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ABSTRACT 
Stormwater source control regulations are rapidly diffusing in many countries. Most of these 
are provisions that limit runoff rates at the parcel-scale, although some references indicate 
some negative side effects, at the catchment-scale, for this form of regulation. In this paper, 
we compare, at that scale, the effects of several runoff rate and runoff volume provisions, 
using a hydrological model calibrated on a real catchment in the Paris region. We considered 
two main objectives: to avoid sewer overflows and to preserve receiving waters. The results 
show that runoff volume provisions are more effective in terms of receiving waters 
preservation than the runoff rate ones. In terms of sewer overflows, both can reach the same 
performances. 
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INTRODUCTION 
In the last four decades, stormwater Source Control (SC), has gained relevance in many 
countries, mainly for its potential to mitigate negative impacts of fast urbanization and 
imperviousness increase. Many local authorities in several countries (e.g. France, USA, UK), 
formulate policies to generalize SC implementation. Yet, choosing a locally “good” policy, 
able to solve the specific problems of the catchment, is a hard task. 
 
Authorities use several policy instruments from two main groups: voluntary instruments, 
including both financial and technical support, and compulsory instruments like runoff 
regulation or taxation (Parikh, 2005; Morison and Brown, 2011). The first instruments’ group 
is likely to produce a more punctual development of SC, in comparison with the second group 
that can have a more generalized effect. In this paper we are interested on the global 
hydrological effects of policies, and thus we focus on compulsory instruments. 
 
From the hydrological point of view, regulation or taxation are similar: both require to find a 
global level of performance and the appropriate technical means to achieve it. Then, the actual 
mechanism of implementation of these technical means (i.e. a constraint or a tax) does not 
make a significant difference. Therefore, we can study hydrological effects of regulation only, 
knowing that, with some adaptations, the results could be applied to a tax instrument. 
 
No theoretical framework is available for the catchment-scale effects of SC, and this makes 
difficult to find a link between a global objective and a corresponding SC implementation. As 
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a consequence, authorities often based their policies on simplistic approaches, derived from 
sewer systems’ design and focused on runoff peak flow-rate. The outcome is that most of the 
compulsory instruments in use focus on the runoff rates at the parcel or development scale. 
 
Today, many scientific works converge in criticizing this kind of runoff rates provisions. The 
first critic is that SC policies explicitly or implicitly aim, in general, to preserve pre-
development water balance. This is the case for Low Impact Development (LID) or Water 
Sensitive Urban Drainage (WSUD) approaches (Morison and Brown, 2011). It has been 
shown that runoff rate provisions are unable to preserve pre-development water balance. In 
particular, these provisions do not cope with reduced infiltration volumes and downstream 
distortion of low-flow regimes (Booth and Jackson, 1997; Fennessey et al., 2001). The second 
critic is that, also in terms of peak flow-rate, this kind of provision can actually worsen the 
situation at the catchment-scale (Emerson et al., 2005). Booth and Jackson (1997) proposed, 
to avoid these problems, to base provisions on runoff characteristics different from runoff 
rates. Emerson et al. (2005), more specifically, suggested to limit runoff volumes.. 
 
In this paper we study, through a modelling approach, how the hydrological behaviour of a 
periurban catchment (480 ha) in the Paris region changes, when SC provisions are applied. In 
order to evaluate when runoff rate and runoff volume provisions are interchangeable, we 
compare, for both type of provisions, different levels of constraint.  

BACKGROUND 
Many researchers (e.g. Emerson et al., 2005) and environmental authorities (Agences de l’Eau 
in France, EPA in the US) argue that SC effects should be analyzed at the catchment-scale, 
because policy goals are set at that level. Still, while we know the effects of BMPs at the local 
scale, we do not have a precise insight of what is their global effect at the catchment-scale. As 
it is impossible to create actual-scale experiments, our knowledge of global effects of SC 
provisions is mainly based on ex-post analysis of actual SC implementations (Petrucci et al., 
submitted; Meierdiercks et al., 2010). As this kind of studies is, today, too scarce to develop a 
consistent foundation for SC provisions, policy-makers and researchers have followed two 
different approaches. 
 
Policy-makers were in the need to develop SC as rapidly as possible to solve urgent concerns 
(mainly urban floods and receiving waters degradation). Thus, they generally adopted policies 
with the purpose of promoting the implementation of as many BMPs as possible. The implicit 
assumption is that if BMPs are effective locally, they will be effective at the catchment-scale. 
The two general forms of provisions are (i) to set a parcel-scale runoff rate value, valid for all 
the parcels of the catchment, or (ii) to set a formula to calculate pre-development peak runoff 
rate for any parcel, to be maintained after development. The first option is generally adopted 
in France, while the second one is common in the US (Balascio and Lucas, 2009). In the UK, 
examples of both are in use (Faulkner, 1999). 
 
