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Globally optimal spatio-temporal reconstruction
from cluttered videos

Ehsan Aganj', Jean-Philippe Pons?, and Renaud Keriven'
! IMAGINE, Ecole des Ponts ParisTech 6 Av Blaise Pascal - Cité Descartes,

Marne-la-Vallée, France
2 CSTB, 290 route des Lucioles, BP 209, 06904 Sophia-Antipolis, Cedex, France

Abstract. We propose a method for multi-view reconstruction from
videos adapted to dynamic cluttered scenes under uncontrolled imaging
conditions. Taking visibility into account and being based on a global
optimization of a true spatio-temporal energy, it offers several desirable
properties: no need for silhouettes, robustness to noise, independent from
any initialization, no heuristic force, reduced flickering results, etc. Re-
sults on real-world data proves the potential of what is, to our knowl-
edge, the only globally optimal spatio-temporal multi-view reconstruc-
tion method.

1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[1-15]. In particular, the most recent ones have proven effective for full-body
marker-less motion capture. Many of these techniques rely on the visual hull
concept[16], among which [1,3,15]. Computationally efficient, they suffer from
several limitations: they provide an approximate reconstruction; this one has
to be a closed surface; and, above all, silhouettes have to be segmented in the
videos, practically limiting the method to controlled condition capture with a
known background. This latest limitation may be lifted when prior knowledge
about the geometry is available: free-form deformation of a template body model
[2,11,15], Laplacian deformation of a laser scan of the initial pose [4, 5], etc. Yet,
these methods are unable to recover genuine geometric details such as facial
expressions and clothing folds and wrinkles. An exception might be the method
proposed by Furukawa et al. [6]. Yielding visually impressive results, this method
does not rely on global optimization and handles the occlusion problem via
heuristics.

1.1 Our approach

In this paper, we propose a method for multi-view reconstruction from videos
adapted to dynamic cluttered scenes under uncontrolled imaging conditions.
Taking visibility into account and being based on a global optimization of a true
spatio-temporal energy, it offers several desirable properties.



Starting from work by Labatut et al. [17], our method might be seen as its
spatio-temporal extension. It is based on modeling an evolving three-dimensional
surface as a four-dimensional surface [1, 18, 7]. More precisely, we first generate
a quasi-dense 3D point cloud of the scene at each time step and merge the
result into a 4D point cloud. This process is conducted in a lenient manner, thus
possibly retaining many false matches. Then, we build an adaptive decomposition
of the 3D+time space by computing the 4D Delaunay triangulation of this cloud.
Finally, we label the Delaunay pentatopes as empty or occupied thus generating a
4D surface. Graph-cut based, this assignment is globally optimal and compatible
with the visibility in input images. Optionally but not necessarily, the 3D surfaces
corresponding to each time step might be obtained considering 3D slices.

1.2 Contributions

Our method has several significant advantages. First, it is not based on visual
hulls:

— The videos do not have to be taken under controlled conditions. The back-
ground might be cluttered.

— It can handle closed as well as open scenes. For example, it can simulta-
neously recover the walls and (potentially moving!) furnitures of an indoor
scene and a complete reconstruction of subjects seen from all sides in the
input images.

Second, it is based on a global optimum:

— It is robust and does not depend on some initialization.

— It exploits visibility information to guide the position of the surface. As a re-
sult, it avoids the minimum cut solution from being an empty surface. Hence
it exonerates from the usual techniques proposed so far to solve this prob-
lem (ballooning term, silhouette information, photo-flux, etc.). Moreover,
this visibility information is not enforced as a hard constraint but integrated
in the very optimization framework, hence yielding robustness to outliers.

Finally, and mainly, compared to the independent frame-by-frame computations
of [17], it profits from the 4D representation:

— Regularization is handled both in space and time, yielding more robustness
to noise both in geometry and in visibility reasoning.

— Points extracted at one given time step transfer information to the surround-
ing time steps. As a result, more details are obtained at each time step.

— Flicking artifacts in synthesized views are reduced, as consecutive 3D slices
have similar geometry and connectivity by construction.

— The temporally continuous representation, which is defined at any time,
optionally enables interpolation of objects shape between consecutive frames.

The output of our method might be use for different purposes: as a 4D com-
pact representation; as a list of consecutive 3D meshes; as an initialization for
variational spatio-temporal stereovision methods [7].



