig. 8. Spectral analysis (Lomb periodogram) results for the 622 to
1900 AD Nile River annual minimum (red triangles) and maximum
(blue squares) water level time series (see Fig. 1). Shown are the
power-spectral densitiesS plotted as a function of frequencyf on
log-log scale. Blue and red lines represent the best fitting power law
functions in the frequency range(1/128) yr−1 < f < (1/4) yr−1,
the same frequency range (period range) as done for DFA and R/S
(Fig. 7). The estimated long-range correlation strengths (βPS ) are
given in the color of the corresponding line.

driven, double-gyre circulation of the North Atlantic Ocean;
it has been found across a hierarchy of ocean models (Di-
jkstra and Ghil, 2005; Simonnet et al., 2005). The results in
Fig. 6 suggest that the climate of East Africa has been subject
to influences from the North Atlantic, besides those already
documented from the Tropical Pacific and Indian Ocean.

5.1.2 Long-range persistence in Nile River water levels

The Nile River records are a paradigmatic example of data
sets with the LRD property (e.g., Hurst, 1951, 1952; Mandel-
brot and Wallis, 1968a,b). Mandelbrot and Wallis (1968a),
in particular, suggested that the “Joseph effect” of being able
to predict good years for the Nile River floods – and hence
for the crops in pharaonic Egypt – were due to this LRD
property, while Mandelbrot and Wallis (1968b) verified that
Hurst’s R/S estimate (Hurst, 1951, 1952) of what is now
called the Hurst exponentH was essentially correct.

As we can see from the previous subsection, though, the
attribution of the “Joseph effect” to LRD is not that conclu-
sive: a 6–8-yr periodicity is present in the water levels, and
is more likely to account for the biblical 14-yr cycle of fat
and lean years than scaling effects. The latter would result in
a much more irregular distribution of positive- and negative-
sign excursions from the mean, and not allow for a precise
prediction, like the one alluded to in the biblical story.

We reanalyzed, therefore, the high- and low-level records
of Fig. 1, after subtracting the trend and main periodicities,
as discussed in Sects. 2.3.1 and 2.4.1. Both time series were
investigated to verify whether long-range correlations existed
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Table 2. Results of long-range persistence analysis for the Nile
River records (622–1900 AD) of low- and high-water levels in
Fig. 7; the three different techniques are power-spectral analy-
sis (PS), detrended fluctuation analysis (DFA), and rescaled-range
analysis (R/S).

βPS βDFA βR/S

Nile River annual minimum water level 0.76 0.65 0.30
Nile River annual maximum water level 0.64 0.85 0.68

and, if so, to quantify their strength. Due to the gaps in the
time series, the analysis techniques introduced in Sect. 2.4.3
needed slight modifications: The standard periodogram was
replaced by the Lomb (1976) periodogram. For the R/S and
DFA calculations, the time series was broken up into seg-
ments that cover time intervals of equal length, and only the
segments without gaps were used in these calculations.

In Figs. 2 and 7, we show the results of several distinct es-
timation methods for self-affine LRD processes, cf. Sect. 2.4.
Figure 2 refers exclusively to the low-level data and was al-
ready discussed in Sect. 2.4.3. The estimates there were
based on the GPH estimator of Geweke and Porter-Hudak
(1983), as applied to the low frequencies of the periodogram
for the time series in Fig. 1; they yielded̂β = 0.76±0.09 and
henceĤ = 0.88±0.04. Applying the FD methodology to the
same time series led to almost exactly the same estimates: the
FD straight-line fit to the spectrum (red) is practically indis-
tinguishable from the GPH slope (blue).

In Figs. 7 and 8, three LRD estimation methods were ap-
plied to the maximum, as well as the minimum water level
series for the years 622–1900 AD only; the last two decades
were taken out, since they have a strong trend, due to sil-
tation. Figure 7 illustrates the results for the R/S and DFA
methods, while those for the least-square fit to the Lomb pe-
riodogram are in Fig. 8.

All three evaluation methods exhibit power-law behavior
in the respective ranges of frequencies or scales; they thus
all indicate the presence of LRD properties. The estimated
strengths, as measured by theβ-exponent (see Sect. 2.4.2),
are given in Table 2; they range betweenβ = 0.30 and
β = 0.85. Further analyses were carried out in order to de-
cide if this variation in the persistence strength is caused
by finite-sample-size effects or whether nonstationarities or
higher-order correlations are responsible for it.

In order to better understand the nature of both random and
systematic errors in the strength estimators for long-range
correlations, their performance was evaluated by generating
200 synthetic time series, with Gaussian one-point statistics:
100 for the annual maxima and 100 for the annual minima
of the water levels. These time series were each generated
so as to be self-affine with persistence strengthβ = 0.5. The
synthetic time series were modeled to include the same data
gaps as the original Nile River data for the 1300 yr of record

(622–1921 AD): for the minima there were 272 “missing”
values, while for the maxima there were 190 missing values
out of the 1300 yr. The resultant synthetic time series were
thus unequally spaced in time, and they were treated as de-
scribed above for the original “raw” Nile River data.

We applied all three estimators to these two sets of 100
time series withβ = 0.5, The mean values and standard de-
viations of the measured persistence strengths for these syn-
thetic time series are given in Table 3.

These results show that R/S analysis is strongly biased,
i.e. the persistence strength is on average significantly under-
estimated, in agreement with the empirical LRD studies of
Taqqu et al. (1995) and Malamud and Turcotte (1999). We
restricted, therefore, our consideration for the actual records
in Table 2 to power spectral analysis (PS in the table) and
DFA, both of which have a negligible bias and relatively
small standard deviations of approximately 0.10 for the syn-
thetic data sets. Assuming that the uncertainties of the esti-
mated persistence strength are of the same size for the syn-
thetic data sets and the Nile River records, we can state that
(i) the two Nile River time records both exhibit long-range
persistence; (ii) the persistence strength of the two records is
statistically indistinguishable; (iii) this strength iŝβ ' 0.72,
with a standard error of 0.10, such that the corresponding
95 % confidence interval is 0.53< β̂ < 0.91; and (iv) PS and
DFA lead to mutually consistent results.

5.2 BDE modeling in action

We now turn to an illustration of BDE modeling in action,
first with a climatic example and then with one from litho-
spheric dynamics. Both of these applications introduce new
and interesting extensions to and properties of BDEs. In par-
ticular, they illustrate the ability of this deterministic model-
ing framework to deal with the understanding and prediction
of extreme events.

In Sect. 5.2.1 we show that a simple BDE model can
mimic rather well the solution set of a much more detailed
model, based on nonlinear PDEs, as well as produce new
and previously unsuspected results, such as a Devil’s Stair-
case and a “bizarre” attractor in the parameter space. This
model provides a minimal setting for the study of extreme
warm and cold events in the Tropical Pacific.

The seismological BDE model in Sect. 5.2.2 introduces
a much larger number of variables, organized in a directed
graph, as well as random forcing and state-dependent de-
lays. This BDE model also reproduces a regime diagram of
seismic sequences resembling observational data, as well as
the results of much more detailed models (Gabrielov et al.,
2000a,b) that are based on a system of differential equations;
furthermore, it allows the exploration of seismic prediction
methods for large-magnitude events.
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Table 3. Mean values and standard errors for the three estimators of the strength of long-range persistence for the two synthetic data sets
with β = 0.5; see text and caption of Fig. 7 for the construction of these 2×100 time series. Symbols for the three analysis methods – PS,
DFA and R/S – as in Table 2. The resultant distribution of persistence strengths is approximately Gaussian: the corresponding mean values
and standard deviations are given in the table.

βPS βDFA βR/S

Synthetic time series with a time-sampling identical 0.49±0.10 0.46±0.11 0.41±0.17
to the Nile River annual-minimum water level records

Synthetic time series with a time-sampling identical 0.49±0.10 0.48±0.08 0.43±0.11
to the Nile River annual-maximum water level records

5.2.1 A BDE model for the El Niño/Southern
Oscillation (ENSO)

Conceptual ingredients

The ENSO phenomenon is the most prominent signal of
seasonal-to-interannual climate variability (Diaz and Mark-
graf, 1993; Philander, 1990; Latif et al., 1994). The BDE
model for ENSO variability of Saunders and Ghil (2001) in-
corporated the following three conceptual elements: (i) the
Bjerknes hypothesis, which suggests apositive feedbackas a
mechanism for the growth of an internal instability that could
produce large positive anomalies of sea surface temperatures
(SSTs) in the eastern Tropical Pacific. (ii) Anegative feed-
backvia delayed oceanic wave adjustments that compensates
Bjerknes’s positive feedback and allows the system to return
to colder conditions in the basin’s eastern part. (iii) Sea-
sonal forcing (Chang et al., 1994, 1995; Jin et al., 1994, 1996;
Tziperman et al., 1994, 1995).

This model operates with five Boolean variables. The
discretization of continuous-valued SSTs and surface winds
into four discrete levels is justified by the pronounced multi-
modality of associated signals. The state of theoceanis de-
picted by SST anomalies, expressed via a combination of two
Boolean variables,T1 andT2. The anomalousatmospheric
conditions in the Equatorial Pacific basin are described by
the variablesU1 andU2. The latter express the state of the
trade winds.

For both the atmosphere and the ocean, the first variable,
T1 or U1, describes the sign of the anomaly, positive or neg-
ative, while the second one,T2 or U2, describes its ampli-
tude, strong or weak. Thus, each one of the pairs(T1,T2)

and (U1,U2) defines a four-level discrete variable that rep-
resents highly positive, slightly positive, slightly negative,
and highly negative deviations from the climatological mean.
Theseasonal cycle’sexternal forcing is represented by a two-
level Boolean variableS.

BDE system

These conceptual ingredients lead to the following set of
Boolean delay equations:
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Fig. 8. Spectral analysis (Lomb periodogram) results for the 622 to 1900 A.D. Nile River annual minimum
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power law functions in the frequency range (1/128)yr−1 < f < (1/4)yr−1, the same frequency range (period

range) as done for DFA and R/S (Figure 7). The estimated long-range correlation strengths (βPS) are given in
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Fig. 9. Devil’s staircase and fractal sunburst: A bifurcation diagram showing the average cycle length P̄ vs. the

wave delay τ for a fixed β = 0.17. Blue dots indicate purely periodic solutions; orange dots are for complex

periodic solutions; small black dots denote aperiodic solutions. The two insets show a blow-up of the overall,

approximate behavior between periodicities of two and three years (“fractal sunburst”) and of three and four

years (“Devil’s staircase”). Modified after Saunders and Ghil (2001).
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Fig. 9. Devil’s staircase and fractal sunburst: A bifurcation dia-
gram showing the average cycle lengthP̄ vs. the wave delayτ for a
fixedβ = 0.17. Blue dots indicate purely periodic solutions; orange
dots are for complex periodic solutions; small black dots denote
aperiodic solutions. The two insets show a blow-up of the overall,
approximate behavior between periodicities of two and three years
(“fractal sunburst”) and of three and four years (“Devil’s staircase”).
Modified after Saunders and Ghil (2001).

Ui(t) = Ti(t −β), i = 1,2,

S(t) = S(t −1),

T1(t) =
{[

R∧U1
]
(t −τ)

}
∨
{
R(t −τ)∧U2(t −β)

}
,

T2(t) = {[S4T1](t −β)}∨
{[

(S4T1)∧T2

]
(t −β)

}
.
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Here the symbols∨ and∧ represent the binary logical op-
erators OR and AND, respectively.

