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Abstract In environmental modelling, estimating the confidence level in conceptual model parameters is
necessary but difficult. Having a realistic estimation of the uncertainties related to the parameters is
necessary i) to assess the possible origin of the calibration difficulties (correlation between model
parameters for instance), and ii) to evaluate the prediction confidence limits of the calibrated model. In this
paper, an application of the Metropolis algorithm, a general Monte Carlo Markov chain sampling method, for
the calibration of a four-parameter lumped urban stormwater quality model is presented. Unlike traditional
optimisation approaches, the Metropolis algorithm identifies not only a “best parameter set”, but a probability
distribution of parameters according to measured data. The studied model includes classical formulations
for the pollutant accumulation during dry weather period and their washoff during a rainfall event. Results
indicate mathematical shortcomings in the pollutant accumulation formulation used.

Keywords Bayesian inference; conceptual model; Monte Carlo Markov chain; parameter uncertainty; urban
storm water

Introduction
It is well accepted that the quality of urban stormwater is a significant source of pollution
for the receiving systems and has become a major concern for urban water management.

This pollution results mostly from the erosion by the runoff of particulate pollutants
accumulated on the watersheds during the dry weather period, which is mixed with the
sediments eroded in the sewers.

Managers need tools to evaluate and control storm waters according to quantitative and
qualitative criteria. For this purpose, models have been built to simulate the water cycle in
the city for both the quantitative and qualitative aspects. Hydrologic models are now opera-
tional and widely used by managers. However, urban storm water quality models that have
been proposed since the seventies, are often not reliable and remain rarely used for opera-
tional applications.

These models are conceptual because the processes involved cannot be described mech-
anistically. This is due to the complexity of the phenomena leading to this pollution, the
heterogeneity of the system characteristics, and the great variation in space and time scale.

Since the parameters of these models either have no physical significance or can not be
measured experimentally, their values have to be indirectly determined by fitting simula-
tion results to measured data. This procedure, called model calibration, is an essential stage
of model application. It necessitates measured data, criteria of fitness between simulated
and measured data and an optimisation algorithm to estimate the optimal parameter values
of the models.

Three main problems in developing these models can be underlined:
 First of all, in situ measurement of urban stormwater pollution is difficult and expen-

£005 BulysiAnd YA © ¥8-22 dd 1 ON Lt [oA ABOjoUYOs | pue 80USIOg 18TeAN ‘

77



/e jo osuey| "y

78

sive. Field data remains quite rare and of poor quality (uncertainty in the range of 30%).
The data available rarely allow a satisfactory calibration and validation of the model
(Ahyerre et al., 1998).

* Secondly, there is a lack of knowledge concerning the processes involved, and the mod-
ellers tend to make the models more complex. Therefore, it is difficult to put these mod-
els into operation (Ashley ez al., 1999).

* Furthermore the classical criteria functions often have many local minima, and even if
the optimisation algorithms find the parameter set that minimises the criteria function,
which is not an easy task since the models are nonlinear, it is difficult to have sufficient
confidence about the obtained results (Sorooshian and Gupta, 1983; Kuczera, 1997).
For instance, a study by Gaume et al. (1998) on an urban watershed in Quebec City has

shown that similarly good fits between recorded data and simulated results can be obtained

with very different parameter sets. In other words, large uncertainties in the values of model
parameters can remain after calibration.

To improve urban storm water quality models, it seems necessary to acquire more field
data, and to develop efficient calibration—validation approaches that not only attempt to
identify a “best parameter set” but also help to assess, and if possible to reduce, uncertain-
ties in the parameter values (Beck, 1991).

In this paper, we propose a methodology which allows first of all the identification of
model parameters and the assessment of the parameter uncertainties, and secondly calcu-
lates the confidence limits of the model to evaluate its predictive capacity which is one of
the important objectives of modelling. We will introduce the principle of the Metropolis
algorithm from the family of “Monte Carlo Markov Chain Algorithm MCMC”, a robust
and efficient algorithm for statistical inference of model parameters. After a description of
the studied model and the measured data set, the paper presents the calibration problem
using the Metropolis algorithm and the preliminary results and interpretations (Kanso,
2000).