Researchers tried to compensate the absence of large-scale datasets by attempting modelling 
approaches, both on real and on “synthetic” catchments, in order to find general rules to guide 
SC regulation. Konrad and Burges (2001), Fennessey et al. (2001), Fang et al. (2010), tried 
approaches based on real catchments, finding that runoff rate provisions are not always 
effective in reducing catchment-scale runoff for extreme rain events and that, for current rain 
events, runoff rates can be heavily distorted. In general, water balance at the catchment scale 
is not preserved. Emerson et al. (2005) found that volume-based provisions can be effective in 
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reducing peak flow-rate at the catchment-scale. Goff and Gentry (2006) simulated ponds 
implementation on a synthetic catchment varying 6 parameters describing both watershed and 
urban development. They confirmed that, for fully developed watersheds, even if all the 
parcels maintain pre-development peak runoff rate, it is impossible to maintain it at the 
catchment-scale, and they suggested to emphasize the use of volume provisions. 
 
The effect of SC on a catchment will depend on both the characteristics of the catchment 
(topography, geology, climate, urban development) and of the provision (type, level of 
constraint). Most of the studies cited focus on catchments’ variability, while provisions’ 
variability is seldom considered in depth (only Fennessey et al. compare five US stormwater 
ordinances). These studies provide, thus, a growing support to the idea that runoff rate 
provisions can be ineffective and even harmful for some catchment. However, they do not 
help defining the specific provisions that can be effective, ineffective or harmful. Similarly, 
there are evidences that runoff volume provisions can be effective for peak flow-rate 
reduction at the catchment-scale, but we do not know the link between constraint level and 
effectiveness.   
 
Because of the dependence on catchment’s characteristics, generalization of results obtained 
on a single catchment should be done carefully. Nevertheless, the analysis of specific case-
study can provide information about the possible behaviour (or type of behaviour) that a 
catchment can have when submitted to SC, and thus orient subsequent research and policy-
making efforts. With this purpose we consider, in this paper, a periurban catchment in the 
Paris region, representative of the regional 1950-2000 urbanization. We test, on the catchment 
model, a series of runoff rate and runoff volume provisions with different levels of constraint, 
in order to check how the catchment response to SC is sensitive to provision’s characteristics. 

EXPERIMENTAL CATCHMENT 
In this research, we study an urban catchment in France, 20 km south of Paris, object of 
several measurement campaigns over the last 10 years. The catchment area is 451 ha - a 
relevant scale for SC policy-making – and is divided in four municipalities (Figure 1). 
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Figure 1. Catchment’s and administrative borders. In the box, profile plot of the stormwater collector. 
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Each municipality is in charge of collecting stormwater, but an inter-municipal authority 
(Syndicat mixte de la Vallée de l’Orge Aval, SIVOA) is in charge of its transport and 
treatment. Thus, municipalities own proximity collectors on their territories (not modelled in 
the current study), drained by a major collector managed by the SIVOA. The latter is also in 
charge of catchment-wide policies, including SC regulation. After the enforcement, in 2003, 
of a very strict provision – i.e. all the stormwater has to be infiltrated at the parcel level or, if 
it is impossible, to be stored and released at very low rates (1 l/s/ha) - SIVOA is currently 
revising its policy. 
 
Topographically, the catchment is on a plateau (see box in figure 1): its upstream two thirds 
have really small slopes (<0.5%), while the downstream part – on the hillside – is much 
steeper (5-6%). The catchment was rural until 1960 and drained by small creeks. Since the 
construction of the main collector from the SIVOA (1968/69), many urban developments took 
place and were connected to it. The development occurred both as large planning operations 
(the “Zone opérationnelle d’habitat” – ZOH – is a public housing plan that gives its name to 
the collector and the catchment) and as gradual urban development. Impervious cover in the 
catchment is approximately 31%, and urbanization of the area is still in progress. This type of 
plateau development is typical of the urbanization of the Paris region and of the villes 
nouvelles in the second half of the 20th century. 
 
The stormwater outlet is connected to a group of small sand-pit lakes linked to the Seine river. 
The outlet is equipped (2003) with a settling unit to protect the lakes from suspended solids 
and eutrophication. 

METHODOLOGY 
As the purpose of the study was the assessment of different future scenarios of SC 
implementation over a catchment, we used a distributed physically-based model. The 
distribution feature is necessary to take into account the spatial effects due to SC application 
(Fang et al., 2010), while the physical base allows to describe explicitly the scenarios’ 
characteristics. The chosen model is SWMM 5 (Rossmann, 2004), a widely-used model 
allowing both traditional and SC drainage simulations (Elliott and Trowsdale, 2007). A useful 
feature of SWMM is that it can run continuous simulations over long periods (years) with 
short timesteps (5’ in our study). In this way it is possible to evaluate, using the same model, 
both water-balance indicators (e.g. yearly runoff volumes) and peak flow-rates for extreme 
events on short time-scales. 
 

