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AbstractÐThe authors discuss the reliability of a new method used to depict precisely the authigenic
calcite precipitation process in the water column of a mesotrophic alpine lake (Lake Bourget, Savoie,
France). Complete chemical analysis of dissolved major elements shows that, in the epilimnion, calcium
concentration and alkalinity are the only chemical species presenting large variations. The behaviour of
these two parameters is only related to calcite precipitation. The method is based on in situ speci®c
conductance measurements (C25). Experimental values were compared with theoretical calculations. The
results demonstrate clearly that dissolved calcium concentration can be directly related to measured
speci®c conductance. Hence, a mathematical relationship was developed to compute calcium
concentration pro®les in the water column with a centimetre spatial resolution through the whole water
column. Finally, authigenic calcite production can be observed and quanti®ed on a time scale covering
two years of experimental data. Calcite production is estimated to 4.8 mol mÿ2 yrÿ1. Extrapolation to
the whole lake surface leads to 16,00022000 tons yrÿ1 as CaCO3. Speci®c conductance is an easy-to-
measure in situ parameter which could be used to trace authigenic calcite production in other hard
water alpine lakes. 7 2000 Elsevier Science Ltd. All rights reserved

Key wordsÐalpine lake, calcite precipitation, speci®c conductance, in situ measurements, conductivity

INTRODUCTION

Authigenic calcite precipitation is a well known geo-
chemical process in hard water lakes. Precipitation
is initiated and sustained by both temperature el-

evation of the epilimnion and by the development
of phytoplankton. Algal cells are supposed to o�er
nucleation sites for starting the crystal growth (Sta-
bel, 1986; Kuchler-Krischun and Kleiner, 1990;

Hartley et al., 1996). Calcite precipitation can also
be closely linked to the phosphorus cycle in lakes
because coprecipitation of phosphate with calcite is

reported as an important phosphorus sink in the P-
budget in lakes (Otzuki and Wetzel, 1972; Murphy
et al., 1983; Vinc° on-Leite et al., 1995; Hartley et al.,

1997).
In order to describe the characteristics of the cal-

cite precipitation process in lakes, three classical

methods can be used. The ®rst one consists of a
survey of speci®c dissolved chemical parameters,
such as calcium concentration or alkalinity by

sampling the water column (Salmaso and Decet,
1998; Kuchler-Krischun and Kleiner, 1990; Weilen-

mann, 1986). This method requires a large number
of chemical analyses which in turn limits the time
and spatial scale of sampling. The second method

consists of measuring the sedimentation ¯uxes with
sediment traps. Analysis of the collected solids
yields an estimate of the calcite ¯ux (Stabel, 1986;
Stabel and Chondrogianni, 1988; Hodell et al.,

1998). These two methods are e�ective, however,
they require heavy sampling and analysis pro-
grammes. The third method consists of a calcium

mass balance on the lake, by evaluating the tribu-
tary inputs and the lake outputs (Decet and Sal-
maso, 1997). The accuracy of the balance method

depends on the hydrological regime of the a�uents,
especially during ¯ood events, when uncertainties in
the ¯ux calculations are likely to increase drasti-

cally.
The objective of this paper is to present a di�er-

ent method for quantifying the calcite precipitation
in the water column of lakes based on in situ

measurements of speci®c conductance. This method
leads to a ``software sensor'', which is a recent con-
cept related to the computation and estimation of
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some quantity of interest, using both measurements
and a theoretical model (Masson et al., 1998).

To proceed with this objective, the main biogeo-
chemical processes occurring in Lake Bourget and
their order of magnitude are presented. Then, on

this basis, the theoretical model of the software sen-
sor and its validation is explained. Finally, this new
method for tracing calcite precipitation is applied

on Lake Bourget in order to assess the magnitude
of the process, and to demonstrate the advantages
from this new approach.

MATERIALS AND METHODS

Study site

Lake Bourget is a medium sized lake (surface area:
42 km2, maximal depth: 145 m, water residence time:
seven years) located in the French Alps (Fig. 1). The
watershed (560 km2) encloses two cities (ChambeÂ ry and
Aix-les-Bains) which through inputs of industrial and
domestic sewage, have led to eutrophication of the water
body during the 1970s. Since 1980 an important restor-
ation plan has drastically reduced phosphorus input to the
lake. This study is focused on both the spring-summer
1997 and 1998 periods for the following reasons:

. These periods are short with regard to the water resi-
dence time (seven years).

