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 for the Cox-Ingersoll-Ross (CIR) process. Under general conditions, we obtain a strong convergence of order 1. In the CIR case, Dereich, Neuenkirch and Szpruch [2] have shown recently a strong convergence of order 1/2 for this scheme. Here, we obtain a strong convergence of order 1 under more restrictive assumptions on the CIR parameters.

This paper analyses the strong convergence error of a discretization scheme for the Cox-Ingersoll-Ross (CIR) process and complements a recent paper by Dereich, Neuenkirch and Szpruch [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF]. The CIR process, which is widely used in financial modelling, follows the SDE:

dX t = (a -kX t )dt + σ X t dW t , X 0 = x. (1) 
Here, W denotes a standard Brownian motion, a ≥ 0, k ∈ R, σ > 0 and x ≥ 0. This SDE has a unique strong solution that is nonnegative. It is even positive when σ 2 ≤ 2a and x > 0, which we assume in this paper. It is well-known that the usual Euler-Maruyama scheme is not defined for [START_REF] Aurélien | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF]. Different ad-hoc discretization schemes have thus been proposed in the literature (see references in [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF]). Here, we focus on a drift implicit scheme that has been proposed in Alfonsi [START_REF] Aurélien | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF]. We consider a time horizon T > 0 and a regular time grid:

t k = kT n , 0 ≤ k ≤ n.
By Itô's formula, Y t = √ X t satisfies :

dY t = a -σ 2 /4 2Y t - k 2 Y t dt + σ 2 dW t , Y 0 = √ x. (2) 
We consider the following drift implicit Euler scheme

Ŷ0 = √ x, Ŷt = Ŷt k + a -σ 2 /4 2 Ŷt - k 2 Ŷt (t -t k ) + σ 2 (W t -W t k ), t ∈ (t k , t k+1 ]. (3) 
The equation ( 3) is a quadratic equation that has a unique positive equation:

Ŷt = Ŷt k + σ 2 (W t -W t k ) + Ŷt k + σ 2 (W t -W t k ) 2 + 2 1 + k 2 (t -t k ) a -σ 2 4 (t -t k ) 2 1 + k 2 (t -t k )
, provided that the time-step is small enough (T /n ≤ 2/ max(-k, 0) with the convention 2/0 = +∞). Last, we set Xt = ( Ŷt ) 2 , t ∈ (t k , t k+1 ]. It is shown in [START_REF] Aurélien | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF] that this scheme has uniformly bounded moments. We recall now the main result of Dereich, Neuenkirch and Szpruch [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF] that gives a strong error convergence of order 1/2.

Theorem 1. Let x > 0, 2a > σ 2 and T > 0. Then, for all p ∈ [1, 2a σ 2 ), there is a constant K p > 0 such that for any n ≥ T 2 max(-k, 0), E max t∈[0,T ] | Xt -X t | p 1/p ≤ K p T n .
Let us remark that, contrary to [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF], we do not consider a linear interpolation between t k and t k+1 here for Xt . This removes the logarithm term of Theorem 1.1 in [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF]. The strong convergence rate of X is studied numerically in Alfonsi ([1], Figure 2). This numerical study shows that the strong convergence rate depends on the parameters σ 2 and a. When σ 2 /a is small enough, a strong convergence of order 1 is observed. The scope of the paper is to prove the following result. Theorem 2. Let x > 0, a > σ 2 and T > 0. Then, for all p ∈ [1, 4a 3σ 2 ), there is a constant K p > 0 such that for any n ≥ T 2 max(-k, 0),

E max t∈[0,T ] | Xt -X t | p 1/p ≤ K p T n .
Thus, we get a strong convergence of order 1 under more restrictive conditions on σ 2 /a. Both theorems are complementary and are compatible with the numerical study of [START_REF] Aurélien | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF], which indicates that the strong convergence order downgrades as long as σ 2 /a increases.