The remainder of this paper is organized as follows. Section 2 gives some
background on the different techniques needed in our approach. In Section 3,
we describe in detail the different steps of our algorithm. Section 4 discusses
numerical experiments that demonstrate the potential of our approach for re-
constructing cluttered scenes from real-world data.

2 Background

2.1 Delaunay triangulation

Most of the following definitions are taken from [19]. We also refer the interested
reader to some computational geometry textbooks [20, 21]. In the sequel, we call
k-simplex the convex hull of k + 1 affinely independent points. For example, a
0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle and a
3-simplex is a tetrahedron. In this paper, we will also consider 4-simplices: they
are known as pentachorons or pentatopes. Let E = {p1,...,pn} be set of points
in R?. The Voronoi region, or Voronoi cell, denoted by V(p;), associated to a
point p; is the region of space that is closer from p; than from all other points
in E: V(p;) ={peR? : V), [lp—pill <lp—p;ill} -

The Voronoi diagram of E, denoted by Vor(E), is the partition of space in-
duced by the Voronoi cells V' (p;). See Figure 1(a) for a two-dimensional example
of a Voronoi diagram.

Fig.1. (a) Voronoi diagram of a set of points in the plane. (b) Its dual Delaunay
triangulation.

The Delaunay triangulation Del(E) of E is defined as the geometric dual
of the Voronoi diagram: there is an edge between two points p; and p; in the
Delaunay triangulation if and only if their Voronoi cells V' (p;) and V(p;) have a
non-empty intersection. It yields a triangulation of E, that is to say a partition
of the convex hull of E into d-dimensional simplices (i.e. into triangles in 2D, into
tetrahedra in 3D, into pentatopes in 4D and so on). See Figure 1(b) for a two-
dimensional example of a Delaunay triangulation. The fundamental property
of the Delaunay triangulation is called the empty circle (resp. empty sphere in
3D, resp. empty hypersphere in higher dimensions) property: in 2D (resp. in
3D, resp. in 4D), a triangle (resp. tetrahedron, resp. pentatope) belongs to the
Delaunay triangulation if and only if its circumcircle (resp. circumsphere, resp.
circumscribed hypersphere) does not contain any other points of FE in its interior.



2.2 Energy minimization by graph cuts

Given a finite directed graph G = (V,€) with nodes V and edges £ with non-
negative weights (capacities), and two special vertices, the source s and the sink
t, an s-t-cut C = (S, 7) is a partition of V into two disjoint sets S and 7 such
that s € § and t € 7. The cost of the cut is the sum of the capacity of all
the edges going from S to 7 : ¢(S,7) = Z(;mq)ESXTlquEf Wpq- The minimum
s-t-cut problem consists in finding a cut C with the smallest cost: the Ford-
Fulkerson theorem [22] states that this problem is equivalent to computing the
maximum flow from the source s to the sink ¢ and many classical algorithms
exist to efficiently solve this problem. Such a cut can be viewed as a binary
labeling of the nodes: by building an appropriate graph, many segmentation
problems in computer vision can be solved very efficiently [23]. More generally,
global minimization of a whole class of energy is achievable by graph cuts [24].

Kirsanov and Gortler [25] first proposed to use graph cuts on complexes to
globally optimize surface functionals and also developed the idea of using random
sparse complexes for their flexibility over regular subdivisions: this differs from
the graphs commonly used in computer vision, which are often regular grids in
the input images or in the bounding volume of the scene. Our approach similarly
relies on a sparse complex-based graph: this graph however directly derives from
an adaptive space decomposition efficiently provided by the Delaunay triangu-
lation. Moreover the specifies of our graph construction are quite different and
tailored to the multi-view reconstruction problem.

3 Method

Our spatio-temporal reconstruction algorithm consists in four steps: (i) a quasi-
dense 3D point cloud is generated for each frame, each point memorizing the
two or more images from which it has been triangulated. An spatio-temporal 4D
point cloud is obtained by adding time as the fourth dimension to all the 3D
points; (ii) the Delaunay triangulation of the 4D point cloud is computed; (iii)
the Delaunay pentatopes (full-dimensional simplices in R*) are labeled inside
or outside the spatio-temporal object minimizing some energy, a 4D oriented
surface is then extracted as the set of 4D tetrahedra lying between inside and
outside pentatopes; (iv) the 3D surface at a given time is obtained by intersecting
this 4D hyper-surface with a temporal plane.