. No high ¯ow was recorded during these periods.

. The sampling point (point B) located at the maximum
depth is not in¯uenced by the main tributary (Leysse
river).

Therefore, there is no direct impact of the tributaries nor
direct watershed runo� on the lake water composition.
Previous studies show that point B is a representative
station for the lake water composition (Vinc° on-Leite et
al., 1998). In addition, hydrodynamical studies have
shown that the vertical displacement of the thermocline
due to internal waves at point B remains weak and that
the measurements are not a�ected by this physical
phenomenon (Bournet, 1996).

Data collection

In situ measurements and water sampling were pro-
cessed monthly or biweekly during two years (April 1997
to February 1999) in the water column at point B (Fig. 1).
In situ measurements of temperature, pH, conductivity

and dissolved oxygen were performed using a multi-par-
ameter Sea-Bird SBE 19 pro®ler. The probe data are
recorded with a 0.15 m space step from surface to the bot-
tom. The pH is measured with a pressure-balanced glass-
electrode/Ag/AgCl reference (20.05 pH unit). The dis-
solved oxygen probe is a polarographic electrode YSI
5739 (20.1 ppm), conductivity sensor returns values within
21 mS cmÿ1. The computation of speci®c conductance
(conductivity corrected to 258C=C25) is performed by a
Seabird software using equation (1) (APHA, 1989):

C25 � C � 10, 000
1� 0:020 � �Tÿ 25� �1�

where C25 is the speci®c conductance in mmhos cmÿ1, C is
the conductivity in S mÿ1 and T is the temperature in 8C.
The calibration of the pH probe was con®rmed after

each measuring survey against two NBS pH bu�ers
(pH=4.01 and pH=7.00 at 298 K). The calibration of
conductivity cell was performed before ®rst ®eld deploy-
ment (April 1997). The water sampling was performed
with a Niskin bottle at nine di�erent depths (®ve samples
in the epilimnion±metalimnion region and four samples in
the hypolimnion). Immediately after sampling, the water
used for major dissolved ion analysis was ®ltered on board
with Minisart7 ®lters (porosity 0.45 mm). Alkalinity
measurements were performed on ®ltered water within 6 h
from sampling using the spectroscopic method (Sarazin et
al., 1999; Podda and Michard, 1994) (accuracy 23%).
Total dissolved calcium, magnesium, potassium and
sodium were analysed on acidi®ed samples (HNO3 Supra-
pur Merck7) by a FAAS (accuracy 25%). Major anions
(Clÿ, NOÿ3 , SO 2ÿ

4 � were analysed by ionic chromatography
(Dionex 2000i; accuracy 23%). Soluble reactive phos-
phorus (SRP), ammonium �NH�4 � and dissolved silica (Sit)
analysis were performed by the classical colorimetric
methods (accuracy 25%) (APHA, 1989). Individual con-
centrations of the carbonate system species ([H2CO3],
�HCOÿ3 ], �CO 2ÿ

3 ]) were calculated from measured data with
a computer software derived from Mineql (Morel, 1983).
Calculations take into account the following ion pair for-
mations �CaHCO�3 , CaCO0

3, CaSO0
4, MgHCO�3 , MgCO0

3,
MgSO0

4, NaHCO0
3, NaCOÿ3 , NaSOÿ4 , KSOÿ4 � and variations

of temperature and pressure.

CALCITE PRECIPITATION

Theoretical considerations

The chemistry of carbonate and calcium in most
alpine lakes involves essentially two reactions: cal-
cite precipitation and photosynthesis-respiration

(Sigg et al., 1994; Gaillard, 1995). These two main
processes occur seasonally and a�ect the thermo-
strati®ed zone (epilimnion).
Tables 1 and 2 display concentrations of theFig. 1. Map of the study site.
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major dissolved ions and carbonate system species

([H2CO3], �HCOÿ3 ], �CO 2ÿ
3 ]), Dissolved Inorganic

Carbon (DIC=[H2CO3]+[HCOÿ3 ]+[CO 2ÿ
3 ]), and

the equivalent pCO2 in April and June 97. Some of

these species show seasonal trends in conjunction
with the seasonal behaviour of the lake.
In an aquatic ecosystem which contains natural

weak acids and bases, alkalinity is de®ned by
equation (2) (Morel, 1983):

Alk � �HCOÿ3 � � 2�CO 2ÿ
3 � � �NH3� � �HSÿ�

� 2�S 2ÿ� � �H3SiOÿ4 � � �HPO 2ÿ
4 �

� 2�PO3ÿ
4 � � �OHÿ� ÿ �H�� ÿ �H3PO4� �2�

From Tables 1 and 2, it can be concluded that in
the epilimnion of Lake Bourget:

. Dissolved oxygen concentrations prohibit the for-
mation of HSÿ and S2ÿ.