The methodology: Bayesian paradigm

In the last decade, great attention has been given to the Bayesian approach for model cali-
bration in particular in the case of complex hydrologic models (Beven and Binley, 1992,
Kuczera and Parent, 1998; Campbell and Fox, 1999). The methodology proposed here pro-
motes a useful calibration procedure during the modelling process that helps to design con-
ceptual models in general and stormwater quality models in particular.

Concept: Bayesian inference
Let Y, be the set of observed responses at time step £, = 1,...,n. The model can be cast as a
nonlinear regression model:

Y, = f(X,.0)+¢, (1

where f() is the output response simulated by the model; X, is the input data; 61is the vector
of model parameters to be estimated from these data and the residuals €, are an error term
introduced by model uncertainty as well as by the measurement errors. Let ybe a vector of
parameters characterising the statistical properties of €,. Yis considered, as well as 6, as a set
of parameters to be estimated during calibration.

The Bayesian statistical paradigm recognises that there are two sources of information
about model parameters: prior information based on historical data and expert knowledge,
and data collected by experimentation. The vector of parameters 6 is considered as a ran-
dom variable distributed according to a probability distribution that reflects the uncertain-



ties in the parameters. From a prior distribution P(6) the state of knowledge about the
parameters is updated using the information in the data D= {Y, X, t=1,...,n} to yield a pos-
terior distribution P(6 | D) according to the Bayes rule,

P(6|D) = P(DI6)- P(6)/P(D) )

where P(D) is a proportionality constant required so that | P(6 | D)d6=1,and P(D | 0)is the
conditional probability for the measured data given the parameters. P(D | 0) is similar to the
likelihood function of the model.

Note that Bayes’ theorem does not allow one to derive posterior distribution without
prior knowledge. In many applications, in the absence of such prior information, a uniform
prior distribution of the parameters is assumed. However, this assumption is not always sat-
isfying to reduce as much as possible the uncertainties, especially when the used calibration
data is not sufficient for the identification of the model parameters (Omlin and Reichert,
1999).

The posterior distribution P(6 | D) contains all the available information about the
parameters 6. Bayesian statistical inference therefore reduces to summarising a posterior
distribution of 6.

Estimation of the posterior distribution: MCMC method and Metropolis algorithm

In practice, it is difficult if not impossible to summarise the posterior distribution by direct
analytical calculation. An approach to approximate the posterior distribution by a multinor-
mal distribution may fail, especially when dealing with complex conceptual model using
limited data. The surface of P(6 | D) mapped in the parameter space can deviate markedly
from the surface characterised by the multinormal distribution (Duan et al., 1992).

In recent years, much research has been devoted to the Markov chain sampling method.
It represents a general method for sampling from the posterior distribution P(0 | D).
Markov chain sampling generates enough samples from a random walk, which adapts to the
true posterior distribution of parameters (Robert and Casella, 1999; Tanner, 1996).

One of the most commonly used MCMC algorithms, the Metropolis algorithm, has
received considerable attention in the last decade in the Bayesian statistics literature. This
algorithm was chosen because of its simplicity of implementation, efficiency and generali-
ty. The basic idea of this chain is to construct a recursive stochastic algorithm in the space of
all possible parameter values, which generates from a random walk a sequence of parame-
ter sets (6, i=1,...,n) that converges to a stationary distribution of the Markov chain.

To construct this random walk we define a transition probability function describing the
move 6’ — ™! such that the parameter values obtained by the chain converge in distribu-
tion to the posterior (Tanner, 1996). There is typically an initial unstable transient phase
before reaching the limit distribution. The parameter sets obtained during this transient
phase are discarded and the remainders constitute a dependent sample from the posterior
distribution.

Model assessment
To evaluate the distribution of model responses, modellers have abandoned traditional sta-
tistical inference (like the first order approximation) in favour of more general Monte Carlo
simulation techniques (Spear and Hornberger, 1980; Beven and Binley, 1992). The propa-
gation of the posterior parameters uncertainties with Monte Carlo procedures through the
model to obtain the range of possible responses gives an indication of both the real predic-
tive power of the calibrated model and its capacity to reproduce the system processes.
Unlike traditional statistic theory, this method can readily cope with nonlinearity of the
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model. However, it relies on the ability to sample from the posterior distribution of the
model parameter.

To explore the advantages of the Metropolis algorithm for model evaluation a case study
which considers a simplified urban storm water pollution model illustrates how to use this
technique for model calibration and prediction capacity tests.