The model’s principal parameters are the two delaysβ

and τ ; they are associated with local adjustment processes
and with basin-wide processes, respectively. The changes in
wind conditions are assumed to lag the SST variables by a
short delayβ, of the order of days to weeks. The length of
the delayτ may vary from about one month to two years (Jin
and Neelin, 1993a,b,c; Jin, 1996).

Model solutions

The following solution types have been found in this model:
(i) Periodic solutions with a single cycle (simple period).
Each succession of events, orinternal cycle, is completely
phase-locked here to the seasonal cycle, i.e., the warm events
always peak at the same time of year. When keeping the lo-
cal delayβ fixed and increasing the wave-propagation delay
τ , intervals where the solution has a simple period equal to
2, 3, 4, 5, 6, and 7 yr arise consecutively.

(ii) Periodic solutions with several cycles (complex pe-
riod). We describe such sequences, in which several distinct
cycles make up the full period, by the parameterP̄ = P/n;
hereP is the length of the sequence andn is the number of
cycles in the sequence. Notably, for a substantial range of
β-values,P̄ becomes a nondecreasing step function ofτ that
takes only rational values, arranged on a Devil’s Staircase.
This frequency-locking behavior is a signature of the univer-
sal quasi-periodic route to chaos. Its mathematical prototype
is the Arnol’d (1983) circle map and it has been documented
across a hierarchy of ENSO models, with some of its fea-
tures being even present in certain time series of observed
variables (Ghil and Robertson, 2000).

Aside from this Devil’s Staircase, the BDE model also ex-
hibits – between the two broad steps at the averaged periods
of two and three years – a much more complex, and hereto-
fore unsuspected, “fractal sunburst” structure; see the upper
inset in Fig. 9. As the wave delayτ is increased, mini-ladders
build up, collapse or descend only to start climbing up again.
The pattern’s focal point is at a critical value ofτ ∼= 0.5 yr;
near it these mini-ladders rapidly condense and the structure
becomes self-similar, as each zoom reveals the pattern being
repeated on a smaller scale. Saunders and Ghil (2001) called
this a “bizarre” attractor because it is more than “strange”:
strange attractors occur in a system’s phase space, for fixed
parameter values, while this fractal sunburst appears in the
BDE model’s phase–parameter space, like the Devil’s Stair-
case. The structure in Fig. 9 is attracting, though, only in
phase space; it is, therefore, a generalized attractor, and not
just a bizarre one.

In Sect. 7.1, we shall return to the prediction of ENSO
extrema. This prediction will be based on the dominant os-
cillatory patterns in the sequence of warm and cold events.

5.2.2 A BDE model for seismicity

Conceptual ingredients

Lattice models of systems of interacting elements are widely
applied for modeling seismicity, starting from the pioneer-
ing works of Burridge and Knopoff (1967), Allègre et al.
(1982), and Bak et al. (1988). The state of the art is summa-
rized in several review papers (Keilis-Borok and Shebalin,
1999; Newman et al., 1994; Rundle et al., 2000; Turcotte
et al., 2000; Keilis-Borok, 2002). Recently, so-calledcollid-
ing cascademodels (Gabrielov et al., 2000a,b; Zaliapin et al.,
2003a,b) have been able to reproduce a substantial set of ob-
served characteristics of earthquake dynamics (Keilis-Borok,
1996; Turcotte, 1997; Scholz, 2002). These chracteristics in-
clude (i) the seismic cycle; (ii) intermittency in the seismic
regime; (iii) the size distribution of earthquakes, known as
the Gutenberg-Richter relation; (iv) clustering of earthquakes
in space and time; (v) long-range correlations in earthquake
occurrence; and (vi) a variety of seismicity patterns that seem
to foreshadow strong earthquakes.

Introducing the BDE concept into modeling of colliding
cascades, Zaliapin et al. (2003a) replaced the simple interac-
tions of elements in the system by their integral effect, rep-
resented by the delayed switching between the distinct states
of each element: unloaded or loaded, and intact or failed.
In this way, one can bypass the necessity of reconstructing
the global behavior of the system from the numerous com-
plex and diverse interactions whose details are only being
understood very incompletely. Zaliapin et al. (2003a,b) have
shown that this modeling framework does simplify the de-
tailed study of the system’s dynamics, while still capturing
its essential features. Moreover, the BDE results provide ad-
ditional insight into the system’s range of possible behavior,
as well as into its predictability.

Colliding cascade models (Gabrielov et al., 2000a,b; Zali-
apin et al., 2003a,b) synthesize three processes that play an
important role in lithosphere dynamics, as well as in many
other complex systems: (i) the system has a hierarchical
structure; (ii) it is continuously loaded (or driven) by exter-
nal sources; and (iii) the elements of the system fail under
the load, causing the redistribution of the load and strength
throughout the system. Eventually the failed elements heal,
thereby ensuring the continuous operation of the system.

The load is applied at the top of the hierarchy and trans-
ferred downwards, thus forming adirect cascade of load-
ing. Failures are initiated at the lowest level of the hierarchy,
and gradually propagate upwards, thereby forming aninverse
cascade of failures, which is followed by healing. The inter-
action of direct and inverse cascades establishes the dynam-
ics of the system: loading triggers the failures, and failures
redistribute and release the load. In its applications to seis-
micity, the model’s hierarchical structure represents a fault
network, loading imitates the effect of tectonic forces, and
failures imitate earthquakes.
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Table 4. Long-term averaged GDP losses due to the distribution of natural disasters for different types of economic dynamics.

Calibration Economic dynamics Mean GDP losses due to natural
disasters (% of baseline GDP)

No investment flexibility Stable 0.15 %
αinv = 0.0

Low investment flexibility Stable 0.01 %
αinv = 1.0

High investment flexibility Endogenous business 0.12 %
αinv = 2.5 cycle

The model acts on a directed graph whose nodes, except
the top one and the bottom ones, have connectivity six: each
internal node has one parent, two siblings, and three chil-
dren. Each element possesses a certain degree ofweakness
or fatigue. An element fails when its weakness exceeds a
prescribed threshold.

The model runs in discrete timet = 0,1,.... At each epoch
t , a given element may be eitherintact or failed (broken),
and eitherloadedor unloaded. The state of an elemente at
a epocht is defined by two Boolean functions:se(t) = 0, if
an element is intact, andse(t) = 1, if it is in a failed state;
le(t) = 0, if an element is unloaded, andle(t) = 1, if it is
loaded.

An element may switch from a state(s,l) to another one
under an impact from its nearest neighbors and external
sources. The dynamics of the system is controlled by the
time delays between the given impact and switching to an-
other state. At the start,t = 0, all elements are in the state
(0,0), intact and unloaded; failures are initiated randomly
within the elements at the lowest level.

Most of the changes in the state of an element occur in the
following cycle:

(0,0) → (0,1) → (1,1) → (1,0) → (0,0)...

However, other sequences are also possible, but a failed and
loaded element may switch only to a failed and unloaded
state,(1,1) → (1,0). This mimics fast stress drop after a
failure.

Zaliapin et al. (2003a,b) introduced four basic time de-
lays:1L, between being impacted by the load and switching
to the loaded state,(·,0) → (·,1); 1F , between an increase
in weakness and switching to the failed state,(0,·) → (1,·);
1D, between failure and switching to the unloaded state,
(·,1) → (·,0); and1H , between the moment when healing
conditions are established and switching to the intact state,
(1,·) → (0,·). It was found, though, that the two most im-
portant delays are the loading time1L and the healing time
1H .

Model solutions

The output of this BDE model is a catalog of earthquakes –
i.e.,of failures of its elements – similar to the simplest routine
catalogs of observed earthquakes:

C= (tk, mk, hk), k = 1,2,...; tk ≤ tk+1. (35)

In real-life catalogs,tk is the starting time of the rupture;mk

is the magnitude, a logarithmic measure of energy released
by the earthquake; andhk is the vector that comprises the co-
ordinates of the hypocenter. The latter is a point approxima-
tion of the area where the rupture started. In the BDE model,
earthquakes correspond to failed elements,mk is the highest
level at which a failed element is situated within the model
hierarchy, while its position within levelmk is a counterpart
of hk.

Seismic regimes

A long-term pattern of seismicity within a given region is
usually called aseismic regime. It is characterized by the
frequency and irregularity of the strong earthquakes’ occur-
rence, more specifically by (a) the Gutenberg-Richter rela-
tion, i.e. the time-and-space averaged magnitude–frequency
distribution; (b) the variability of this relation with time; and
(c) the maximal possible magnitude.

Our BDE model produces synthetic sequences that can be
divided into three seismic regimes, illustrated in Fig. 10.

– Regime H:High and nearly periodic seismicity(top
panel of Fig. 10). The fractures within each cycle
reach the top level,m = L, where the underlying ternary
graph has depthL = 6. The sequence is approximately
periodic, in the statistical sense of cyclo-stationarity
(Mertins, 1999).

– Regime I: Intermittent seismicity(middle panel of
Fig. 10). The seismicity reaches the top level for some
but not all cycles, and cycle length is very irregular.

– Regime L:Low or medium seismicity(lower panel of
Fig. 10). No cycle reaches the top level and seismic
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Fig. 10. Three seismic regimes: sample of earthquake sequences. Top panel – regime H (High), ∆H = 0.5·104;

middle panel – regime I (Intermittent), ∆H = 103; bottom panel – regime L (Low), ∆H = 0.5 · 103. Only

a small fraction of each sequence is shown, to illustrate the differences between regimes. Reproduced from

Zaliapin et al. (2003a), with kind permission of Springer Science and Business Media.
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Fig. 10. Three seismic regimes: sample of earthquake sequences.
Top panel – Regime H (High),1H = 0.5 · 104; middle panel –
Regime I (Intermittent),1H = 103; bottom panel – Regime L
(Low), 1H = 0.5×103. Only a small fraction of each sequence
is shown, to illustrate the differences between regimes. Reproduced
from Zaliapin et al. (2003a), with kind permission of Springer Sci-
ence and Business Media.

activity is much more constant at a low or medium level,
without the long quiescent intervals present in Regimes
H and I.

Figure 11 shows the location of these three regimes in the
plane of the two key parameters(1L,1H ).

Zaliapin et al. (2003b) applied these results to the problem
of earthquake prediction discussed in detail in Sect. 7.2.1.
These authors used their model’s simulated catalogs to study
in greater detail the performance of pattern recognition meth-
ods tested already on observed catalogs and other mod-
els (Keilis-Borok and Malinovskaya, 1964; Molchan et al.,
1990; Bufe and Varnes, 1993; Keilis-Borok, 1994; Pepke
et al., 1994; Knopoff et al., 1996; Bowman et al., 1998;
Jaume and Sykes, 1999; Keilis-Borok, 2002), as well as de-
vising new methods. Most interestingly, they formulated op-
timization algorithms for combining different individual pre-
monitory patterns into a collective prediction algorithm.