3.1 4D point cloud generation, 4D Delaunay triangulation

Given multiple video sequences of a dynamic scene, we first make a dense 3D
point cloud for each time instant. Let I}, k € {1,--- ,n}, ¢t € [0,T] denote the
input video sequence. For each image we extract interest points x}m of several
types (in practice Harris points and DOGs) without any scale information and
with thresholds such that their number is high enough. For each image pair in
a time instant ¢, (I}, I;,) whose visual fields intersect, for all (zf ;, 2}, ;) of the
same type verifying the epipolar constraint up to a certain error (due to point



extraction but also to calibration), we triangulate the corresponding 3D point
X}y ij- Let H be the homography from I} to I}, induced by the plane at Xj,, ..
normal to the optical ray of xfﬁ , we evalute the normalized cross correlation
(NCC) between a given neighborhood of zj ; and its image by H around xj, ;.
Then for each xfm, we keep the m best point m’}c,,j according to NCC, only if
their NCC is higher than a given threshold, and add the corresponding X,ik,’i y
to the point cloud at time instant ¢ (in practice m = 1 or 2). The final 3D point
cloud is then obtained by merging close 3D points, so that a point of the cloud
comes from possibly more than two images.

Now we construct a “global” spatio-temporal point cloud by regarding time
as a fourth dimension, and treating it similarly to the three spatial dimensions.
At first sight, this is questionable since space is not homogenous to time regarding
physical units. We obtain physical homogeneity of our 4D space by considering
a scaling factor v between space and time dimensions. This scaling factor is
homogeneous to a speed, and can be interpreted as a reference displacement per
time unit. The global point cloud is obtained by taking a 4D point (X}, vt) € R*
for the point X! generated from the input images in time t. At the end, we
compute the 4D Delaunay triangulation of the spatio-temporal cloud storing in
each vertex the list of the views and keypoints from which it has been generated.

3.2 4D hyper-surface extraction
In this step we compute a four-dimensional representation of the dynamic scene
by extracting a 4D mesh from the Delaunay triangulation of the point cloud.
This is done by labeling Delaunay pentatopes as inside or outside of the spatio-
temporal scene. The final oriented hypersurface is then extracted as the set of
facets between inside and outside pentatopes. The exact nature of these “facets”
deserves clarification: they are tetrahedra with 4D coordinates, so they are indeed
simplicial pieces of a hypersurface in R*. Now we make a graph of neighbor
pentatopes which we will use to find the optimal label assignment. For that,
we take Delaunay pentatopes as vertices and we add edges between every two
pentatopes which are neighbor via a two or three dimensional face. In addition,
we add a link between each vertex of the graph and the sink and the source. A
globally optimal label assignment is then efficiently found by applying the graph
cuts optimization method on this graph.

In the sequel, we note S the surface to be reconstructed. As discussed above,
S is a union of 4D Delaunay facets. In order to find an optimal solution satisfying
both spatial and temporal constraints, we minimize an energy composed of two
terms, one dealing with visibility, and the other dealing with spatial and temporal
smoothness,

E(S) = Evis(S) + Esmooth(s) (1)

In the rest of this section, we give the exact definition of these two terms and
we describe how they can be implemented in the graph cuts framework.

Visibility term The visibility term that we propose for a spatio-temporal scene
is a careful extension of the static case proposed in [17]. The idea of their work is



that if a point belongs to the final surface then it should be visible in the views
from which it has been triangulated. This yields to the penalization of all the
facets intersecting the ray between the point and the cameras from which it has
been generated. In the dynamic case the same argument holds. A point which
belongs to the final hypersurface should be visible in all its generating views.
Consequently, all 4D pentatopes which intersect a 4D ray emanating from the
point to the camera center of one of its generating views should be labeled as
outside, and the pentatope behind the point should be labeled as inside. We
remark that the spatio-temporal center of a camera at a given frame is its 3D
center positioned in the temporal plane of that frame. Similarly to the static
case, in order to make an energy which can be minimized via graph cuts, we
take the number of intersections of a ray with the oriented hypersurface as the
visibility term. At this point, there are several important remarks to be made.

First, the visibility of a point at a given frame is defined only in the temporal
plane corresponding to that frame. Therefore, the rays between the point and
its generating views lie completely in the temporal plane which passes through
that point.