. [NH3], �HPO 2ÿ
4 ], �PO3ÿ

4 ], [H3PO4], �H3SiOÿ4 ], [H
+]

and [OHÿ] are negligible compared to �HCOÿ3 �
and �CO 2ÿ

3 ].
. HCOÿ3 is the major carbonate system species.

Consequently the expression for alkalinity [i.e.
equation (2)] can be reduced to equation (3), which
is common for most carbonate aquatic systems

(Stumm and Morgan, 1981):

Alk � �HCOÿ3 � � 2�CO 2ÿ
3 � �3�

Since �HCOÿ3 � is signi®cantly higher �CO 2ÿ
3 ], then

equation (3) can be further simpli®ed to:

Alk � �HCOÿ3 � �4�

The validity of the simpli®cations has been con-

®rmed by calculating the di�erences in alkalinity

between equations (3) and (4), which remain below

1.6% for the entire sampling period in Lake Bour-
get.
Depending on the water composition, calcite pre-

cipitation can be expressed in various forms. As
previously seen, in Lake Bourget �HCOÿ3 � is much
higher than �CO 2ÿ

3 ]. Consequently the most appro-

priate form of the calcite precipitation in terms of
major compounds is:

Ca 2� � 2HCOÿ3 ÿÿ*)ÿÿ
k

CaCO3�s� � CO2 � H2O;

k � 105:96 at 298 K

�5�

In reaction (5), the value of k is calculated with
equation (6), which is related to the combination of
the CO2 dissolution reaction constant (KH), the ®rst

and second dissociation reaction of carbonic acid
constants (Ka1 and Ka2), and the solubility product
of calcite (Ks):

k � Ka2

KH � Ka1 � Ks
�6�

where (Stumm and Morgan, 1981):

Ka1 � 10ÿ6:35 at 298 K

Ka2 � 10ÿ10:33 at 298 K

KH � 10ÿ1:43 at 298 K

In order to minimize the errors on these thermo-
dynamic constants and the number of chemical par-
ameters, calculation of the saturation index is
usually achieved with equation (8) derived from the

precipitation reaction [equation (7)]:

Table 1. Physical and chemical parameters measured in the epilimnion of the lake during April and June 1997

Concentration (mM) Cat Mgt Nat Kt Alk Clÿ NOÿ3 SO 2ÿ
4

April 2 m 1390 245 221 39 2900 209 37 150
April 15 m 1400 250 223 41 2870 211 38 161
June 2 m 1080 246 211 43 2340 203 9 149
June 15 m 1380 246 194 45 2850 211 37 153

Concentration SRP (mM) NH�4 (mM) Sit (mM) O2 (mM) pH Temperature (8C) C25 (mS cmÿ1)

April 2 m 0.7 0.9 30.6 374 8.34 8.5 326
April 15 m 0.9 1.1 30.6 377 8.33 8.41 327
June 2 m 0 0.7 9.0 408 8.53 20.6 273
June 15 m 0 0.5 20.7 266 8.03 10.8 326

Table 2. Calculated parameters of carbonate system species in the epilimnion of the lake during April and June 1997

Concentration SCO2 (mM) pCO2 (matm) H2CO3 (mM) HCOÿ3 (mM) CO 2ÿ
3 (mM) O

April 2 m 2910 580 34 2800 13 2.5
April 15 m 2880 570 34 2780 13 2.5
June 2 m 2310 350 15 2220 21 3.7
June 15 m 2900 1190 66 2780 7 1.3

Tracing CaCO3 precipitation with C25 in Lake Bourget 4153



Ca 2� � CO 2ÿ
3
ÿÿ*)ÿÿ
K ÿ1

s

CaCO3�s�;

Ks � 10ÿ8:51 at 298 K �7�

O � g2�CO 2ÿ
3 �g2�Ca 2��
Ks

�8�

where g2 is the activity coe�cient for bicharged ion
calculated according to the Davies relation (Stumm
and Morgan, 1981).