6 Macroeconomic modeling and impacts of natural
hazards

A key issue in the study of extreme events is their impact on
the economy. In the present section, we focus on whether
economic shocks – such as those caused by climate-related
damages or other natural hazards – will, or could, influence
long-term growth pathways and generate a permanent and
sizable loss of welfare. It turns out, though, that estimat-
ing this impact correctly depends on the type of macroeco-

Fig. 10. Three seismic regimes: sample of earthquake sequences. Top panel – regime H (High), ∆H = 0.5·104;

middle panel – regime I (Intermittent), ∆H = 103; bottom panel – regime L (Low), ∆H = 0.5 · 103. Only

a small fraction of each sequence is shown, to illustrate the differences between regimes. Reproduced from

Zaliapin et al. (2003a), with kind permission of Springer Science and Business Media.
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Fig. 11. Regime diagram in the (∆L,∆H) plane of the loading and healing delays. Stars correspond to the
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Fig. 11. Regime diagram in the(1L,1H ) plane of the loading and
healing delays. Stars correspond to the sequences shown in Fig. 10.
Reproduced from Zaliapin et al. (2003a), with kind permission of
Springer Science and Business Media.

nomic model being used. Economists have so far used in
such estimates, by-and-large, long-term growth models in the
Solow (1956) tradition (Nordhaus and Boyer, 1998; Stern,
2006; Solomon et al., 2007), while relying on the idea that
– over time scales of decades to centuries – the equilibrium
paradigm is an acceptable metaphor. In such a setting, the
crucial element of climate-change cost assessments, for in-
stance, is the discount rate used for evaluating short-term
costs of adaptation or mitigation policies vs. their long-term
benefits.

Balanced-growth models, though, incorporate many
sources of flexibility and they tend to suggest that the dam-
ages caused by disruptions of the natural – i.e., physical,
chemical and ecological – system cannot entail more than
fairly moderate losses in gross domestic product (GDP) over
the 21st century (Solomon et al., 2007). Likewise, these
models imply that the secondary, long-term effects of past
events like the landfall of Hurricane Katrina near New Or-
leans in 2005 had only small economic consequences. These
results have been heatedly debated, and it has been suggested
that equilibrium models underestimate costs, because unbal-
anced economies may be more vulnerable to external shocks
than the idealized, equilibritated ones that such models de-
scribe.

To investigate the role of short-term economic variabil-
ity, such as business cycles, in analyzing the economic im-
pacts of extreme events, we consider here a simple modeling
framework that is able to reproduce endogenous economic
dynamics arising from intrinsic factors. We then investi-
gate how such an out-of-equilibrium economy would react
to external shocks like natural disasters. The results reviewed
here support the idea that endogenous dynamics and exoge-
nous shocks interact in a nonlinear manner and that these
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interactions can lead to a strong amplification of the long-
term costs due to extreme events.

6.1 Modeling endogenous economic dynamics

One major debate in macroeconomics has been on the causes
of business cycles and other short-term fluctuations in eco-
nomic activity. This debate involves two main types of busi-
ness cycle models: so-calledreal business cycle (RBC)mod-
els, in which all fluctuations of macroeconomic quantities
are due to exogenous changes in productivity or to other ex-
ogenous shocks (e.g., Slutsky, 1927; Frisch, 1933; Kydland
and Prescott, 1982; King and Rebelo, 2000) andendogenous
business cycle (EnBC)models, in which it is primarily inter-
nal mechanisms that lead to the more-or-less cyclic fluctua-
tions (e.g., Kalecki, 1937; Harrod, 1939; Samuelson, 1939;
Chiarella et al., 2005).

Nobody would claim that exogenous forcing does not play
a major role in business cycles. Thus, the strong economic
expansion of the late 1990s was clearly driven by the rapid
development of new technologies. But denying any role to
endogenous fluctuations that are due to unstable and nonlin-
ear feedbacks within the economic system itself seems also
rather unrealistic.

The recent “great recession” has raised many questions
about the neoclassical tradition that posits perfect markets
and rational expectations (e.g., Soros, 2008). Even within
this neoclassical framework, though, several authors (e.g.,
Gale, 1973; Benhabib and Nishimura, 1979; Day, 1982;
Grandmont, 1985) proposed models in which endogenous
fluctuations arise from savings behavior, wealth effects and
interest rate movement or from interactions between overlap-
ping generations and between different sectors. As soon as
market frictions and imperfect rationality in expectations or
aggregation biases are accounted for, strongly destabilizing
processes can be identified in the economic system.

The existence of destabilizing processes has been pro-
posed and their importance noted by numerous authors. Har-
rod (1939) already stated that the economy was unstable be-
cause of the absence of an adjustment mechanism between
population growth and labor demand, even though Solow
(1956) proposed later the choice of the labor–capital intensity
by the producer as the missing adjustment process. Kalecki
(1937) and Samuelson (1939) proposed simple business cy-
cle models based on a Keynesian accelerator-multiplier and
delayed investments. Later on, other authors (Kaldor, 1940;
Hicks, 1950; Goodwin, 1951, 1967) developed business cy-
cle models in which the destabilizing process was still the
Keynesian accelerator-multiplier, while the stabilizing pro-
cesses were financial constraints, distribution of income or
the role of the reserve army of labor. In Hahn and Solow
(1995, Ch. 6), fluctuations can arise from an imperfect goods
market, frictions in the labor market and from the interplay
of irreversible investment and monopolistic competition.

Exploration of EnBC theory was quite active in the mid-
dle of the 20th century but much less so over the last 30 yr.
Still, numerous authors (e.g., Hillinger, 1992; Jarsulic, 1993;
Flaschel et al., 1997; Nikaido, 1996; Chiarella and Flaschel,
2000; Chiarella et al., 2005, 2006) have proposed recent
EnBC models. The business cycles in these models arise
from nonlinear relationships between economic aggregates
and the competing instabilities they generate; they are con-
sistent with certain realistic features of actual business cy-
cles. EnBC models have not been able, so far, to reproduce
historical data as closely as RBC models do (see, e.g., King
and Rebelo, 2000).

Even so, Chiarella et al. (2006) for instance show that their
model is able to reproduce historical records when utilization
data are taken as input. It is not surprising, moreover, that
models with only a few state variables – typically less than
a few dozen – are not able to reproduce the details of his-
torical series that involve processes lying explicitly outside
the scope of an economic model (e.g., geopolitical tensions).
Furthermore, RBCs have gained from being fitted much more
extensively to existing data sets.

Motivated in part by an interest in the role of economic
instabilities in impact studies, Hallegatte et al. (2008) formu-
lated a highly idealized Non-Equilibrium Dynamical Model
(NEDyM) of an economy with a single goods and a single
producer. NEDyM is a neoclassical model with myopic ex-
pectations, in which adjustment delays have been introduced
in the clearing mechanisms for both the labor and goods mar-
ket and in the investment response to profitability signals. In
NEDyM, the equilibrium is neoclassical in nature, but the
stability of this equilibrium is not assumed a priori.

Depending on the model’s parameter values, endogenous
dynamics may arise via an exchange of stability between
the model’s neoclassical equilibrium and a periodic solution.
The business cycles in NEDyM thus originate from the in-
stability of the profit–investment relationship, a relationship
that resembles the Keynesian accelerator-multiplier effect.
The interplay of three processes limits the amplitude of the
model’s endogenous business cycles: (i) the increase of la-
bor costs when the employment rate is high (a reserve army
of labor effect); (ii) the inertia of production capacity and the
consequent inflation in goods prices when demand increases
too rapidly; and (iii) financial constraints on investment.

The model’s main control parameter is the investment flex-
ibility αinv, which is inversely proportional to the adjustment
time of investment in response to profitability signals. For
slow adjustment, the model has a stable equilibrium, which
was matched to the economic state of the European Union
(EU-15) in 2001 (European Commission, 2002). As the ad-
justment time decreases, andαinv increases, this equilibrium
loses its stability through a Hopf bifurcation, in which a pe-
riodic solution grows around the destabilized neoclassical
equilibrium.

This stable periodic solution – called a “limit cycle” in
DDS language – represents the model’s business cycle and it
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Fig. 12. Bifurcation diagram for the Non-Equilibrium Dynamic
Model (NEDyM) of Hallegatte et al. (2008). The abscissa dis-
plays the values of the control parameterαinv, while the ordinate
displays the the corresponding values of the investment ratio0inv.
The model has a unique, stable equilibrium for lowαinv values,
αinv ≤ α0 = 1.39. For higher values, a Hopf bifurcation atα0 leads
to a limit cycle whose minimum and maximum values are shown in
the figure. Transition to chaotic, irregular behavior occurs for even
higher values (not shown). From Hallegatte et al. (2008).

is characterized by variables that oscillate around their equi-
librium values. For instance, the investment ratio0inv, i.e.
the ratio of investment to the sum of investment and dividend
distribution, oscillates and Fig. 12 shows the extrema of this
oscillation as a function ofαinv. For even larger values, the
model exhibits chaotic behavior, with a positive Lyapunov
exponent of about 0.1 yr−1. In this case, therefore, no eco-
nomic forecast would be able to provide an accurate and re-
liable prediction over more than 10 yr.

The model’s business cycle has a fairly realistic period
of 5–6 yr, as well as a sawtooth shape, with recessions that
are considerably shorter than the expansions; see the upper
panel of Fig. 13 in the next subsection. The latter feature, in
particular, is not present in RBC models of the same degree
of simplicity as NEDyM. Due to the present EnBC model’s
simplicity, though, the amplitude of its business cycle is too
large.

6.2 Endogenous dynamics and exogenous shocks

It is obvious that historical economic series cannot be ex-
plained without taking into account exogenous shocks. As-
suming that one part of the dynamics arises from intrinsic
factors, it is therefore essential to better understand how the
endogenous dynamics interacts with exogenous shocks.

Hallegatte and Ghil (2008), following up on the work de-
scribed in the previous subsection, focused on the impact of

natural disasters on the economy for two reasons. First, nat-
ural disasters represent significant and fairly frequent shocks
on many economies and their costs are increasing dramati-
cally. It is important, therefore, to investigate their impacts,
in order to better manage disaster aftermaths and inform pre-
paredness and mitigation strategies. Second, natural disas-
ters are interesting “natural experiments”, which provide in-
formation about how economies react to unexpected shocks.
Our analysis aims, therefore, both at improving our under-
standing of the consequences of natural disaster and, more
broadly, at investigating economic dynamics.

6.2.1 Modeling economic effects of natural disasters

Even in the framework of neoclassical, long-term growth
models, Hallegatte et al. (2007) showed that natural disas-
ters cannot be modeled without introducing short-term con-
straints into the pace of reconstruction. Otherwise, economic
impact models do not reproduce the observed response to
past disasters and reconstruction in the model is carried out in
a couple of months, even for large-scale disasters, which is at
odds with past experience. Several recent examples of much
longer reconstruction times include the 1999 winter storms
in Western Europe; the 2002 floods in Central Europe; and
the 2004 hurricane season in Florida.

In most historical cases, reconstruction is carried out in 2
to 10 yr; the lower number applies to the 2002 floods in Cen-
tral Europe, while the higher number is an estimate for Hur-
ricane Katrina or the December 2004 tsunami in South Asia.
The reconstruction delays arise from financial constraints,
especially but not exclusively in developing countries, and
from technical constraints, like the lack of qualified workers
and construction equipment; substantial empirical evidence
for the existence of these constraints exists. An additional
effect of the latter is the so-called demand surge, i.e. the infla-
tion in the price of reconstruction-related goods and services
in disaster aftermaths, as shown by Benson and Clay (2004)
or Risk Management Solutions (2005), among others.

These constraints can increase dramatically the cost of a
single disaster by extending the duration of the reconstruc-
tion period. Basically, if a disaster destroys a plant, which
can be instantaneously rebuilt, the cost of the disaster is only
the replacement cost of the plant. But if the plant is destroyed
and can be replaced only one year later, the total cost is its re-
placement cost plus the value of one year of lost production.
For housing, the destruction of a house with a one-year delay
before reconstruction has a total cost equal to the replace-
ment cost of the house plus the value attributed to inhabiting
the house during one year.