Case study
The stormwater pollution model
The model used in this study is a very classical one and describes both the particulate pollu-
tant’s erosion during the storm event and their accumulation on the watershed during the
preceding dry weather period.

The accumulation of pollutants is assumed to follow an asymptotic behaviour that
supposed to be linear and
induced by various phe-

depends on two parameters (Eq. (3)): the accumulationrate D, |

independent of the mass accumulated, and the erosion rate D,

nomena like wind effect or street sweeping, proportional to the accumulated mass (Alley
and Smith, 1981).

dlv(ljat(t) = Daccu : Simp - Dero : Ma(t) (3)

where Ma(f) (kg) is the available mass of pollutants at time # and Simp (ha) is the impervious
area.

During the storm event, runoff is supposed to erode the mass of pollutants accumulated
on the watershed. Eq. (4) represents the evolution with time of the available pollutant mass.
It is supposed that the eroded mass is proportional to the available mass and to the dis-
charge. The pollutant concentration is calculated at each time step depending on the mass of
pollutants eroded during this time step. The erosion model depends on two parameters: the
erosion coefficient W, and a coefficient w (Huber et al., 1981):
dMa(r) _

1 dMa(r) y
—. w . 4
g(r) dr and =2 ero 4(1)" - Ma(?) @

C(r)=

where C(f) (mg/L) is the pollutant concentration produced by erosion and ¢(f) (m%/s) is the
discharge at the outlet of the watershed at time 7.

This model is a lumped conceptual one; Eqs (3) and (4) take into account both surface
and in-sewer accumulation and erosion processes.

The data

The used rain event database covers a continuous period of 16 months (1996-1997) with
151 rain events. These data were acquired on the experimental urban watershed “Le
Marais” in the centre of Paris (Gromaire, 1998). The 42 ha watershed (91% impervious-
ness) is drained by a combined sewer system. Suspended solid pollutographs were
measured for 40 rain events with various characteristics (Table 1) at the outlet of the com-
bined sewer, and for 13 rain events at a street gully collecting discharges from a 186 m?
street surface. The model has been applied to both “Le Marais” watershed (WS1) and to the
street watershed (WS2).

As this paper is focused on the calibration of the water quality model, we did not use an
hydraulic model to estimate the discharge g(¢) from the rain intensity, but we used directly
the discharge measured at the catchment outlets. For WS1, the hourly fluctuations of
the sanitary flow quantity and quality have been taken into account (Gromaire, 1998).

The data used for the calibration phase for WS1 are the measured pollutographs at the
watershed outlet for 26 rain events, corresponding to 117 measurements of suspended



Table 1 Characteristics of storm events (Gromaire, 1998)

Total rainfall Mean intensity I1hax OVEr 5 min Duration Duration of dry
(mm) (mm/h) I(mm/h) (hh:min) weather (day)
Minimum 2.7 1.1 2.6 00:30 0.1
Maximum 21.6 24.0 80.8 06:56 50.5
Mean 8.6 3.7 14.8 02:00 3.0

solids concentration. The remaining events are used for validation. For WS2, the measured
pollutographs available for 8 rain events are used for the calibration phase. We have to
notice that this quantity of calibration data is far superior to the quantity usually used in
operational model applications. Indeed, owing to the cost and the difficulty of in-sewer
measurements, stormwater quality models are often calibrated for fewer than five events.

Simulation procedure
Simulations were performed for two different initial mass conditions: (i) continuous simu-
lation where the residual mass after each rain event is used to estimate the accumulated
mass for the following event, and (ii) null residual mass simulation where there does not
remain any more “erodable” stock after each rain event.

€, are assumed to be independent and normally distributed N(0, 02). In this case, the like-
lihood function can be written in the multiplicative form:

\ (n-r(x.0)°

POIO)=[——gze > )
z:1(2 T-O )

A uniform distribution is assumed to encode the prior knowledge about the parameters.
10,000 simulations were performed with the Metropolis algorithm, and the first 1,000
samples generated were discarded in order to obtain finally the posterior distribution for
each parameter. Thus, the Metropolis algorithm is computationally very intensive.

Results

Several simulations were performed with different initial parameter sets. The Metropolis
algorithm converged successfully to the same posterior probability distribution of the
parameters whatever the initial parameter set used.