The paper is structured as follows. We first prove that

E max t∈[0,T ] | Ŷt -Y t | p 1/p ≤ K p
T n under a general framework for Y and Ŷ that extends (2) and (3). Then, we deduce Theorem 2 from this result. Also, we construct an analogous drift implicit scheme for general one-dimensional diffusion, and get a strong convergence of order one under suitable assumptions on the coefficients. This scheme has the advantage to be naturally defined in the diffusion domain like R * + for the CIR case.

A general framework for Y and Ŷ Let c ∈ [-∞, +∞), I = (c, +∞) and d ∈ I. We consider in this section the following SDE defined on I = (c, +∞):

dY t = f (Y t )dt + γdW t , t ≥ 0, Y 0 = y ∈ I, (4) 
with γ > 0. We make the following monotonicity assumption on the drift coefficient f :

f : I → R is C 2 , such that ∃κ ∈ R, ∀y, y ′ ∈ I, y ≤ y ′ , f (y ′ ) -f (y) ≤ κ(y ′ -y). (5) 
Besides, we assume

v(x) = x d y d exp - 2 γ 2 y z f (ξ)dξ dzdy satisfies lim x→c+ v(x) = -∞. (6) 
The Feller's test (see e.g. Theorem 5.29 p. 348 in [START_REF] Ioannis | Brownian motion and stochastic calculus[END_REF]) ensures that Y never reaches c nor +∞ by ( 5), and the SDE (4) admits a unique strong solution on I.

Let us now define the drift implicit scheme. Let us first observe that for h > 0 such that κh < 1, y → y -hf (y) is a bijection from I to R. Indeed, it is continuous and we have from ( 4):

y ≤ y ′ , y ′ -y -h(f (y ′ ) -f (y)) ≥ (1 -κh)(y ′ -y).
This shows the claim for c = -∞. For c > -∞, we first remark that lim c+ f exists from [START_REF] Ioannis | Brownian motion and stochastic calculus[END_REF], and is necessarily equal to +∞ from (6). Thus, for n such that κT /n < 1, the following drift implicit Euler scheme is well defined

Ŷ0 = y, Ŷt = Ŷt k + f ( Ŷt )(t -t k ) + γ(W t -W t k ), t ∈ (t k , t k+1 ], 0 ≤ k ≤ n -1, (7) 
and satisfies Ŷt ∈ I, for any t ∈ [0, T ]. From a computational point of view, let us remark here that in cases where Ŷt k+1 cannot be solved explicitly like in the CIR case, Ŷt k+1 can still be quickly computed from Ŷt k and W t k+1 -W t k thanks to the monotonicity of y → y -(T /n)f (y) by using for example a dichotomic search. The drift implicit Euler scheme (also known as backward Euler scheme) has been studied by Higham, Mao and Stuart [START_REF] Desmond | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF] for SDEs on R d with a Lipschitz condition on the diffusion coefficient and a monotonicity condition on the drift coefficient that extends [START_REF] Ioannis | Brownian motion and stochastic calculus[END_REF]. They show a strong convergence of order 1/2 in this general setting.

Proposition 3. Let p ≥ 1 and n > 2κT . Let us assume that E T 0 |f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )|du p < ∞ and E T 0 (f ′ (Y u )) 2 du p/2 < ∞. (8)
Then, there is a constant K p > 0 such that:

E max t∈[0,T ] | Ŷt -Y t | p 1/p ≤ K p T n .
Before proving this result, let us recall that the same result holds for the usual (drift explicit) Euler-Maruyama scheme when I = R (i.e. c = -∞), under some regularity assumption on f . Said differently, the Euler-Maruyama scheme ( Ȳt k+1 = Ȳt k + f ( Ȳt k )T /n + γ(W t k+1 -W t k )) coincides with the Milstein scheme when the diffusion coefficient is constant, and its order of strong convergence is thus equal to one. The main advantage of the drift implicit scheme is that it is well defined when c > -∞ while the Euler-Maruyama is not, since the Brownian increment may lead outside I.