The value of such production losses, in a broad sense, can
be quite high in certain sectors, especially when basic needs
– such as housing, health or employment – are at stake. Ap-
plied to the whole economic system, this additional cost can
be very substantial for large-scale disasters. For instance,
if we assume that Katrina destroyed about $100 billion of
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Fig. 13. The effect of one natural disaster on the endogenous busi-
ness cycle (EnBC) of the NEDyM model in Fig. 12. Top panel: the
business cycle in terms of annual growth rate (in arbitrary units),
plotted as a function of the time lag with respect to the cycle min-
imum; bottom panel: total GDP losses due to one disaster, as a
function of when they occur, measured as in the top panel. A dis-
aster occurring at the cycle minimum causes a limited production
loss, while a disaster occurring during the expansion lead to a much
larger production loss. After Hallegatte and Ghil (2008).

productive and housing capital, that this capital will be re-
placed over 5 to 10 yr, and we use a mean capital productivity
of 23 %, we can assess Katrina-related production losses to
lie between $58 and $117 billion. Hence production losses
will increase the cost of this event by 58 % to 117 %.

Hallegatte et al. (2007) have justified using the mean capi-
tal productivity of 23 % as follows. Since one is considering
the destruction of an undetermined portion of capital and not
the addition or removal of a chosen unit of capital, it makes
sense to consider the mean productivity and not the marginal
one. Taking into account the specific role of infrastructures
in the economy, and the positive returns they often involve,
even this assumption is rather optimistic. Assuming a Cobb-
Douglas production function with a distribution of 30 %-to-
70 % between capital income and labor income yields a mean
productivity of capitalY/K of 1/0.30 times the marginal
productivity of capitaldY/dK. Since the marginal produc-
tivity of capital in the US is approximately 7 %, it follows
that the mean productivity of capital can, therefore, be esti-
mated at about 23 %.

The fact that the cost of a natural disaster depends on the
duration of the reconstruction period is important because
this duration depends in turn on the capacity of the economy
to mobilize resources in carrying out the reconstruction. The
problem is that the poorest countries, which have lesser re-

sources, cannot reconstruct as rapidly and efficiently as rich
countries. This fact may help explain the existence of poverty
traps in which some developing countries seem to be stuck.

Because of this low reconstruction capacity and a large ex-
posure to dangerous events – such as tropical cyclones, mon-
soon floods or persistent droughts – a series of disasters can
prevent such countries from accumulating infrastructure and
capital, and, therefore, from developing their economy and
improving their capacity to reconstruct after a disaster. This
deleterious feedback effect may maintain some countries at
a reduced-development stage in the long run. The effect of
repeated disasters in some Central American countries in the
late 1990s and early 2000s (e.g., Guatemala and Honduras)
illustrates the consequences of such a series of catastrophes
on economic development.

In fact, these days, development agencies consider the
management of catastrophic risks as an important component
of development policies. This is but one example of the way
in which extreme events – in the same domain or in differ-
ent ones, e. g. combining exposure to climatic disasters with
the effects of recurrent warfare – can lead to much greater
damage than the mere superposition of separate extremes.

6.2.2 Interaction between endogenous dynamics and
exogenous shocks

We are now ready to combine the results of the economic
modeling in Sect. 6.1 with those of modeling the economic
effect of natural disasters in Sect. 6.2.1. To evaluate how the
cost of a disaster depends on the pre-existing economic situa-
tion, we apply the same loss of productive capital at different
points in time along NEDyM’s business cycle, and we assess
the total GDP losses, summed up over time and without any
discounting.

Figure 13 shows in the top panel the model’s business cy-
cle, with respect to the time lag relative to the end of the
recession. The bottom panel shows the overall cost of a ma-
jor disaster that causes destruction amounting to 3 % of GDP,
with respect to the time the disaster occurs, also expressed as
a time lag relative to the end of the recession. We find that the
total GDP losses caused by such a disaster depend strongly
on the phase of the business cycle in which the disaster oc-
curs: the cost is minimal if the event occurs at the end of the
recession and it is maximal if the disaster occurs in the mid-
dle of the expansion phase, when the growth rate is largest.

The presence of endogenous dynamics seems, therefore,
to induce a “vulnerability paradox”:

– A disaster that occurs when the economy is depressed
results in lower damages, thanks to the recovery ef-
fect of the reconstruction, which activates resources that
have been going unused. In this situation, since employ-
ment is low, additional hiring for reconstruction pur-
poses will not drive wages upward too rapidly. Also,
the stock of goods is, during a recession, larger than
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its equilibrium value. A disruption of production can,
therefore, be damped by inventories. Finally, the invest-
ment ratio is low and the financial constraint on pro-
duction is not active: the producer can easily increase
investment. In this case, the economic response brings
the disaster cost back to zero, according to the EnBC
model.

– A disaster that occurs during a high-growth period re-
sults in larger damages, as it enhances pre-existing dis-
equilibria. First, inventories are below their equilibrium
value during a high-growth phase, so they cannot com-
pensate for the reduced production. Second, employ-
ment is at a very high level and hiring more employees
induces wage inflation. Finally, because the investment
ratio is high, the producer lacks financial resources to
increase requisite investments. In fact, the maximum
production loss given by the NEDyM model reaches
20 % of GDP. This loss is unrealistically high, a fact
that can be related to the model’s business cycle having
too large an amplitude (see Sect. 6.1).

The crudeness of the model and its imperfect ability to
reproduce realistic business cycle make it impossible to eval-
uate, let alone predict, more precisely the importance of the
mechanisms involved in this vulnerability paradox. Tentative
confirmation is provided, though, by the relatively low cost
of production losses after major disasters that occurred dur-
ing recessions, in agreement with the suggestion of Benson
and Clay (2004).

As an example, the Marmara earthquake in 1999 caused
destructions that amounted to between 1.5 and 3 % of
Turkey’s GDP; the latter value is the one we used in gen-
erating Fig. 13. The cost of this earthquake in terms of pro-
duction loss, however, is believed to have been kept at a rela-
tively low level by the fact that the country was experiencing
a strong recession of−7 % of GDP in the year before the
disaster (World Bank, 1999).

The intriguing theoretical and potentially important prac-
tical aspects of this vulnerability paradox call, therewith, for
more research in the modeling of business cycle and the un-
derstanding of the consequences of exogenous shocks im-
pacting out-of-equilibrium economies (Dumas et al., 2011).

6.2.3 Distribution of disasters and economic dynamics

The ultimate cost of a single supply-side shock thus depends
on the phase of the business cycle. It is likely, therewith,
that the cost of a given distribution in time of natural disas-
ters that affect an economy depends on the characteristics of
this economy’s dynamics. For instance, two economies that
exhibit fluctuations of different amplitudes would probably
cope differently with the same distribution of natural disas-
ters.

To investigate this issue, Hallegatte and Ghil (2008) used
NEDyM to consider different economies of the same size and

at the same development stage, which differ only by their in-
vestment flexibilityαinv. As shown in Fig. 12 here, ifαinv is
lower than a fixed bifurcation value, the model possesses a
single stable equilibrium. Above this value, the model solu-
tions exhibit oscillations of increasing amplitude, as the in-
vestment flexibility increases.

Hallegatte et al. (2007) calibrated their natural-disaster
distribution on the disasters that impacted the European
Union in the previous 30 yr. This distribution of events was
used in Hallegatte et al. (2007) to assess the mean production
losses due to natural disasters for a stable economy at equi-
librium, while Hallegatte and Ghil (2008) did so in NEDyM.

The latter results are reproduced in Table 4 and highlight
the very substantial, but complex role of investment flexibil-
ity. If this flexibility is null (first row of the table) or very
low (not shown), the economy is incapable of responding to
the natural disasters through investment increases aimed at
reconstruction. Total production losses, therefore, are very
large, amounting to 0.15 % of GDP whenαinv = 0. Such an
economy behaves according to a pure Solow growth model,
where the savings, and therefore the investment, ratio is con-
stant.

When investment can respond to profitability signals with-
out destabilizing the economy, i.e. whenαinv is non-null but
still lower than the bifurcation value, the economy has a new
degree of freedom to improve its situation and respond to
productive-capital shocks. Such an economy is much more
resilient to disasters, because it can adjust its investment level
in the disaster’s aftermath: forαinv = 1.0 (second row of the
table), GDP losses are as low as 0.01 %, i.e. a decrease by
a factor of 15 with respect to a constant investment ratio,
thanks to the added investment flexibility.

If investment flexibility is larger than the bifurcation value
(third row of the table), the economy undergoes an endoge-
nous business cycle and, along this cycle, it crosses phases
of high vulnerability, as shown in Sect. 6.2.2. Production
losses due to disasters that occur during the model’s expan-
sion phases are thus amplified, while they are reduced when
the shocks occur during the recession phases. On average,
though, (i) expansions last much longer than recessions, in
both the NEDyM model and in reality; and (ii) amplification
effects are larger than damping effects. It follows that the
net effect of the cycle is strongly negative, with an average
production loss of 0.12 % of GDP.

The results in this section suggest the existence of an op-
timal investment flexibility; such a flexibility will allow the
economy to react in an efficient manner to exogenous shocks,
without provoking endogenous fluctuations that would make
it too vulnerable to such shocks. According to the NEDyM
model, therefore, stabilization policies may not only help
prevent recessions from being too strong and costly; they
may also help control expansion phases, and thus prevent
the economy from becoming too vulnerable to unexpected
shocks, like natural disasters or other supply-side shocks.
Examples of the latter are energy-price shocks, like the oil

www.nonlin-processes-geophys.net/18/295/2011/ Nonlin. Processes Geophys., 18, 295–350, 2011



330 M. Ghil et al.: Extreme events: causes and consequences

shock of the 1970s, and production bottlenecks, for instance
when electricity production cannot satisfy the demand from
a growing industrial sector.

These results – while still preliminary – support the idea
that assessing extreme event consequences with long-term
models that disregard short-term fluctuations and business
cycles can be misleading. Indeed, our results suggest that
nonlinear interactions between endogenous dynamics and
exogenous shocks play a crucial role in macroeconomic dy-
namics and may amplify significantly the long-term cost of
natural disasters and extreme events.

7 Prediction of extreme events

Prediction tries to address a fundamental need of the individ-
ual and the species in adapting to its environment. The cru-
cial difficulty lies not so much in finding a method to predict,
but in finding ways to trust such predictions, all the way from
Nostradamus to numerical weather prediction. Predicting ex-
treme events poses a particularly difficult quandary, because
of their two-edged threat: small number and large impact.

In this section, we will distinguish between the prediction
of real-valued functions of continuous timeX(t),t ∈ R, and
that of so-called point processesX(ti) – for which X 6= 0
only at discrete timesti that are irregularly distributed; these
will be addressed in Sects. 7.1 and 7.2, respectively. As
usual, the decision to model a particular phenomenon of in-
terest in one way or the other is a matter of convenience.
Still, it is customary to use the former approach for phenom-
ena that can be well approximated by the solutions of differ-
ential equations, the latter for phenomena that are less easily
so modeled. Examples of the former are large-scale average
temperatures in meteorology or oceanography, while the lat-
ter include earthquakes, floods or riots.

7.1 Prediction of oscillatory phenomena

In this subsection, we focus on phenomena that exhibit a
significant oscillatory component: as hinted already in the
overall introduction to this section, repetition increases un-
derstanding and hence confidence in a prediction method that
is closely connected with such understanding. In Sect. 2.2,
we reviewed a number of methods for the study of such phe-
nomena.