Figure 1 presents the posterior distribution obtained for parameter D, . with the
Metropolis algorithm for WS1 and WS2 and for the two different initial mass conditions.
For WS1, both initial mass conditions lead to a unimodal distribution of D, with a clear
identified maximum. Similar distributions are obtained for the other parameters.

However, for WS2, with the null residual mass condition, the Metropolis algorithm indi-
cates clearly the presence of multiple optima in the likelihood function, which would not
have been so straightforward with classical optimisation techniques. Let us also notice that
the parameter distributions obtained with the Metropolis algorithm are not Gaussian, which
is the hypothesis of the classical parameter uncertainty estimation methods based on first
order approximations.

The probability distributions of the parameters for the two initial mass conditions differ
significantly and in particular those of the dry weather parameters. Table 2 presents the
obtained optimal parameter values for WS1 and for the two initial mass conditions. One can
notice that even if the continuous simulation results are better than the ones of the null
residual mass simulation, the corresponding variance of the errors Oyp = 126 mg/L
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Figure 1 Probability distribution of the accumulation parameter for respectively null residual mass simula-
tion and continuous simulation conditions at (a, b) WS1, (c, d) WS2

Table 2 Optimal parameter values for WS1

D, (kg/ha/day) D, (day™") W, w 6 (mg/L)
Continuous simulation 7.15 0.098 0.049 1.3 126
Null residual mass simulation 25.6 0.38 0.073 1.2 145

obtained for the optimal parameter set is quite large compared to the variance of the data
(Ogara = 150 mg/L). Obviously, none of the proposed models seems to be able to reproduce
accurately the measured pollutographs, and the Metropolis results indicate clearly that it is
not due to calibration problems.

The analysis of the posterior distributions of the parameters indicates, furthermore, a
strong correlation between the values of D, . and D, as shown in Figure 2(a) (correlation
=0.88 in the WS1 case). Unlike D and D, ., the value D, . /D, , which is the maximum
mass that can be accumulated during a dry period, is relatively stable (variation coefficient
=0.125 in the WS1 case). The pollutants accumulation model would probably be more eas-
ily calibrated if mathematically reformulated: replacing the two parameters D, and D,
with a maximum accumulated mass and a pollutant accumulation rate.

Asillustrated in Figure 2(b), the parameter uncertainties remaining after calibration can
be propagated with a Monte Carlo procedure through the model to obtain the range of the
possible model responses. The Monte Carlo procedure consists in repeated simulations
with parameter values randomly drawn from their posterior distributions. In the present
case the range of the possible responses is very large, that is not surprising regarding the
variance of the calibrated residuals ( Oopt = 126 mg/L). In other words, the predictive power
of the calibrated model is very low.

Conclusion
This study shows the power of the MCMC approach (Metropolis algorithm) for calibration.
It estimates the true posterior probability distribution of parameters that may differ signifi-
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Figure 2 (a) Correlation between dry weather parameters D, . and D,,,. (b) The 5/95% confidence inter-

val and measured concentration for a rain event for continuous simulation condition at WS1

cantly from multinormal distributions used in classical parameter uncertainty estimation
methods.

An application of the Metropolis algorithm for the calibration of a simplified lumped
urban storm water quality model has shown that it produces reliable inferences of the param-
eters. The proposed model seems unable to reproduce accurately the measured polluto-
graphs, and the Metropolis results indicate clearly that it is not due to calibration problems.
Moreover, it has been shown that the predictive power of the studied model is very low.

Furthermore, the analysis of the posterior distributions of the parameters reveals a
strong correlation between dry weather parameters, that may cast doubts on the mathemati-
cal properties of the pollutants accumulation model. This is an implicit advantage of the
Metropolis algorithm, which helps in the improvement of the mathematical concept of
model equations.

This behaviour of the calibrated model may be due to the fact that the hypothesis consid-
ering the watershed as one entity oversimplifies complex processes or also to the specifici-
ty of the site itself.

This result is not optimistic concerning the possibility of using this model to simulate
and predict pollutant loads. However, in the literature it was shown that this model could
give better results (Gaume et al., 1998). In order to explain this behaviour, further work will
compare our results with other studies and especially their respective databases.

However this method delivers many information which would have been unreachable
with classical calibration methods and which are very useful for modelling attempts.
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