Second, a 4D facet of the Delaunay triangulation passes generally through
several consecutive frames. As a consequence, each intersection of a ray with a
facet is considered as a penalizing “vote” for the facet. The final vote is then
computed as the sum of all votes coming from different frames intersecting the
facet. This is an important property since it makes a global visibility vote on
every 4D facet taking in account the temporal coherence.

Frame 1 Frame 2

Fig. 2. The tetrahedra acde and bedf have a one-dimensional intersection (the segment
cd), but they should be connected in the graph (refer to text for details).

Third, contrarily to the static case presented in [17] where edges of the graph
are only “full dimensional facets” (3D triangles) between Delaunay simplices, in
the dynamic case, in addition to these facets we add an edge between every two
pentatopes which are not neighbors via a full-dimensional facet (4D) but via a
3D facet. Figure 2 shows an example of this situation. For simplicity reasons we
consider a lower dimensional scene: points are on 2D planes, time is the third
dimension and the spatio-temporal object is extracted from the 3D Delaunay
triangulation of the point cloud. Points a and b are on frame 1, and points ¢,d,e



and f are on frame 2. Point o is the center of a camera from which f has been
generated. The tetrahedra acde and bedf have a one-dimensional intersection
(the segment cd), but they should be connected in the graph since the ray fo
intersects cd and therefore a penalization term should be added between them.
It is important to note that despite the 3D intersection of the ray with the face
acd, no penalization term should be added between the tetrahedra abed and
bedf. That is because abed does not appear in the static representation of the
scene on frame 2.

The intersections of the ray with the triangulation can be computed in the
four-dimensional space handling carefully the situation discussed above. How-
ever, as a ray always lies completely in a temporal plane, we propose to find
these intersections more easily by intersecting the 3D ray with the 3D intersec-
tion of the triangulation with the temporal plane. Obviously only the pentatopes
which make a full-dimensional (4D) temporal intersection should appear in the
temporal slice. In this case, a 3D facet intersected by a ray will correspond to an
edge of the graph, and the unnecessary intersections discussed in the example
above will be omitted by definition.

camera center

surface

o
®" A
‘"

Fig. 3. Top: A 3D slice of the 4D triangulation. A ray emanating from a vertex to a
camera center intersects 3D cells. Bottom: The corresponding visibility-related energy
term that penalizes the number of intersections with the ray and the edge weights of
the crossed pentatope in the graph.

We should remark that the 3D intersection of a 4D Delaunay triangulation
with a plane is a polyhedron which contains generally cells with more than four
vertices. Figure 3 shows the 3D object and a ray intersecting the cells. The
vertices po, p1, q1, p2 and g2 shown in Figure 3(bottom) are the vertices of the
graph which correspond to the pentatopes whose temporal intersections make
the cells pg, p1, ¢1, p2 and g2 shown in Figure 3(top) respectively. Different
visibility terms are added. The cell containing the camera should be labeled as
outside: a term A, is added to the edge from source to pg. A 3D facet crossed
by the ray from inside to outside should be penalized: a term Ayt is added to
the edge from p; to g1. The cell behind the origin of the ray should be labeled as



inside: a term )\, is added to the edge from ¢, to the sink. The positive weights
Ains Aous and Ao take into account the confidence in the reconstructed vertex
yielding the ray. By summing up these visibility terms over all the frames, we
make a complex distribution of “vote” for each pentatope taking in account the
time coherence.

Spatio-temporal smoothness In order to take in account both spatial smooth-
ness and temporal continuity, we propose to minimize the area of the 4D surface
in R*. This yields to the sum of volumes over all the 4D tetrahedra between
inside and outside pentatopes,

Esmooth (S) = A(S) = [¢dS = 3 ;.5 A(T) where S is the 4D surface to be
reconstructed, T' is a 4D tetrahedra, and A(T) is the volume of the tetrahedra T
in R*. Minimizing this term encourages smoothness in time and in space. As in
the static case, this is trivially minimized in the graph cuts framework: for each
pair of pentatopes (sharing a tetrahedra T') represented by vertices p and ¢ in
our graph, a term w = A(T) is added the edge p — ¢ and to its opposite edge

q—Dp-

3.3 3D surface extraction

The output 4D mesh cannot be used directly for rendering. Fortunately, the 3D
scene at a given time instant is easily obtained by intersecting this 4D mesh with
a temporal plane. This task can be performed very efficiently, even in real-time
on GPUs (Graphics Processor Units), since it reduces to a marching tetrahedra
algorithm [26] on the tetrahedra of the 4D mesh, with the temporal coordinate
of vertices used as the scalar field for isocontouring. It produces one triangle or
one quad per boundary tetrahedron intersected by the selected temporal plane.