Thermodynamical considerations show that pre-
cipitation should occur when O is greater than one.
However, in the laboratory experiment, homo-

geneous precipitation occurs for O > 100 (Stumm
and Morgan, 1981), while in environmental con-
ditions heterogeneous precipitation is observed
when the saturation index falls in the range [2±11]

(Kelts and Hsu, 1978; Stabel, 1986; Hartley et al.,
1996; Salmaso and Decet, 1998; Hodell et al.,
1998). Values of O for April and June 1997 in Lake

Bourget are reported in Table 2.
Photosynthesis and respiration can be classically

described according to the following equation (9)

(Red®eld et al., 1963):

xCO2 � yNOÿ3 � wH3PO4 � yH� � �x� y�H2O

ÿÿ*)ÿÿ
P

R
�x� 2y�O2 � �CH2O�x�NH3�y�H3PO4�w

�9�

The two main processes depicted by reactions (5)
and (9) alter di�erently the water composition in

Lake Bourget:

. Photosynthesis and respiration do not change al-
kalinity, which is conservative relatively to CO2

variations, whereas DIC can be either taken up
by photosynthesis or produced by respiration.
The main observable consequence is an increase

of pH when photosynthesis prevails while the
opposite is observed when respiration dominates.

. Calcite precipitation decreases both calcium con-
centration, alkalinity and DIC. According to the

stoichiometry of reaction (5) the decrease in alka-
linity must be twice the decrease in calcium con-
centration and DIC. One observable consequence

is a decrease in pH.

Therefore, photosynthesis and calcite precipitation
have opposite e�ects on pH variations.

In order to verify that changes in the ionic com-
position are exclusively caused by calcite precipi-
tation or photosynthesis-respiration, the concept of

residual alkalinity (Alk ') can be introduced (Al-
Droubi et al., 1980; Michard, 1989).
Alk ' is de®ned in order to be constant if the

main biogeochemical processes are calcite precipi-
tation [equation (5)] and photosynthesis-respiration
[equation (9)]. Therefore, the residual alkalinity can
be expressed as follows [equation (10)]:

Alk 0 � �Na�� � �K�� � 2�Mg 2�� ÿ �Clÿ� ÿ 2�SO 2ÿ
4 �
�10�

An alternative de®nition of alkalinity can be de-
rived from the electroneutrality equation (Sigg et
al., 1994) where [H+] and [OHÿ] are neglected:

�Na�� � �K�� � 2�Ca 2�� � 2�Mg 2��

� �HCOÿ3 � � 2�CO 2ÿ
3 � � �Clÿ� � 2�SO 2ÿ

4 �

� �NOÿ3 � �11�

Based on equations (3) and (11), the expression of

alkalinity can be written in the following way:

Alk � �Na�� � �K�� � 2�Ca 2�� � 2�Mg 2��

ÿ �Clÿ� ÿ 2�SO 2ÿ
4 � ÿ �NOÿ3 � �12�

Combining equations (12) and (10) gives equation

(13)

Alk 0 � Alkÿ 2�Ca 2�� ÿ �NOÿ3 � �13�

Evidence of calcite precipitation in Lake Bourget

Figure 2 presents typical temperature pro®les in

the upper part of the lake from April to August of
1997, when thermal strati®cation commences. From
May, the water column is strati®ed, and strong

thermal gradients do not allow signi®cant water
mixing across the thermocline. During this period
the thermocline lies between 5 and 10 m deep, and

maximum temperature gradient increases from 2.1
to 4.0 8C mÿ1. This thermal structure is similar
during the spring and summer of 1998.

Measurements of total dissolved calcium and al-
kalinity in the epilimnion and metalimnion are
reported for the spring and summer of 1997 in Figs
3 and 4.

Calcium concentration and alkalinity pro®les

Fig. 2. Temperature pro®les during the spring and summer
periods of 1997 between surface and 30 m depth.
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show a decrease in the epilimnion between May
and June. This trend continues until August and
after this, calcium and alkalinity depletion stops.