 
Figure 2.  Modelling and simulation procedure. 

Model setup, calibration and validation. 
First step of the procedure presented in Figure 2, model setup includes the division of the 
catchment in sub-catchments, the corresponding data-analysis to define each sub-catchment 
characteristics, the definition of calibration parameters, criteria and algorithm. Calibration and 
validation phases where performed on data issued from two measurement campaigns operated 
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by the local sanitation authority in 2009 and 2010. Further details of the procedure followed 
are presented in Petrucci et al. (2010). 

Performance indicators. 
We consider that SC provisions have two main objectives: avoid sewer overflows and 
preserve receiving waters. The SIVOA fixed, as the reference rain event for BMP 
dimensioning, a triangular hyetograph with 55 mm of precipitation in 4 hours (return period 
T=20 years). Thus, to evaluate the first objective, the indicator chosen is the peak flow-rate 
for this rain event, normalized on the impervious area of the catchment (141 ha). This 
indicator is noted qpeak (l/s/ha). 
 
For the second objective, we consider two indicators: one catchment-specific and one more 
general: 

• In the ZOH catchment, the outfall settling unit has a limited capacity (0.8 m3/s). It is 
important, thus, to minimize the annual runoff volume that bypass the treatment. This 
indicator is noted V0.8 (m

3). 
• The presence of the treatment unit is catchment-specific: often, stormwater is directly 

routed to a natural creek or river. In this case, the stability and ecological status of the 
receiving waters depend on low-flow regimes (Fennessey et al., 2001). A performance 
indicator for low-flow regimes is the frequency of flow: the fraction of time during 
which a flow is detected at the outlet. This indicator is noted fflow (-). 

These two indicators are computed for a 23-month rainfall series (1/1/2009 to 1/12/2010). The 
series is not long enough to give statistically relevant results for extreme rain events 
(T > 1 year), but it is sufficient for current ones (T < 6 months). 

Scenarios of SC implementation. 
We made 34 simulations: one reference case, corresponding to the calibrated model; 15 peak 
runoff rate provisions, ranging from q*=0.5 l/s/ha to q*= 50 l/s/ha; 18 runoff volume 
provisions, ranging from i* =0.01 mm to i* =50 mm. We do not test provisions using pre-
development formulas (see background) as there is no reference available for the 
experimental catchment considered. 
 
Runoff rate provisions are modelled through a reservoir for each subcatchment (32 in total), 
draining runoff from impervious areas. Reservoir and outfalls dimensions are defined through 
the rainfalls design method (Chocat, 1997). Resulting capacities are reported in Table 1. For 
values of q*≥15 l/s/ha, the model incurs in numerical instabilities for low flows (~10-2 m3/s). 
For these cases, thus, computation of fflow is unreliable and will not be presented. 
 
Table 1. Peak runoff rate provisions and corresponding storage volumes. 

q* (l/s/ha) 0.5 1 2 3 5 8 10 15 20 25 30 35 40 45 50 
v (m3/ha) 658 565 485 447 377 323 299 262 252 231 205 184 168 155 145 

 
Runoff volume provisions are modelled as filter strips downstream of each subcatchment. If 
the subcatchment has an impervious area As, the strip stores (as initial losses) a runoff volume 
of V=As·i* . This water is then infiltrated and can be replaced by further runoff. The 
infiltration model used is Green-Ampt, with parameters corresponding to a silt loam 
(Rossmann, 2004).  
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RESULTS AND DISCUSSION 
The simulations results, for the three considered indicators, are plotted in Figures 3 to 5. In 
each figure the x-axes are plotted in the sense of “increasing implementation efforts”: moving 
from left to right the runoff volume to infiltrate increases (lower x-axis) and the maximal 
runoff rate decreases (upper x-axis). However, as we do not consider “efforts” or costs in the 
analysis, two vertically aligned points should not be interpreted as having an equivalent cost 
of implementation.  
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Figure 3. Simulation results for qpeak. 
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Figure 4. Simulation results for fflow. Results for q*≥15 l/s/ha are not shown. 
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Figure 5. Simulation results for V0.8.  It represents the water volume bypassing the settling unit. 
 