Fig. 4. Some images of the “Trousers” dataset.

4 Experimental results

We have implemented our method using CGAL (Computational Geometry Al-
gorithms Library, homepage: www.cgal.org) [27]. CGAL defines most data struc-
ture and algorithms needed in our method. For the computation of 4D Delaunay
triangulation we have used the Quickhull algorithm library (QHull) [28] (home-
page: www.qhull.org).
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Fig. 5. A comparison between our method and the method of [17] applied independly
in each frame. Top: 3D meshes obtained by the method of [17]. Bottom: corresponding
3D slices of the 4D representation obtained by our method.
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Fig. 6. The first three consecutive frames of the Trousers dataset reconstructed by
(Top): the method of [17] (Bottom): our method. The frame-by-frame reconstruction
of the method [17] makes no temporal continuity. In contrast, our method reconstructs
correctly the trouser, avoids flicking artifacts and provides a much more continuous
motion.



In our first experiment, we have tested our method on the first 60 frames
of the “Trousers” sequence which is courtesy of R. White, K. Crane and D.A.
Forsyth [29]. The sequence is acquired by 8 cameras at a 640 x 480 resolution.
Figure 4 shows some images of this dataset. Despite their highly textured images,
it is in fact a quite challenging dataset because of the very fast and complex
motion of cloth and folds and severe self occlusion in various parts of the video.
Regarding to an approximate size of the object we have chosen a spatio-temporal
scaling factor v = 30 (space unit/frame). Figure 5 shows a comparison between
our method and the method of [17] applied independly in each frame. We have
compared the 3D meshes output by their method for some frames of the sequence
with the corresponding 3D slices of our 4D spatio-temporal scene. A total number
of 793769 points have been generated for the initial point cloud. To provide a
fair comparison, we have used the same point clouds in both methods.

We observe that the method of [17] fails to separate correctly the two trouser
legs when there is not enough distance between them. In addition, as shown in
figure 6, their frame-by-frame reconstruction makes no temporal continuity. In
contrast, relying on a global optimization, our method reconstructs correctly the
trouser, avoids flicking artifacts and provides a much more continuous motion.
This perfectly illustrates the capability of our approach to take advantage of
temporal coherence in order to obtain more detailed and more continuous result.
Please see supplemental material for a video illustrating better the result of our
method. The computational times of our method and the method of [17] for this
experiment are 210 and 112 minutes respectively on a standard workstation.
However, the most expensive part of our method is the computation of the
4D Delaunay triangulation. Fortunately, this can be strongly reduced using an
optimized 4D Delaunay code.

In a second experiment, we have tested our method on the first 40 frames of
the “Dancer” dataset which was made available to us by the 4Dviews company
(http://4dviews.com). It is acquired by 14 calibrated and synchronized video
cameras. Figure 7(top) shows some images of this dataset. The result shows that
despite the lowly textured parts of the images, our method makes a correct 4D
representation of the dancer. Figure 7(bottom) shows some 3D slices extracted
from the 4D object.

Finally, we should remark that in order to have better visualization and
to make better comparisons we have smoothed the results of our experiments.
However, the output of our method might be used as a 4D compact represen-
tation, as a list of consecutive 3D meshes or as an initialization for variational
spatio-temporal stereovision methods.

5 Discussion and Conclusion

We have presented a new method for multi-view reconstruction from videos
adapted to dynamic cluttered scenes under uncontrolled imaging conditions. The
main idea of our method is to regard time as the fourth dimension, and to extract
a hyper-surface from the 4D Delaunay triangulation of the input points as the



Fig. 7. Top: Some images of the “Dancer” dataset. Bottom: Some 3D slices extracted
from the 4D representation of the “Danser” dataset, obtained by our method.

spatio-temporal representation of the scene. This is done by labeling Delaunay
pentatopes as empty or occupied. A globally optimal assignment is efficiently
found using graph cuts. We have validated our method on real video sequences.
Our results prove the potential of what is, to our knowledge, the only globally
optimal spatio-temporal multiview reconstruction method.
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