These spring and summer data of calcium and alka-
linity indicate a linear relationship according to
equation (14):

Alk � �1:920:2��Cat� with r 2 � 0:965 and

n � 26
�14�

A similar trend is observed for the spring and sum-
mer of 1998 data for calcium and alkalinity, with
the following linear relationship [equation (15)]:

Alk � �1:820:2��Cat� with r 2 � 0:933 and

n � 52
�15�

where [Cat] is the measured total dissolved calcium.

Results of ionic dissolved speciation calculations in-
dicates that calcium is partly complexed and that
[Cat] di�ers from [Ca2+] by 3.320.6%. Therefore,
[Cat] is approximated by [Ca2+]. According to

equation (5), these calcium and alkalinity decreases
in the water column are likely to be related to cal-
cite precipitation.

During the spring and summer periods of 1997
and 1998 the residual alkalinity (Alk ') remains con-
stant (Alk '=224 mM, standard deviation=215 mM,

n = 75). This standard-deviation value remains
within the analytical error range. As an example
Fig. 5 shows the residual alkalinity pro®les during
spring and summer periods of 1997. This underlines

that the only geochemical process decreasing cal-
cium and alkalinity within the epilimnion is calcite
precipitation.

Calculation of calcite saturation index [O,
equation (8)] reveals that the epilimnic water is
supersaturated with respect to calcite from April

(Table 2). O reaches the highest value in June at a

Fig. 3. Alkalinity pro®les in the spring and summer
periods of 1997 between surface and 50 m depth.

Fig. 4. Calcium pro®les in the spring and summer periods
of 1997 between surface and 50 m depth.

Fig. 5. Residual alkalinity pro®les in the spring and sum-
mer periods of 1997 between surface and 50 m depth.
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2 m depth with a simultaneous decrease in calcium
and alkalinity concentrations.

Since epilimnic water is supersaturated with
respect to calcite from April to August of 1997,
Alk ' remains constant during this period, so we can

infer that the calcium concentration decrease
observed from June to August is the consequence
of calcite authigenic formation. Consequently, cal-

cium and alkalinity pro®les (Figs 3 and 4) are a
direct and speci®c tracer of the spatial and temporal
widespread of this geochemical process.

However, the spatial resolution of water sampling
does not allow the depth-boundary of calcite pre-
cipitation to be de®ned. Indeed, calcium pro®les
show that this limit should lie between a depth of 2

and 15 m. In order to improve the assessment of
spatio-temporal conditions of calcite precipitation,
another method must be used.

USING SPECIFIC CONDUCTANCE AS CALCITE
PRECIPITATION TRACER

Contribution of calcium and alkalinity to the speci®c
conductance of Lake Bourget water

Speci®c conductance or conductivity (C25) is
usually used in lakes for tracing water body mixing
or density currents (Carmack et al., 1986; WuÈ est et

al., 1988). In this study speci®c conductance was
applied, focused on the link with lacustrine calcite
precipitation. In a recent study on Lake Garda (Sal-
maso and Decet, 1998) the link between in situ con-

ductivity measurements and calcite precipitation has
been emphasized. However, the sampling method
did not allow the authors to use conductivity as a

precipitation tracer with a good accuracy.
In this paper, it is proposed to use a software

sensor of calcite precipitation based on both speci®c

conductance measurements and a relation between
conductance and calcium concentration.
Speci®c conductance is a function of the concen-

tration of the dissolved ions in water. Signi®cant
variations of dissolved ion concentrations lead to
correlated variations of speci®c conductance. In
order to interpret the speci®c conductance vari-

ations observed in Lake Bourget (Table 1), speci®c
conductance has been calculated following a classi-
cal theoretical formula (Charlot, 1974):

C25 � SlACAzA �16�

where lA is the equivalent conductance of ion A (S
cm2 eqÿ1), CA is the concentration of ion A (mol
cmÿ3) and zA is the absolute value of A ion charge.

Values of equivalent conductance at in®nite di-
lution for the dissolved ions (Charlot, 1974) are cor-
rected from the average ionic strength of Lake

Bourget (5 mM) by multiplying the values by a 0.96
factor for monocharged ions or a 0.91 factor for
bicharged ions (CRC, 1981). They are reported in
Table 3.

To perform the calculation of the theoretical
speci®c conductance with equation (16), measured

chemical data were used (Table 1) except for
HCOÿ3 , CO 2ÿ

3 and Ca2+ concentration where the
calculated set of chemical parameters were used

(Table 2). Figure 6 shows for the periods of April
and June of 1997 a reasonable agreement between
measured and calculated speci®c conductance.