In Figure 3 is plotted the normalized peak flow-rate for the reference rain event (qpeak). For 
both types of provisions, qpeak decreases with efforts. This is positive, as it shows that there 
are no risks to worsen actual situation for the catchment considered. A second observation is 
that, for runoff rate provisions, qpeak is always greater than q*. The reason is that, for intense 
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rain events, pervious areas (not controlled by reservoirs) contribute to the peak flow-rate. An 
important remark is that the range of resulting qpeak for both types of provisions is the same 
(from 50 to 8-10 l/s/ha). Thus, for a given target value of the objective in this range (e.g. 20 
l/s/ha), it is always possible to find two corresponding provisions, one runoff rate-based (in 
the example q*=5 l/s/ha) and one volume-based (i* =35 mm).  
 
Figure 4 shows flow frequencies at the catchment outlet (fflow). As it was expected, runoff rate 
provisions never improve the reference situation, while runoff volume ones always do. More 
in detail, runoff rate provisions do not affect the indicator for q*>2 l/s/ha, while for lower 
values they worsen the situation. With regard to this indicator and this specific catchment, 
thus, provisions distort low-flow regimes only if they are extremely strict. Runoff volume 
provisions, on the contrary, rapidly improve the indicator value for i* <20 mm. This indicator 
is affected even for extremely small storage values (i* =0.01 mm): this corresponds to the 
infiltration effect of filter strips providing no storage (see Scenarios of SC implementation). 
 
In Figure 5 is plotted the runoff volume exceeding the treatment unit flow capacity (V0.8). 
Also for this indicator, runoff volume provisions show a continuous improving behaviour, 
slowing down with increasing constraint values. As in the previous case, a small constraint 
(e.g. i* =5 mm) is enough to nearly half the reference value of the indicator. Runoff rate 
provisions have a more complex behaviour, with 4 different ranges: 

• q* < 5 l/s/ha. Catchment flow-rate is always below 0.8 m3/s, and thus V0.8=0. 
• 5 l/s/ha < q* < 15 l/s/ha. In this range the provisions show a “good” behaviour: 

increasing efforts improve values of the indicator. 
• 15 l/s/ha < q* < 30 l/s/ha. In this range, the effect of provisions is a worsening of the 

indicator values. The reason of this fact is that, during reservoir emptying, the 
catchment flow-rate is above 0.8 m3/s for longer durations than in the reference case. 

• q* > 30 l/s/ha. No significant variation from the reference case. 
 
Comparing the results for the three indicators, we observe that runoff volume provisions have 
a simpler behaviour than runoff rate ones. In fact, in the three cases, volume provisions show 
always a monotonous trend: increasing efforts generate improvements in the indicators value. 
On the contrary, runoff rate provisions have threshold-effects and, for some ranges, can 
produce degradation of some indicators value. These thresholds and the existence of critic 
ranges are catchment specific: for example, for fflow, provisions do not change the indicator 
value if the emptying time of the reservoirs for a rain event is shorter than the duration of the 
corresponding hydrograph in the reference situation. In the same way, we find no aggravation 
ranges for qpeak while other researchers did, for other catchments (see Background). 
 
In terms of preserving receiving waters (i.e. the two last indicators), volume provisions 
perform well even for small constraint values. As expected, this form of provision seems 
much more effective, toward this objective, than the other. With regard to avoiding sewer 
overflows (i.e. the first indicator) the results are more surprising: the same values that can be 
obtained through runoff rate provisions are accessible through runoff volume provisions.  

CONCLUSIONS 
In this research, we developed a model of a real catchment in the Paris region in order to 
compare several levels of constraint for both runoff rate and runoff volume provisions. We 
considered two objectives: to avoid sewer overflows and to preserve receiving waters. To 
measure the performance of each provision we adopted three indicators: peak flow-rate for a 
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reference design storm for the first objective; flow frequency and volume bypassing the 
treatment unit during a 23-month simulation for the second one. 
 
The results show that runoff volume provisions are more effective than runoff rate ones for 
receiving waters preservation. For sewer overflows, both can reach the same performances. 
Thus, is it possible to replace all runoff rate provisions with more environmental-friendly 
runoff volume provisions? In theory yes, but two observations are needed: 
1. While runoff rate provisions can be realized almost everywhere, infiltration is not always 

possible. Even if other possibilities to deplete stormwater exist (e.g. rainwater harvesting 
and reuse) they do not seem, today, capable to reduce runoff volume systematically over 
an entire catchment. In some catchment, thus, volume provisions are not applicable. 

2. We did not consider, in our research, any form of implementation cost. Then, even if we 
find an equivalence of runoff rate and runoff volume provisions in terms of peak flow rate 
reduction, it is possible that, in terms of costs, this equivalence is not valid. 

A promising solution, that deserves further research, is an integration of both runoff volume 
and rate provisions. It seems possible that this approach could gather the global advantages of 
both, involving smaller local costs. 
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