Proof. We may assume without loss of generality that κ ≥ 0. For t ∈ [0, T ], we set e t = Ŷt -Y t . From (5), there is

β t ≤ κ, such that f ( Ŷt ) -f (Y t ) = β t e t . For 0 ≤ k ≤ n -1,
we have

e t k+1 = e t k + [f ( Ŷt k+1 ) -f (Y t k+1 )] T n + t k+1 t k f (Y t k+1 ) -f (Y s )ds,
and then, by using Itô's formula:

1 -β t k+1 T n e t k+1 = e t k + t k+1 t k (u-t k )[f ′ (Y u )f (Y u )+ γ 2 2 f ′′ (Y u )]du+γ t k+1 t k (u-t k )f ′ (Y u )dW u . (9) For u ∈ [0, T ], we denote by η(u) the integer such that t η(u) ≤ u < t η(u)+1 . We set Π 0 = 1, Π k = k l=1 (1 -β t l T n ), ẽk = Π k e t k , Πk = Π k /(1 -κT /n) k and M t = t 0 (1 -κT /n) η(u) (u -t η(u) )γf ′ (Y u )dW u .
Let us remark that Π k > 0, Πk ≥ 1 and Πk is nondecreasing with respect to k. By multiplying equation (9) by Π k , we get

ẽk+1 = ẽk + Π k t k+1 t k (u -t k )[f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )]du + t k+1 t k (u -t k )γf ′ (Y u )dW u .
Then, we obtain ẽk =

t k 0 Π η(u) (u -t η(u) )[f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )]du + k-1 l=0
Πl (M t l+1 -M t l ) by summing over k and finally get

e t k = t k 0 Π η(u) Π k (u -t η(u) )[f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )]du + 1 Π k k-1 l=0 Πl (M t l+1 -M t l ). (10) Since 1 1-x ≤ exp(2x) for x ∈ [0, 1/2], we have 0 ≤ l ≤ k ≤ n, 0 < Π l Π k = 1 (1 -κT /n) k-l Πl Πk ≤ exp 2(k -l)κ T n ≤ exp(2κT ).
On the other hand, an Abel transformation gives

k-1 l=0 Πl (M t l+1 -M t l ) = Πk-1 M t k + k-1 l=1 ( Πl-1 -Πl )M t l and thus k-1 l=0 Πl (M t l+1 -M t l ) ≤ Πk-1 |M t k | + k-1 l=1 ( Πl -Πl-1 )|M t l | ≤ 2 Πk max 1≤l≤k |M t k |,
since Πk is nondecreasing. From (10) and Πk

Π k = 1 (1-κT /n) k ≤ exp(2κT ), we get |e t k | ≤ exp(2κT ) T n t k 0 |f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )|du + 2 max 0≤l≤k |M t l | .
Since the right hand side is nondecreasing with respect to k, we can replace the left hand side by max 0≤l≤k |e t l |. Burkholder-Davis-Gundy inequality gives that

E max 0≤l≤n |M t l | p ≤ C p γ p (T /n) p E T 0 (f ′ (Y u )) 2 du p/2 , since 0 ≤ (1 -κT /n) η(u) ≤ 1.
Thus, there is a positive constant K depending on κ, T and p such that: 

E max 0≤l≤n |e t l | p ≤ K T n p E T 0 |f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )|du p (11) +γ p E T 0 (f ′ (Y u ))
(u -t k )[f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )]du + γ t t k (u -t k )f ′ (Y u )dW u .
Since (1 -β t (t -t k )) ≥ 1/2, we get:

max t∈[t k ,t k+1 ] |e t | ≤ 2 |e t k | + T n t k+1 t k |f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )|du +γ max t∈[t k ,t k+1 ] t t k (u -t k )f ′ (Y u )dW u ,
and thus

max t∈[0,T ] |e t | p ≤ 2 p 3 p-1 max 0≤k≤n |e t k | p + T n p T 0 |f ′ (Y u )f (Y u ) + γ 2 2 f ′′ (Y u )|du p +γ p max 0≤s≤t≤T t s (u -t η(u) )f ′ (Y u )dW u p . Since t s (u -t η(u) )f ′ (Y u )dW u p ≤ 2 p t 0 (u -t η(u) )f ′ (Y u )dW u p + s 0 (u -t η(u) )f ′ (Y u )dW u p ,
we conclude by using once again Burkholder-Davis-Gundy inequality, (11) and (8).