Between April of 1997 and August of 1997 in the
epilimnion (depth < 30 m), the calculated speci®c
conductance �C c

25� showed a linear relationship

with the measured speci®c conductance �C m
25� pre-

sented in equation (17):

C c
25 � 1:03 � C m

25 ÿ 10 with r 2 � 0:965

n � 22; C c
25 and C m

25 in mS cmÿ1
�17�

Between April and August 1997, theoretical calcu-

lations of speci®c conductance show that the ion
concentrations included in residual alkalinity (Alk ')
contributed approximately 21% of the speci®c con-

ductance. Moreover, the individual variation of
each ion concentration present in Alk ' over the
period under study never exceeds 10%.

Therefore, the observed speci®c conductance vari-
ations are likely to be related only to changes in
calcium and HCOÿ3 concentrations. Based on this
®nding, equation (16) can be expressed as [equation

(18)]:

Fig. 6. Comparison of measured and calculated speci®c
conductance (C25) in April and June 1997 between surface

and 50 m depth.
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C25 � lCa 2�zCa 2� �Ca 2�� � lHCOÿ3 zHCOÿ3 �HCOÿ3 � � E

�18�
where E represents the contribution to the speci®c

conductance of all the major ions present in Alk ',
and of the nitrate and carbonate species. From the
chemical data of 1997 in the epilimnion (n = 22)

and by using Table 3, it is veri®ed that E is a con-
stant equal to 64.921.9 mS cmÿ1.
By assuming that [Cat]=[Ca2+], combining

equations (3), (14) and (18) and by using Table 3,

the following theoretical relation between conduc-
tivity and calcium concentrations is derived:

�Cat� � 5:32 � C25 ÿ 369

with �Cat� in mM and C25 in mS cmÿ1 �19�

Figure 7 shows the spring and summer total dis-

solved calcium and speci®c conductance data in the
epilimnion for 1997 and 1998, their best linear ®t
[equation (20)] and the derived theoretical relation-

ship [equation (19)]. The theoretical model and the
linear ®t are in close agreement:

�Cat� � 5:37 � C m
25 ÿ 386 r 2 � 0:959

and n � 75; with �Cat� in mM and

C m
25 in mS cmÿ1 �20�

Equation (20) allows the calculation of the calcium

concentration from speci®c conductance measures

with an accuracy of210% and with a spatial depth
resolution of 0.15 m.
Since the calcium concentration is directly related

to authigenic calcite precipitation in Lake Bourget
(see the section for evidence of calcite precipitation
in Lake Bourget), speci®c conductance provides an
in situ self-consistent tracer of calcite precipitation.

Assessment of the spatio-temporal pattern of calcite
precipitation using speci®c conductance

From equation (20) and the speci®c conductance

pro®les, the calcium pro®les for the global sampling
period were computed (April 1997±December
1998). Pro®les obtained with a high spatial resol-

ution (0.15 m) are plotted in a time-depth evolution
diagram (Fig. 8) using Surfer32 Golden Software7.
In a similar manner, the temperature evolution pro-

®le is presented in Fig. 9 in order to show the ther-
mal structure of the upper part of the water column
during the whole period. According to equation (5),

the calcium concentrations are directly related to
the production of authigenic calcite. Therefore, this
diagram exposes a spatio-temporal pattern of calcite
precipitation and corroborates the following con-

clusions:

. A fair similarity is observed between the two
years concerning the spatial pattern of the pre-

cipitation process.
. The depth limit of the precipitation zone is

located for the two years between 7 and 10 m

depth, corresponding exactly to the mixed layer.
Calcite precipitation is also strongly linked to the
thermal structure of the epilimnion.

. Depending on a di�erent meteorological forcing
context, in 1998, calcite precipitation is starting
one month earlier than in 1997.

. Minimum calcium concentration is achieved in

August and is equal to 9002 20 mM in the pre-
cipitation zone for both 1997 and 1998.