Among these methods, singular spectrum analysis (SSA)
and the maximum entropy method (MEM) have been com-
bined to predict a variety of phenomena in meteorology,
oceanography and climate dynamics (Ghil et al., 2002, and
references therein). First, the “noise” is filtered out by pro-
jecting the time series onto a subset of leading EOFs obtained
by SSA (Sect. 2.2.1); the selected subset should include sta-
tistically significant, oscillatory modes. Experience shows
that this approach works best when the partial variance asso-

ciated with the pairs of RCs that capture these modes is large
(Ghil, 1997).

The prefiltered RCs are then extrapolated by least-square
fitting to an autoregressive model AR[p], whose coefficients
give the MEM spectrum of the remaining “signal”. Finally,
the extended RCs are used in the SSA reconstruction process
to produce the forecast values. The reason why this approach
– via SSA prefiltering, AR extrapolation of the RCs, and SSA
reconstruction – works better than the customary AR-based
prediction is explained by the fact that the individual RCs are
narrow-band signals, unlike the original, noisy time series
X(t) (Penland et al., 1991; Keppenne and Ghil, 1993). In
fact, the optimal orderp obtained for the individual RCs is
considerably lower than the one given by the standard Akaike
information criterion (AIC) or similar ones.

The SSA-MEM prediction example chosen here relies on
routine prediction of SST anomalies, averaged over the so-
called Nĩno-3 area (5◦ S–5◦ N, 150◦ W–90◦ W), and of the
Southern Oscillation Index (SOI), carried out by a research
group at UCLA since 1992. The SOI is the suitably nor-
malized sea surface pressure difference between Tahiti and
Darwin, and it is very well anti-correlated with the Niño-3
index; see, for instance, Saunders and Ghil (2001) and refer-
ences therein. Thus a strong warm event in the eastern Trop-
ical Pacific (i.e., a strong El Niño) is always associated with
a highly positive Nĩno-3 index and a highly negative SOI,
while a strong cold event there (La Niña) is always mani-
fested by the opposite signs of these two indices.

As shown by Ghil and Jiang (1998), these predictions
are quite competitive with, or even better than other sta-
tistical methods in operational use, in the standard range
of 6–12 months ahead. The same is true when comparing
them to methods based on the use of deterministic mod-
els, including highly sophisticated ones, up to and includ-
ing coupled GCMs. This competitiveness is due to the rela-
tively large partial variance associated with the leading SSA
pairs that capture the quasi-quadrennial (QQ) and the quasi-
biennial (QB) modes of ENSO variability (Keppenne and
Ghil, 1992a,b).

Figure 14 shows the SSA-MEM method’s Niño-3 SSTA
retrospective forecasts for a lead time of 6 months, from Jan-
uary 1984 to February 2006. The forecast for each point
(blue curve) utilizes only the appropriate part of the record,
namely the one that precedes the initial forecast time: there
is no “look ahead” involved in these retrospective forecasts.
The prediction skill is uneven over the verification period,
and is best during the 1984–1996 interval (Ghil and Jiang,
1998): while the huge 1997–1998 El-Niño event was fore-
cast as early as December 1996 by this SSA-MEM method,
the amplitude of the event was not. In particular, this method
– like most others – does not capture the skewness of the
records of SOI or Nĩno-3 index, with stronger but fewer
warm than cold events.

A different approach is required to capture such non-
Gaussian features of the ENSO records, and thus to achieve
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Fig. 14. ENSO forecasts by the SSA-MTM method.(a) Retrospective forecasts of the Niño-3 SST anomalies for a lead time of 6 months.
The forecasts (blue curve) for each point in the interval January 1984–February 2006 utilize only the appropriate part of the record (black
curve) that precedes the initial forecast time; data ffrom the International Research Institute (IRI) for Climate and Society, http://iridl.ldeo.
columbia.edu/SOURCES/.KAPLAN/.EXTENDED/. An SSA window ofM = 100 months and 20 leading modes have been used. (b, c)
Prediction skill for validation times of 1–12 months:(b) anomaly correlation and(c) root-mean-square (RMS) error, respectively. The one-
standard deviation confidence levels (red curve) in panel(a) correspond to the RMS error for a lead time of 6 months given in panel(c).

better amplitude, as well as phase prediction. This ap-
proach is based on constructing an Empirical Model Re-
duction (EMR) model of ENSO (Kondrashov et al., 2005b),
which combines a nonlinear deterministic with a linear, but
state-dependent stochastic component; the latter is often re-
ferred to as multiplicative noise. This EMR ENSO model has
also been quite competitive in real-time ENSO forecasts.

7.2 Prediction of point processes

In this subsection, we treat the prediction of phenomena
that can be more adequately modeled as point processes.
A radically different approach to the analysis and predic-
tion of time series is in order for such processes: here
the series is assumed to be the result of individual events,
rather than merely a discretization, due to sampling, of a
continuous process (e.g., Brémaud, 1981; Brillinger, 1981;
Brillinger et al., 2002; Guttorp et al., 2002). Obvious ex-
amples are earthquakes, hurricanes, floods, landslides (Rossi
et al., 2010; Witt et al., 2010) and riots. Such processes have

been discussed theoretically in Sect. 3.2.1 and the associ-
ated Appendix B, and applied to the downscaling problem
in Sect. 3.5.2.

A point process has two aspects: the counting process,
which follows the number of events (of equal or different
sizes) in a fixed time interval, and the interval process, which
deals with the length of the intervals between events. The
counterpart of the Central Limit Theorem for point processes
states that the sum of an increasing number of mutually in-
dependent, ergodic point processes converges to a Poisson
process.

Not surprisingly, the assumptions of this theorem, too, are
violated by complex systems. In the case of earthquakes,
for instance, this violation is associated with deviations from
the Gutenberg-Richter power law for the size distribution of
earthquakes. V. I. Keilis-Borok and his colleagues (Keilis-
Borok et al., 1980, 1988; Keilis-Borok, 1996; Keilis-Borok
and Soloviev, 2003) have applied a deterministic pattern-
recognition approach, based on the mathematical work of
I. M. Gelfand, to the point-process realizations given by
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earthquake catalogues (Gelfand et al., 1976). This group has
recently extended their predictions from the intermediate-
range prediction of earthquakes (Keilis-Borok et al., 1988;
Keilis-Borok, 1996) to short-range predictions, on the one
hand, and to the prediction of various socio-economic crises
– such as US recessions or surges of unemployment and of
homicides – on the other.

Keeping in mind the dynamics of a complex system, such
as Earth’s lithosphere, we formulate the problem of predic-
tion of extreme events generated by the system as follows.
Let t be the current moment of time. The problem isto de-
cide whether an extreme event– i.e. an event that exceeds a
certain preset threshold –will or will not occur during a sub-
sequent time interval(t,t +1), using the information on the
behavior of the system prior tot . In other words, we have
to reach a yes/no decision, rather than extrapolating a full set
of values of the process over the interval(t,t +1), as in the
previous subsection.

The information on the behavior of the system is extracted
from raw data that include observable background activity,
the so-called “static,” as well as from appropriate external
factors that affect the system. Numerous small earthquakes,
small fluctuations of macroeconomics indicators or varying
rates of occurrence of misdemeanors are typical examples of
such static that characterizes the systems of interest.

Pattern recognitionhas proved to be a natural, efficient
tool in addressing the kind of problems stated above. Specif-
ically, the methodology of pattern recognition of infrequent
events developed by the school of I. M. Gelfand did demon-
strate useful levels of skill in several studies of rare phenom-
ena of complex origin, whether of physical (Gelfand et al.,
1976; Kossobokov and Shebalin, 2003) or socio-economic
(Lichtman and Keilis-Borok, 1989) origin. The M8 algo-
rithm for earthquake prediction is reviewed in Appendix C
and applied in Sect. 7.2.1 to predicting earthquakes in Roma-
nia’s Vrancea region; Zaliapin et al. (2003b) have also stud-
ied an approach to optimizing such prediction algorithms for
premonitory seismic patterns (PSPs). The overall method-
ology for predicting such phenomena is presented in Ap-
pendix D and is applied in Sect. 7.2.2 to socio-economic phe-
nomena.

7.2.1 Earthquake prediction for the Vrancea region

We consider the lithosphere as a complex system where
strong earthquakes, with magnitudeM ≥ M0, are the extreme
events of interest. The problem is to decide on the basis of the
behavior of the seismic activity prior tot , whether a strong
earthquake will or will not occur in a specified region during
a subsequent interval(t,t +1).

We present here the adaptation of the intermediate-range
earthquake prediction algorithm M8 of Keilis-Borok and
Kossobokov (1990) for application in the Vrancea region.
This algorithm was documented in detail by Kossobokov
(1997) and has been tested in real-time applications on both

global and regional scales (Kossobokov et al., 1999a,b; Kos-
sobokov and Shebalin, 2003; Kossobokov, 2006). The M8
algorithm is summarized here in Appendix C. The Vrancea
region in the elbow of the Carpathian mountain chain of Ro-
mania produces some of the most violent earthquakes in Eu-
rope, and thus it was selected in the E2-C2 project for further
tests of the pattern-recognition methodology of this group.

A data set on seismic activity in the Vrancea region was
first compiled from several sources. This data set is intended
to be used for the prediction of strong and possibly moderate
earthquakes in the region. Two catalogues have been used
for the time interval 1900–2005: (i) the Global Hypocenter
Data Base catalogue, in the National Earthquake Information
Center (NEIC) archive of the US Geological Survey; and (ii)
a local Vrancea seismic catalogue. The local catalogue is
complete for magnitudesM ≥ 3.0 since 1962 and it is com-
plete forM ≥ 2.5 since 1980. The data set so obtained is
being continued by the RomPlus earthquake catalogue com-
piled at the National Institute of Earth Physics (Magurele,
Romania).

Three values have been chosen for the magnitude thresh-
old of strong earthquakes:M0 = 6.0, 6.5, and 7.0. We have
specified1M = 0.5 (see Appendix C) for all three values of
the magnitude threshold.

The retrospective simulation of seismic monitoring by
means of the M8 algorithm is encouraging: the methodol-
ogy allows one to identify, though retrospectively, three out
of the last four earthquakes with magnitude 6.0 or larger that
occurred in the region. A real-time prediction experiment
in the Vrancea region has been launched starting in January
2007. Note that the M8 algorithm focuses specifically on
earthquakes in a rangeM0 ≤ M <M0+1M with given1M,
rather than on earthquakes with any magnitudeM ≥ M0.

The semi-annual updates of the RomPlus catalogue on
January 2007, July 2007, and so on, up till and including
July 2010, confirm that the region has entered a time of in-
creased probability (TIP) for earthquakes of magnitude 6.5+
or 7.0+ in the middle of 2006 (not shown); this TIP is to ex-
pire by June 2011. Figure 15 presents the 2008 Update A
(on January 2008) of the M8 test: at that time, the Vrancea
region entered a TIP for earthquakes of magnitude 6.0+.