Application to the CIR process

For the CIR case, we have c = 0 (i.e. I = R * + ), f (y) = a-σ 2 /4 2y -k 2 y and γ = σ/2. When 2a ≥ σ 2 , we can check that both ( 5) and ( 6) are satisfied. By Jensen inequality, (8) holds if we have

T 0 E[|f ′ (Y u )f (Y u )| p + |f ′′ (Y u )| p + |f ′ (Y u )| 2∨p ]du < ∞. ( 12 
)
The moments of the CIR process can be uniformly bounded on [0, T ] under the following condition (see [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF] equation ( 7)):

sup t∈[0,T ] E[X q t ] < ∞ for q > - 2a σ 2 . (13) 
Condition (12) will hold as soon as sup t∈

[0,T ] E[Y -(4∨3p) t ] = sup t∈[0,T ] E[X -(2∨ 3 2 p) t
] < ∞. This is satisfied when σ 2 < a and p < 4 3 a σ 2 , and we have

E max t∈[0,T ] | Ŷt -Y t | p 1/p ≤ K p T n .
From now on, we assume that σ 2 < a and consider 1

≤ p < 4 3 a σ 2 . Let ε > 0 such that p(1 + ε) < 4 3 a σ 2 . Since Xt -X t = ( Ŷt -Y t )( Ŷt + Y t )
, we have by Hölder's inequality:

E max t∈[0,T ] | Xt -X t | p 1 p ≤ E max t∈[0,T ] | Ŷt -Y t | p(1+ε) 1 p(1+ε) E max t∈[0,T ] | Ŷt + Y t | p 1+ε ε ε p(1+ε)
.

The moment boundedness of Ŷ is checked in [START_REF] Aurélien | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF] and [START_REF] Steffen | An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process[END_REF], and the second expectation is thus finite. Proposition 3 gives Theorem 2.

Application to dX t = (a -kX t )dt + σX α t dW t , with 1/2 < α < 1

We consider this SDE starting from X 0 = x > 0 with parameters a > 0, k ∈ R and σ > 0. This SDE is known to have a unique strong positive solution X, which can be checked easily by Feller's test for explosions. We set

Y t = X 1-α t .
It is defined on I = R * + and satisfies (4) with

f (y) = (1 -α) ay -α 1-α -ky -α σ 2 2 y -1 with γ = σ(1 -α).
Since a > 0 and α 1-α > 1, f is decreasing on (0, ε), for ε > 0 small enough. It is also clearly Lipschitz on [ε, +∞), and ( 5) is thus satisfied. Also, we check easily that (6) holds. The drift implicit scheme ( Ŷt , t ∈ [0, T ]) given by ( 7) is thus well defined for large n and we set:

Xt = ( Ŷt ) 1 1-α .
To apply Proposition 3, it is enough to check that (12) holds. To do so, we have the following lemma.

Lemma 4. We have: ∀q ∈ R, sup t∈[0,T ] E[X q t ] < ∞. Proof. For q ≥ 0, it is well known that we even have E[max t∈[0,T ] X q t ] < ∞ from the sublinear growth of the SDE coefficients (see e.g. Karatzas and Shreve [START_REF] Ioannis | Brownian motion and stochastic calculus[END_REF], p 306). Let q < 0. We set Z t = X 2(1-α) t and have:

dZ t = b(Z t )dt + 2(1 -α)σ Z t dW t , with b(z) = 2(1 -α) az 1-2α 2(1-α) -kz + σ 2 1 2 -α .
Since lim z→0 + b(z) = +∞ and b is Lipschitz on [ε, +∞) for any ε > 0, we can find for any M > 0 a constant k M ∈ R such that b(z) ≥ M -k M z for all z > 0. We consider then the following CIR process:

dξ M t = (M -k M ξ M t )dt + 2(1 -α)σ ξ M t dW t , ξ M 0 = x 2(1-α) .
From a comparison theorem (Proposition 2.18, p 293 in [START_REF] Ioannis | Brownian motion and stochastic calculus[END_REF]) we get that ∀t ≥ 0,

Z t ≥ ξ M t and thus sup t∈[0,T ] E[Z q t ] ≤ sup t∈[0,T ] E[(ξ M t ) q ]
. We conclude by using (13) and taking M is arbitrary large.