In order to quantify and compare the amount of

calcite precipitated at point B in 1997 and 1998, an
integration of computed calcium pro®les was per-
formed. The integration was conducted over the

upper 30 m under the surface. The physical struc-
ture of the epilimnion and of the metalimnion infer
that no signi®cant vertical mixing occurs during the

two precipitation periods between this 0±30 m col-
umn and the underlying water (June±August 1997
and May±August 1998). This system can also be

considered as closed from an external supply of cal-
cium during the precipitation periods. Complete
winter water body mixing begins in September and
ends in January (Bournet, 1996). Therefore, it does

Table 3. Equivalent conductance of separate ions at 258C and I=5 mM

Ion Ca2+ Mg2+ Na+ K+ HCOÿ3 CO 2ÿ
3 Clÿ NOÿ3 SO 2ÿ

4

Equ. cond. S cm2 eqÿ1 54.1 48.3 48.1 70.6 42.7 63.1 73.2 68.5 72.0

Fig. 7. Correlation between speci®c conductance (C25) and
total dissolved calcium in the epilimnion for 1997 [April to
August] and 1998 [January to August]. The related error

on C25 is22% and for [Cat] is25%.
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Fig. 8. Time-depth evolution diagram of calcium concentration (in mM) in the 0±30 m depth layer for
1997 and 1998. Dates on the x-axis represent the dates of ®eld survey.

Fig. 9. Time-depth evolution diagram of temperature (in Celsius degrees) in the 0±30 m depth layer for
1997 and 1998. Dates on the x-axis represent the dates of ®eld survey.
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not in¯uence the evaluation of precipitated calcite
during spring and summer. Evolution of the cal-

cium stock and of the amount of produced calcite
in the upper 30 m is reported in Table 4 for the
1997 and 1998 precipitation periods. Calcium stock

refers to the amount of dissolved calcium (mol)
contained in the same layer at a given time. The
amount of calcite produced is calculated by the

di�erence between the Ca stock at an initial time
before the beginning of calcite precipitation (April
97 or April 98) and the Ca stock at a given time.

As there is no [Cat] variations below 30 m in the
lake, the amount of calcite produced in the upper
30 m is also the amount of calcite produced in the
whole lake. All the results are expressed in mol in

the upper 30 m per mÿ2 of lake surface.
These results show that the amount of authigenic

calcite produced is the same in 1997 and 1998 given

a range of experimental and calculation uncertain-
ties (210%). A linear extrapolation from a water-
column to the lake volume concerned by the pre-

cipitation process, yields an estimate of the calcite
production of 16,000 2 1600 ton yrÿ1 as CaCO3.
Although this extrapolation is based on a horizon-

tal homogeneity which is strictly not assessed, the
order of magnitude of the yearly calcite production
is valid. This authigenic mineral formation can be
compared to the yearly phytoplanktonic production

which is approximately 18,000 tons/year according
to the Red®eld stoichiometry (3550 g molÿ1) (Vin-
c° on-Leite, 1991).

CONCLUSIONS

This study shows that in Lake Bourget variations
of speci®c conductance in the epilimnion during the
spring and summer periods are related in a univocal
way to the spatial and temporal evolution of the

dissolved calcium and alkalinity concentrations.
This has been veri®ed as follows:

. The observed conductivity pro®les can be theor-

etically calculated with very good accuracy.
. The dissolved calcium concentration is well corre-

lated with speci®c conductance.

Moreover, it was clearly shown that dissolved cal-
cium and alkalinity variations in the epilimnion of
the lake are exclusively related to calcite precipi-

tation. It was demonstrated that in a natural large

lake ecosystem, speci®c conductance, generally used
in laboratory investigations on calcite precipitation

(House and Donaldson, 1986; Kleiner, 1988; Hart-
ley et al., 1997), is able to trace by itself, with a
good spatial resolution, the calcite precipitation.

The main advantages proposed by this method are:
(1) Speci®c conductance can be measured in situ; (2)
using a conductivity sensor permits easy and rapid

data acquisition with a very high temporal and
spatial resolution.
Using this method on Lake Bourget, the ®rst

assessment of the spatio-temporal pattern of calcite
precipitation reveals that the process occurred in
1997 and 1998 in the same layer. Restricted to a
quite short period (from May±June to August±Sep-

tember), calcite precipitation shows a reproducible
intensity over this two-year period. Evaluation of
the precipitated amounts leads to a value of 16,000

21600 ton yrÿ1 as CaCO3, making this reaction a
major particulate producing process in the lake.
Speci®c conductance is an excellent, reliable and

easy-to-measure in situ tracer of calcite precipitation
in Lake Bourget. Moreover, similar physical and
chemical characteristics of other alpine lakes should

allow one to extend this method.
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