7.2.2 Prediction of extreme events in socio-economic
systems

The key idea in applying pattern recognition algorithms to
socio-economic systems is that in complex systems where
many agents and actions contribute to generate small, mod-
erate and large effects, premonitory patterns that are qual-
itatively similar to the PSPs used in the previous subsec-
tion might be capable of raising alarms. This hypothesis is
sometimes called the “broken-window effect” in criminol-
ogy: many broken windows in a neighborhood can foretell
acts of major vandalism, many of these lead to robberies,
and many of those lead eventually to homicides, while the
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Fig. 15. Application of the standard version of the M8 algo-
rithm (Kossobokov, 1997) to the RomPlus catalogue for magnitude
M = 6.0+. Plotted are normalized graphs of seven measures of
seismic activity depicting the dynamical state of the Vrancea re-
gion in terms of seismic rateN (two measures,N1 andN2), rate
differential L (likewise two measures,L1 andL2), dimensionless
concentrationZ (alsoZ1 andZ2), and a characteristic measure of
earthquake clusteringB. The extreme values of these quantities in
the extended phase space of the system are outlined by red circles.
The M8 algorithm raises an alarm – calledTime of Increased Prob-
ability (TIP) – in a given geographic region, when the state vector
(N1,N2,L1,L2,Z1,Z2,B) enters a pre-defined subset of this phase
space: previous pattern recognition has determined that, in this sub-
set, the probability of an above-threshold event increases to a level
that justifies the alarm; see Sect. 7.2.1 and Appendix C here, as well
as Kossobokov (2006) and Zaliapin et al. (2003b).

multiplication of the latter can even lead to riots (Kelling and
Wilson, 1982; Bui Trong, 2003; Keizer et al., 2008). Such a
chain of events resembles phenomenologically the clustering
of small, increasingly large, and finally major earthquakes.
It is clear that this approach does not address in any way the
issues of causality, and hence of remediation, only those of
prediction and law enforcement.

The pattern-recognition approach was thus extended,
based on the above reasoning, to the start of economic re-
cessions (Keilis-Borok et al., 2000), to episodes of sharp
increase in the unemployment rate, called fast acceleration
of unemployment (FAU; Keilis-Borok et al., 2005), and to
homicide surges in megacities (Keilis-Borok et al., 2005).
Based on these applications to complex economic and so-
cial systems, we try to formulate here a universal algorithm
that is applied to monthly series of several relevant indices
of system activity, including the appropriate definition of pa-

rameter values for the prediction of the extreme events of
interest in the given system.

Examples of relevant indices of system activity are the in-
dustrial production total (IPT) and the index of help wanted
advertising (LHELL) for the US economy or the grand to-
tal of all actual offences (GTAAO) for the socio-economic
urban system of Los Angeles and New York City. In par-
ticular, IPT is an index of real (constant dollars, dimension-
less) output for the entire economy of a country or region that
represents mainly manufacturing; this index has been used,
rather than GDP, because of the difficulties in measuring, on
a monthly basis, the quantity of output in services, where
the latter includes travel agencies, banking, etc. The index
LHELL measures the amount of job advertising (column-
inches) in a number of major newspapers, while GTAAO
below is the number of offences registered by the Los An-
geles Police Department or the New York Police Department
during a month. The generalized prediction algorithm is pre-
sented in Appendix D.

7.2.3 Applications to economic recessions,
unemployment and homicide surges

Economic recessions in the United States.In this application
we take the activity indexf of Appendix D to equal the IPT
for the time interval January 1959–May 2010. The index is
available on the web site of the Economic Research Section
of the Federal Reserve Bank of St. Louis (FRBSL, http://
research.stlouisfed.org/fred2/series/INDPRO/).

The seven parameters(s,u,µ,v,L1,L2,τ ) of the predic-
tion algorithm are defined in Appendix D and in Figs. 19 and
20 there. Their values are taken here, after extensive experi-
mentation, as follows:

s∗
=6,u∗

=48,µ∗
=0.35,v∗

=12,L∗

1=0.0,L∗

2=1.0,τ ∗
=12,

i.e.,(s∗,u∗,µ∗,v∗,L∗

1,L
∗

2,τ
∗)=(6,48,0.35,12,0.0,1.0,12).

The resulting graph ofA(m;s∗,u∗,µ∗,v∗) is given in
Fig. 16 (solid black line), along with the time intervals of
economic recession (grey vertical strips) in the United States
according to the National Bureau of Economic Research
(NBER) and the alarms declared by the algorithm (magenta
boxes). The 1960 recession falls outside the range of the
definition of our activity-level functionA(m;s∗,u∗,µ∗,v∗)

– and could thus not contribute to testing the algorithm –
sinceA(m) can only be defined starting atm = m0 + s +u

(see Appendix D and Fig. 19c), whilem0 = July 1964.
The 1980, 1991, and 2001 recessions confirm the algo-

rithm predictions, while the other three recessions – in 1970,
1973, and 1981 – appear before the three alarms. The delay
of prediction is small for the recession in 1970 (2 months)
but larger for the recessions in 1973 (12 months) and 1981
(6 months). The delay in the alarm that corresponds to the
1981 recession might be due to the rather short time inter-
val since the preceding recession in 1980: there was thus
not enough time for the activity functionA(m;s∗,u∗,µ∗,v∗),
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Fig. 16. The graph of the activity-level function A(m; s∗, u∗, µ∗, v∗) for the prediction of U.S. economic

recessions. Parameter values are (s∗, u∗, µ∗, v∗) = (6, 48, 0.4, 12) and they were calculated from the Federal

Reserve Bank of St. Louis (FRBSL) monthly series of industrial production total (IPT; black curve). Official

economic recessions in the U.S. are shown as grey strips, and alarms declared by the algorithm as magenta bars

of duration τ = 12 months; see Sect. 7.2.3 and Appendix D for details.
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Fig. 16. The graph of the activity-level functionA(m; s∗, u∗, µ∗,
v∗) for the prediction of US economic recessions. Parameter values
are(s∗,u∗,µ∗,v∗) = (6,48,0.4,12) and they were calculated from
the Federal Reserve Bank of St. Louis (FRBSL) monthly series
of industrial production total (IPT; black curve). Official economic
recessions in the US are shown as grey strips, and alarms declared
by the algorithm as magenta bars of durationτ = 12 months; see
Sect. 7.2.3 and Appendix D for details.

with s∗
= 6 months andu∗

= 48 months, to detect the second
of the two recessions. Note that declaring an alarm 2 months
after the start of a recession may, nevertheless, be of interest
for potential end users because the NBER announcements of
a recession are usually delayed by 5 months or more.

The algorithm declared, in real time, a current alarm for
a recession to start in June 2008 (Fig. 16). According to
the NBER, the recession started in January 2008, but the an-
nouncement was only made in December 2008.

Fast acceleration of unemployment (FAU). In this applica-
tion, we consider the data on monthly unemployment rates
for the US civilian labor force in the time interval from Jan-
uary 1959 to July 2010 as given by the US Department of
Labor (USDL, http://stats.bls.gov/). The indexf (m) is now
LHELL, as defined and explained at the end of the previ-
ous subsection, and we use the values from January 1959 to
May 2008 that are available from the Economic Research
Section of the FRBSL, http://research.stlouisfed.org/fred2/
series/INDPRO/. The values of this index are not available
after May 2008.

In the present case, the parameter values(s∗, u∗, µ∗, v∗,
L∗

1, L∗

2, τ ∗) are the same as above, except that nowµ∗
= 1.

The resulting graph ofA(m;s∗,u∗,µ∗,v∗) is given in Fig. 17
(solid black line), along with the time intervals of FAU (grey
vertical strips) and the alarms declared by the algorithm (ma-
genta boxes). Each FAU interval here is determined, follow-
ing Keilis-Borok et al. (2005), as an interval between the lo-
cal minimum and the next local maximum of the smoothed
monthly unemployment rate.

The FAU intervals that start in 1967, 1979 and 2006 are
well predicted by the algorithm. The alarm in 1989 is identi-
fied in the same month as the start of the FAU. The other two

Fig. 17. Same as Fig. 16, but for the prediction of periods of fast acceleration of unemployment (FAU). Param-

eter values were calculated from the FRBSL monthly series of the index of help wanted advertising (LHELL);

they are the same as for the economic recession prediction, except for µ∗ = 1.0. Same conventions as in the

previous figure.
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Fig. 17. Same as Fig. 16, but for the prediction of periods of fast
acceleration of unemployment (FAU). Parameter values were calcu-
lated from the FRBSL monthly series of the index of help wanted
advertising (LHELL); they are the same as for the economic reces-
sion prediction, except forµ∗

= 1.0. Same conventions as in the
previous figure.

alarms appear after the beginning of the corresponding FAU:
specifically, the alarms are delayed by 2 months in 1969 and
by 7 months in 1973. The 1981 alarm is an immediate con-
tinuation of the longest FAU (1979–1983) that occurred dur-
ing the time of data vailability, while those in 1986 and 1995
are evidently false alarms. The overall statistics of this ap-
plication suggests that the algorithm does have some predic-
tive capacity, although the two false alarms raise legitimate
doubts. At the same time, the last FAU interval, which started
in December 2006, has been predicted in advance by means
of this algorithm (Fig. 17), as well as by the algorithm al-
ready suggested by Keilis-Borok et al. (2005).

Homicides surges in megacities. We describe here the ap-
plication for the City of Los Angeles, with its 3.8 million in-
habitants (in 2003), and for New York City, with its 8.1 mil-
lion inhabitants (likewise in 2003). The indexf in both cases
is GTAAO, as defined and explained at the end of Sect. 7.2.2.
For the City of Los Angeles, the data used are for January
1974 to December 2003; they are available from the website
of the National Archive of Criminal Justice Data (NACJD),
http://www.icpsr.umich.edu/NACJD/. Based on this dataset,
the following parameter values were chosen:

(s∗,u∗,µ∗,v∗,L∗

1,L
∗

2,τ
∗) = (6,48,184,12,1.0,2.0,12).

The resulting graph ofA(m;s∗,u∗,µ∗,v∗) is given in
Fig. 18a (solid black line) along with the periods of the homi-
cide surge (grey vertical strips) and the alarms declared by
the algorithm (magenta boxes). The periods of homicide
surge are determined, following Keilis-Borok et al. (2003),
as periods of a lasting homicide raise after smoothing sea-
sonal variations.

The homicide surge in 1977 falls outside the range of the
A(m;s∗,u∗,µ∗,v∗) definition; as explained for the economic
recessions, the range in whichA(m) is defined starts only in
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Fig. 18. Same as Fig. 16, but for the prediction of homicide surges in (a) the City of Los Angeles, and (b) New

York City. In both cases, data on the grand total of all actual offences (GTAAO) from the National Archive of

Criminal Justice Data (NACJD) were used. The NACJD data on crime statistics in (a) the City of Los Angeles

were available for January 1974 to December 2003, and in (b) New York City for January 1967 to May 2002.

Based on these data, the parameter values chosen for both megacities were (s∗, u∗, v∗) = (6, 48, 12), while

µ = 184 in panel (a) and µ = 1000 in panel (b). Same conventions as in Figs. 16 and 17.
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Fig. 18. Same as Fig. 16, but for the prediction of homicide surges
in (a) the City of Los Angeles, and(b) New York City. In both
cases, data on the grand total of all actual offences (GTAAO) from
the National Archive of Criminal Justice Data (NACJD) were used.
The NACJD data on crime statistics in(a) the City of Los Angeles
were available for January 1974 to December 2003, and in(b) New
York City for January 1967 to May 2002. Based on these data,
the parameter values chosen for both megacities were(s∗,u∗,v∗) =

(6,48,12), while µ = 184 in panel(a) andµ = 1000 in panel(b).
Same conventions as in Figs. 16 and 17.

July 1979. Each of the other four periods of homicide surge
is predicted. The alarm in 1991 appears inside the longest
homicide surge period for the city, which extended from mid-
1988 till early 1993.