We can then apply Proposition 3 and get, for any p ≥ 1 and n large enough, the exis-

tence of a constant K p > 0 such that E max t∈[0,T ] | Ŷt -Y t | p 1/p ≤ K p T n . In particular, we get E[max t∈[0,T ] Ŷ p t ] < ∞. We have Xt = ( Ŷt ) 1 1-α and ŷ, y > 0, |ŷ 1 1-α -y 1 1-α | = 1 1 -α ŷ y z α 1-α dz ≤ 1 1 -α |ŷ -y|(ŷ ∨ y) α 1-α .
The Cauchy-Schwarz inequality leads then to

E max t∈[0,T ] | Xt -X t | p 1 p ≤ 1 1 -α E max t∈[0,T ] | Ŷt -Y t | 2p 1 2p E max t∈[0,T ] ( Ŷt ∨ Y t ) 2pα 1-α 1 2p ≤ Kp T n .

Strong convergence towards X in a general framework

Let us now consider a one-dimensional SDE with Lipschitz coefficients b, σ : R → R:

dX t = b(X t )dt + σ(X t )dW t , X 0 = x.
We will consider the Lamperti transformation of this SDE. We assume that there exist 0 < σ < σ such that σ ≤ σ(x) ≤ σ, so that

ϕ(x) = x 0 1 σ(z) dz is bijective on R,
Lipschitz and such that ϕ -1 is Lipschitz. Besides, we assume that σ ∈ C 1 and that f = b σ -σ ′ 2 • ϕ -1 satisfies (5), (6) and: ∃K > 0, q > 0, ∀y ∈ R, |f ′ (y)| + |f ′′ (y)| ≤ C(1 + |y| q ).

Then Y t = ϕ(X t ) satisfies dY t = f (Y t )dt + dW t . The Lipschitz assumption on the coefficients b and σ ensures the boundedness of moments of X and thus of Y . The condition (8) is thus satisfied and the conclusion of Proposition 3 holds. Then, defining Ŷ by (7) and setting Xt = ϕ -1 ( Ŷt ) for t ∈ [0, T ], we get that:

∃K p > 0, E max t∈[0,T ] | Xt -X t | p 1/p ≤ K p T n .
Let us mention that the same result holds under suitable conditions on f for the scheme Xt = ϕ -1 ( Ȳt ), where Ȳ denotes the Euler-Maruyama scheme d Ȳt = f ( Ȳt η(t) )dt + dW t .

The weak convergence of this scheme has been studied by Detemple, Garcia and Rindisbacher [START_REF] Jérôme | Asymptotic properties of Monte Carlo estimators of diffusion processes[END_REF].

Remark 5. Let γ > 0, ϕ γ (x) = γϕ(x) and f γ (y) = γf (y/γ). Then, Y ′ t = ϕ γ (X t ) solves dY ′ t = f γ (Y ′ t )dt + γdW t . The associated drift implicit scheme

Ŷ ′ 0 = ϕ γ (X 0 ), Ŷ ′ t = Ŷ ′ t k + f γ ( Ŷ ′ t )(t -t k ) + γ(W t -W t k ), t ∈ (t k , t k+1 ], 0 ≤ k ≤ n -1,
clearly satisfies Ŷ ′ t = γ Ŷt . Thus, Xt = ϕ -1 γ ( Ŷ ′ t ): the scheme X is unchanged when the transformation between X and Y is multiplied by a positive constant.
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