The NACJD data set on crime statistics in New York City
contains the GTAAO index from January 1967 to May 2002.
It clearly makes sense to exclude the victims of September
11, 2001. The resulting parameter values for New York City
are

(s∗,u∗,µ∗,v∗,L∗

1,L
∗

2,τ
∗) = (6,48,1000,12,0.0,3.0,12).

The results for New York City are summarized in Fig. 18b.
The two homicide surges in 1974 and 1985 are predicted by
the algorithm, while the alarm associated with the remaining
one in 1978 is delayed by 4 months.

Fig. 19. Schematic diagram of the prediction algorithm. The four panels illustrate the steps in the transition

from the original time series f(m) to the sequence of background-activity events of size µf (mj ; s, u) to the

event-counting, activity-level function A(m; s, u, µ, v) and on to the alarms of length τ at times of significant

change in the activity-level function A(m). The parameters s, u, µ are introduced in panel (b), L1, L2 in panel

(c) anf τ in panel (d). See Appendix D for details.
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Fig. 19. Schematic diagram of the prediction algorithm. The
four panels illustrate the steps in the transition from the original
time seriesf (m) to the sequence of background-activity events
of sizeµf (mj ;s,u) to the event-counting, activity-level function
A(m;s,u,µ,v) and on to the alarms of lengthτ at times of signif-
icant change in the activity-level functionA(m). The parameters
s,u,µ are introduced in panel(b), L1,L2 in panel(c) anfτ in panel
(d). See Appendix D for details.

8 Concluding remarks

The results of the investigations reviewed herein have clearly
made significant contributions to the various aspects of the
overall E2-C2 project and to the study of extreme events in
general. Given the length of this review, though, it seems
most appropriate to conclude with a number of questions,
rather than with a summary and with definitive conclusions,
if any.

The key question for the description, understanding and
prediction of extreme events can be formulated as a para-
phrase to F. Scott Fitzgerald’s assertion in “The Great
Gatsby”: “The rich are like you and me, only richer”. Is
this true of extreme events, i.e., are they just other events in
the life of a given system, only bigger? If so, one can – as
one often does – extrapolate from the numerous small ones
to the few large ones. This approach allows one to jump from
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Fig. 20. Definition of changes in background activity for the in-
dexf (m). The two panels illustrate the case when extreme events
are associated either(a) with a decline or(b) with an increase in
the general trendKf (m− s,m) of {f (l) : m− s ≤ l ≤ m}; in either
case, the change in trendµf (m;s,u) is defined asµf (m;s,u) =

|Kf (m− s,m)−Kf (m− s −u,m− s)|. Dots show monthly val-
uesf (l), while straight lines are the linear least-square regressions
of f (l) on l in the two adjacent intervals(m− s −u,m− s) and
(m−s,m). See Appendix D for details.

the description of the many to the prediction of the few. It is
essentially this idea that underlies the use of power laws for
many classes of phenomena and the design of skyscrapers
that have to withstand the “50-year wind burst” or of bridges
that have to survive the “100-year flood”.

The modest opinion of the authors – after dealing with
many kinds of extreme events, in the physical as well as the
socio-economic realm – is that the yes-or-no answer to the
“Great-Gatsby” question is a definite “maybe”, i.e. “it de-
pends”. To conclude with confidence that the large are like
the small, only larger, requires a deep understanding of the
system. This understanding passes not only through care-
ful description, but also through modeling. Some systems
are better known than others, and can be modeled by us-
ing fairly sophisticated tools, like sets of differential equa-
tions and other modeling frameworks, whether determinis-
tic, stochastic or both. Validating such models on existing
data can certainly enhance our confidence in predictions of
the large events, along with the smaller ones.

There are maybe just two striking conclusions from the
work reviewed herein that we’ll select. The first one is the
following: The interaction between the project’s researchers
has elucidated a highly intriguing aspect of the description
of time series that include extreme events (Sect. 2). This as-

pect has to do with a well-known saying in time series anal-
ysis, but in a somewhat different sense than the one in which
it is usually taken: “one person’s signal is another person’s
noise”. Namely both the study of the continuous background
– the absolutely continuous spectral measure, in mathemat-
ical parlance – and that of the line spectrum or (more pre-
cisely), in practice, of the peaks rising above this background
are referred to by the fans of either as spectral analysis. In
fact, a given spectral density (for mathematicians) or power
spectrum (for engineers and physical scientists) can be, and
often is, the sum (or superposition, if you will) of the two
kinds of spectra. There is much to learn, and much that is
useful for prediction, in both.

The second striking conclusion pertains to the interac-
tion of extrema-generating processes, whether from the same
realm or from different ones. We have found a “vulnerability
paradox” in the fact that natural catastrophes produce what-
ever direct damage they do, but that the secondary impact
on the economy, via subsequent production loss, is smaller
during a recession than during an expansion (Sect. 6). This
suggests giving greater attention to the interaction between
natural and man-made hazards in a truly coupled-modeling
context. This context should take into account internal vari-
ability of both the natural and the socio-economic dynamics
of interest.

Some further musings are in order. Clearly, the entire
field of extreme events and the related risks and hazards is
in full swing. As clearly stated in Sect. 1, we were only
able to cover a limited subset of all that’s happening and
that is interesting, promising or both. In terms of statistics
(Sect. 3), there is a lot going on in modeling multivariate and
spatially dependent processes, long-range dependence and
downscaling. In dynamics, Boolean delay equations (BDEs,
Sect. 4.3) can capture extremal properties of both continuous
(Sect. 5.2.1) and point processes (Sect. 5.2.2), while interest-
ing ideas are being developed on these properties for maps
and other DDS (Sect. 4.2).

Finally, prediction – in the sense of forecasting future
events in a given system – is a severe test for any theory
of evolutive phenomena. Clearly, all the means at our dis-
posal have to be brought to bear on it, especially when the
number and accuracy of the observations leaves much to be
desired: advanced statistical methods (Sect. 7.1) and pattern
recognition (Sect. 7.2), as well as explicit dynamical models
(Sect. 4). A lot was done, but even more is yet to do.

Appendix A

Parameter estimation for GEV and GPD distributions

In 1979, Greenwood et al. (1979) and Landwehr et al.
(1979) introduced the so-called probability-weighted mo-
ments (PWM) approach. This method-of-moments approach
has been very popular in hydrology (Hosking, 1985) and
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the climate sciences because of its conceptual simplicity,
its easy implementation and its good performance for most
distributions encountered in the geosciences. Smith (1985)
studied and implemented the maximum-likelihood estima-
tion (MLE) method for the GEV density. According to Hosk-
ing et al. (1985), the PWM approach is superior to the MLE
for small GEV-distributed samples.

Coles and Dixon (1999) argued that the PWM method
makes a priori assumptions about the shape parameter that
are equivalent to assuming a finite mean for the distribu-
tion under investigation. To integrate a similar condition in
the MLE approach, these authors proposed a penalized MLE
scheme with the constraintξ < 1. If this condition is satis-
fied, then the MLE approach is as competitive as the PWM
one, even for small samples. Still, the debate over the advan-
tages and drawbacks of these two estimation methods is not
closed and new estimators are still being proposed.

Diebolt et al. (2008) introduced the concept of general-
ized probability-weighted moments (GPWM) for the GEV.
It broadens the domain of validity of the PWM approach,
as it allows heavier tails to be fitted. Despite this advan-
tage, the MLE method has kept one strong advantage over
the PWM approach, namely its inherent flexibility in a non-
stationary context. To complete this appendix, we would like
to emphasize that, besides the three aforementioned estima-
tion methods – MLE, PWM and GPWM – there exist other
variants and extensions. For example, Hosking (1990) pro-
posed and studied the L-moments, Zhang (2007) derived a
new and interesting method-of-moments, and Bayesian esti-
mation has also generated a lot of interest in extreme value
analysis (e.g., Lye et al., 1993; Coles, 2001; Cooley et al.,
2007; Coles and Powell, 1996).

Appendix B

Bivariate point processes

Equation (19) yields

P (Z(x) ≤ u andZ(x +h) ≤ u) = exp[−θ(h)/u] ,

where

θ(h) =

∫
max{g(s,x),g(s,x +h)}δ(ds)

is called theextremal coefficientand has been used in many
dependence studies for bivariate vectors (Fougères, 2004;
Ledford and Tawn, 1997). The coefficientθ(h) lies in the in-
terval 1≤ θ ≤ 2 and it gives partial information about the de-
pendence structure of the bivariate pair(Z(x),Z(x +h)). If
the two variables of this pair are independent, thenθ(h) = 2;
at the other end of the spectrum of possibilities, the variables
are equal in probability, andθ(h) = 1. Hence, the extremal
coefficient valueθ(h) provides some dependence informa-
tion as a function of the distance between two locations. For

example, the bivariate distribution for the Schlather model,
P(Z(x) ≤ s,Z(x +h) ≤ t), corresponds to

exp

{
−

1

2

(
1

t
+

1

s

)(
1+

[
1−2(ρ(h)+1)

st

(s + t)2

]1/2
)}

,

where ρ(h) is the covariance function of the underlying
Gaussian process. This yields an extremal coefficient of
θ(h) = 1+{1−

1
2 (ρ(h)+1)}1/2 . Naveau et al. (2009) pro-

posed nonparametric techniques to estimate such bivariate
structures. As an application, Vannitsem and Naveau (2007)
analyzed Belgium precipitation maxima. Again, to work
with exceedances – rather than modeling maxima, as done
here – requires one to develop another strategy.

Appendix C

The M8 earthquake prediction algorithm

This intermediate-term earthquake prediction method was
originally designed by the retrospective analysis of the dy-
namics associated with seismic activity that preceded the
great earthquakes – i.e., with magnitudeM ' 8.0 – world-
wide, hence its name. Since the announcement of its pro-
totype in 1984 and the original version in 1986, the M8 al-
gorithm has been tested in retrospective prediction, as well
as in ongoing real-time applications; see, for instance, Kos-
sobokov and Shebalin (2003), Kossobokov (2006), and ref-
erences therein.

Algorithm M8 is based on a simple pattern-recognition
scheme of prediction aimed at earthquakes in a magnitude
range designated byM0+, whereM0+ = [M0,M0 +1M)

and1M is a prescribed constant. Overlappingcircles of in-
vestigationwith diametersD(M0), starting withD from 5
to 10 times larger than those of the target earthquakes, are
used to scan the territory under study. Within each circle,
one considers the sequence of earthquakes that occur, with
aftershocks removed.

Denote this sequence by{(ti,mi,hi,bi(e)) : i = 1,2,...},
where ti are the times of occurrence, withti ≤ ti+1; mi is
the magnitude;hi is focal depth; andbi(e) is the number
of aftershocks of magnitudeMaft or greater during the firste
days afterti . Several running counts are computed for this se-
quence in the trailing time window(t − s,t) and magnitude
rangeM ≤ mi < M0. These counts correspond to different
measures of seismic flux, its deviations from the long-term
trend, and clustering of earthquakes. The averages include:

– N(t) = N(t |M,s), the number of main shocks of mag-
nitudeM or larger in(t −s,t);

– L(t) = L(t |M,s,s∗), the deviation ofN(t) from the
longer term trend, i.e.,
L(t) = N(t)−N(t −s|M,s∗)(t −s∗)/(t −s −s∗);
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– Z(t) = Z(t |M,M0−g,s,α,β), the linear concentration
of main shocks{i} that lie in the magnitude range
[M,M0 −g) and the time interval(t − s,t), while the
parameters(α,β) are used in determining the aver-
age source diameter for earthquakes in this magnitude
range; and

– B(t) = B(t |M0 −p,M0 − q,s,Maft,e) = maxi{bi}, the
maximum number of aftershocks – i.e., a measure of
earthquake clustering – with the sequence{i} consid-
ered in the trailing time window(t − s,t) and in the
magnitude range[M0−p,M0−q).

Each of the functionsN,L, andZ is calculated twice, with
M providing the long-term averageν of the annual number
of earthquakes in the sequence, withν = 20 and withν = 10,
respectively. As a result, the earthquake sequence is given a
robust description by seven functions:N,L,Z (twice each),
andB (once only). Threshold values are identified for each
function from the condition that they exceed theQth per-
centile, i.e., that they exceedQ % of the encountered values.

An alarm ortime of increased probability (TIP)is declared
for 1 = 5 yr when at least six out of the seven functions,
including B, are larger than the selected threshold within a
narrow time window(t −u,t). To stabilize prediction, this
criterion is checked at two consecutive moments, namely at
t and att +0.5 yr, and the TIP is declared only after the sec-
ond test agrees with the first. In the course of a real-time
application, the alarm can extend beyond or terminate in less
than 5 yr when updating of the catalogue causes changes in
the magnitude cutoffs or the percentiles.

The following standard values of the parameters listed
above are used in the M8 algorithm:D(M0) = exp(M0 −

5.6)+1 in degrees of meridian,s = 6 yr, s∗
= 30 yr, s = 1 yr,

g = 0.5,p = 2,q = 0.2, andu = 3 yr, while Q = 75 % forB
and 90 % for the other six functions. The linear concentra-
tion is estimated as the ratio of the average source diame-
ter l to the average distancer between sources. Usually,
l = n−16i10β(Mi−α), wheren is the number of main shocks
in the catalogue{i}, and one takesr ∼ n−1/3, while β = 0.46
is chosen to represent the linear dimension of the source, and
α = 0 without loss of generality,

Running averages are defined in a robust way, so that a rea-
sonable variation of parameters does not affect predictions.
At the same time, the point-process character of seismic data
and the strict usage of the preset thresholds result in a certain
discreteness of the alarms.

The M8 algorithm uses a fairly traditional description of
a rather complex dynamical system, by merely adding di-
mensionless concentrationZ and a characteristic measure of
clusteringB to the more commonly used phase space coordi-
nates of rateN and rate differentialL. The algorithm defines
certain thresholds in these phase space coordinates to cap-
ture the proximity of a singularity in the system’s dynamics.
When a trajectory enters the region defined by these thresh-
old values, the probability of an extreme event increases to

a level sufficient to predict its actual occurrence. The choice
of the M8 thresholds focuses on a specific intermediate-term
rise of seismic activity.

Appendix D

The pattern-based prediction algorithm

We consider monthly time series of indices that describe the
aggregated activity of a given complex system. Letf (m) be
a sample series of the indexf andW f (l;q,p) be the local
linear least-squares regression off (m) estimated on an in-
terval[q,p]:

W f (l;q,p)= Kf (q,p)l+Bf (q,p), (D1)

whereq ≤ l ≤ p Kf (q,p) andBf (q,p) are the regression
coefficients.

We introduceSf (m;s,u) = Kf (m− s,m)−Kf (m− s −

u,m− s), wheres andu are positive integers. This function
reflects the difference between the two trends off (m) in the
s months afterm− s and in theu months beforem− s. The
value ofSf (m;s,u) is referred to monthm so that to avoid
using information from the future.

Let us assume that extreme events in the system consid-
ered are associated with a decline in the trend of thef -index.
Mark an event that reflects background activity (“broken
windows”) of magnitudeµf (m;s,u) = |Sf (m;s,u)| as hap-
pening at monthm if Sf (m;s,u) < 0, as shown in Fig. 20a.
When, to the contrary, the extreme events are associated with
a rise of the trend inf , mark an event atm if Sf (m;s,u)> 0,
as shown in Fig. 20b.

Given the values of the parameterss andu, the procedure
described above transforms a monthly series off (m) into a
unique sequence of events atm1,m2,... with the correspond-
ing magnitudesµf (m1;s,u), µf (m2;s,u), . . . Note that, if
a series off (m) is given on the interval[m0,mT ], then the
occurrences of events fall on the interval[m0+s +u,mT ].

Consider the events of background activity determined as
above, on the basis of the indexf (m) and parameterss and
u. Let A(m;s,u,µ,v) be the number of events with mag-
nitudesµf (mi;s,u) ≥ µ that occurred within the preceding
v months, i.e.,m−v +1≤ mi ≤ m. Evidently, the increase
of A(m;s,u,µ,v) characterizes a rise of activity. To give a
formal definition, we introduce the two thresholdsL1 < L2
and identify a significant rise in background activity atm,
providedA(m−1;s,u,µ,v)≤ L1 andL2 ≤ A(m;s,u,µ,v).

The following general scheme for developing a prediction
algorithm adapted to a given data set{f (m) : m0 ≤ m ≤ mT }

appears to be rather natural. The scheme below and Fig. 19
that illustrates it are given on the assumption that the rise of
background activity is a precursory pattern for the occurrence
of extreme events. The changes to the scheme and figure in
the case it is a decrease that is premonitory are obvious.
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1. Given s and u, transform a monthly seriesf (m),
as shown in Fig. 20b, into a sequence of events
{µf (mj ;s,u) : 0≤ j ≤ J }, with J ≤ mT −m0.

2. Givenµ andv, evaluateA(m;s,u,µ,v).

3. Given L1 and L2, identify from A(m;s,u,µ,v) the
months{mk : 0 ≤ k ≤ K} of background activity rise,
with K ≤ J .

4. Givenτ , declareτ months of alarm for an extreme event
each time the rise of background activity is identified.

5. Iterate the selection of the parameters
s,u,µ,v,L1,L2,τ to optimize the algorithm’s per-
formance and robustness.

The phrase “With three parameters I can fit an elephant,
and with four I can have it wag its tail” has been attributed
to a number of famous mathematicians and physicists: it is
supposed to highlight the problems generated by using too
large a number of parameters to fit a given data set. The pat-
tern recognition approach allows considerable freedom in the
retrospective development of a prediction algorithm, like the
one outlined above. To avoid the overfitting problems high-
lighted by the “elephant-fitting” quote, such an algorithm has
to be insensitive to the variations in its adjustable parameters,
choice of premonitory phenomena, definition of alarms, etc.
The sensitivity tests have to comprise an exhaustive set of
numerical experiments, which represent a major portion of
the effort in the algorithmus development.

Molchan (1997) introduced a particular type of error di-
agrams to evaluate earthquake prediction algorithms. The
definition of such an error diagram is the following: Consider
the outcomes of prediction during a time interval of lengthT .
During that time interval,N strong events occurred andNF

of them were not predicted. The number of declared alarms
wasA, with AF of them being false alarms, while the total
duration of alarms wasD.

Obviously ifD = T there will be no strong events missed,
while if D = 0 there will be no false alarms. The error di-
agram of Molchan (1997) shows the trade-off between the
relative duration of alarmsτ = D/T , the rate of failures to
predictn = NF /N , and the rate of false alarmsf = AF /A.
In the (n,τ )-plane, the straight linen+ τ = 1 corresponds
to a random binomial prediction – at each epoch an alarm is
declared with probabilityτ and is not declared with probabil-
ity 1−τ . Outcomes have to improve upon this straight line
in order for the algorithm to be competitive; see also Zali-
apin et al. (2003b) for the use of this diagram in the idealized
world of a BDE model that can generate an arbitrarily long
catalog of earthquakes. Similar considerations apply when
adapting the algorithm above to other complex systems.

Appendix E

Table of acronyms.

ACF Auto-correlation function
AIC Akaike information criterion
AR Auto regressive
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
BDE Boolean delay equation
CA Cellular automaton
DDE Delay differential equation
dDS Discrete dynamical system
DDS Differentiable dynamical system
DFA Detrended fluctuation analysis
DOF Degrees of freedom
E2-C2 Extreme Events: Causes and Consequences
EnBC Endogenous business cycle
ENSO El Nĩno–Southern Oscillation
EOF Empirical orthogonal function
ETCCDI Expert Team on Climate Change Detection and Indices
EVT Extreme value theory
FARIMA Fractional Autoregressive integrated moving average
FAU Fast acceleration of unemployment
FDE Functional differential equation
fGn Fractional Gaussian noise
FRBSL Federal Reserve Bank of St. Louis
GAM Generalized additive model
GARCH Generalized autoregressive conditional heteroskedasticity
GCM General circulation model
GDP Gross domestic product
GEV Generalized Extreme Value (distribution)
GLM Generalized Linear Model
GPD Generalized Pareto distribution
GPH Geweke and Porter-Hudak (estimator)
GPWM Generalized probability-weighted moments
GTAAO Grand total of all actual offences
IPT Industrial production total
i.i.d. independent and identically distributed (random variables)
LAM Limited-area model
LHELL Index of help wanted advertising
LRD Long-range dependence
MLE Maximum likelihood estimation
MTM Multi-taper method
NACJD National Archive of Criminal Justice Data
NBER National Bureau of Economic Research
NEIC National Earthquake Information Center
NEDyM Non-Equilibrium Dynamical model
ODE Ordinary differential equation
O4E Ordinary difference equation
PC Principal component
PDE Partial differential equation
P4E Partial difference equation
PSP Premonitory seismic pattern
POT Peak over threshold
PWM Probability-weighted moments
QBO Quasi-biennial oscillation
QQO Quasi-quadrennial oscillation
RBC Real business cycle
RC Reconstructed component
R/S Rescaled-range statistic
SDM Statistical dynamical model
SOI Southern Oscillation Index
SRD Short-range dependence
SSA Singular spectrum analysis
SST Sea surface temperature
SWG Stochastic weather generator
TIP Time of increased probability
VGAM Vector Generalized Additive Model
VGLM Vector Generalized Linear Model

www.nonlin-processes-geophys.net/18/295/2011/ Nonlin. Processes Geophys., 18, 295–350, 2011



340 M. Ghil et al.: Extreme events: causes and consequences

Acknowledgements.It is a pleasure to thank all our collaborators
in the E2-C2 project and all the participants in the project’s several
open conferences, special sessions of professional society meetings
(American Geophysical Union and European Geosciences Union),
and smaller workshops. R. Blender and two anonymous reviewers
read carefully the paper’s original version and provided useful
suggestions, while V. Lucarini, S. Vaienti and R. Vitolo suggested
improvements to Sect. 4.2. M.-C. Lanceau provided precious help
in editing the merged list of references. This review paper reflects
work carried out under the European Commission’s NEST project
“Extreme Events: Causes and Consequences (E2-C2).”

Edited by: J. Kurths
Reviewed by: R. Blender and two anonymous referees

The publication of this article is financed by CNRS-INSU.

References

Abaimov, S. G., Turcotte, D. L., Shcherbakov, R., and Rundle, J.
B.: Recurrence and interoccurrence behavior of self-organized
complex phenomena, Nonlin. Processes Geophys., 14, 455–464,
doi:10.5194/npg-14-455-2007, 2007.

Abarbanel, H. D. I.: Analysis of Observed Chaotic Data, Springer-
Verlag, New York, 272 pp., 1996.

Albeverio, S., Jentsch, V., and Kantz, H.: Extreme Events in Nature
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