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Sintesi

L’uso efficiente delle risorse naturali è una delle priorità fondamentali nell’ottica dello sviluppo so-

stenibile. L’acqua, in particolare, gioca un ruolo chiave nel mantenimento di molti equilibri naturali

ed è necessaria a numerose attività umane. Ovunque la domanda di acqua è in aumento e il suo

sfruttamento diviene più intensivo, senza che ci sia un corrispondente incremento nella disponibi-

lità. Al contrario, i fenomeni di inquinamento incidono negativamente sulle quantità attualmente

sfruttabili. E’ noto, inoltre, che la distribuzione sia spaziale sia temporale di questa risorsa è tipi-

camente disuniforme e stocastica, e ciò aggiunge ai rischi legati alla disponibilità quelli dovuti agli

eventi estremi come le piene e le esondazioni. In conclusione, la gestione dell’acqua è un processo

importante e complesso, che diviene ogni giorno più conflittuale.

Questa tesi tratta della gestione ottima di un serbatoio idrico. Lo scopo è quello di regolare il

naturale flusso dell’acqua per ridurre il rischio di esondazione e, nello stesso tempo, per garantire

la massima disponibilità della risorsa per i suoi diversi usi. L’obiettivo più generale è di inserire

un nuovo tassello, in questo caso un algoritmo di ottimizzazione, nel vasto quadro dell’uso efficiente

dell’acqua e delle risorse naturali.

Oggi, in molti casi, la gestione dei serbatoi è ancora basata su regole euristiche e su giudizi

soggettivi del Regolatore. Conseguenza di questo fatto è che molte grandi riserve idriche nel mondo

non riescono a fornire i benefici per le quali erano state pianificate (Labadie, 2004). Sfruttare al

meglio le potenzialità delle strutture esistenti non rappresenta solo un obiettivo economico: rende

infatti possibile stimare al meglio la necessità di nuovi serbatoi, tipicamente opere con elevati impatti

sociali e ambientali (WCD, 2000).

Da un punto di vista tecnico, l’ottimizzazione della gestione dei serbatoi idrici è un problema

di non semplice soluzione; i sistemi coinvolti sono infatti, normalmente, di alta dimensionalità,

dinamici, non-lineari e stocastici. Inoltre, soprattutto per i laghi regolati, ma anche per gran parte

dei serbatoi artificiali, gli scopi che si devono tenere in considerazione sono numerosi: oltre alla

laminazione delle piene e alla produzione idroelettrica (gli obiettivi del sistema qui considerato)

spesso si deve soddisfare la domanda d’acqua per l’irrigazione e per i consumi urbani e industriali, si

deve garantire la navigazione ed evenutali usi turistici, si devono includere nell’ottimizzazione anche
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obiettivi ecologici, come il mantenimento di deflussi minimi negli effluenti o di determinati livelli

stagionali.

E’ importante notare che nei problemi a molti obiettivi (MO) non esiste normalmente una so-

luzione ottima, ma è possibile solo determinare un insieme di alternative efficienti, la Frontiera di

Pareto del problema. Infatti, se è possibile scartare alcune soluzioni perchè sono peggiori di altre ri-

spetto a ogni obiettivo (alternative dominate), si possono trovare alternative che non sono ordinabili,

in quanto non dominate da altre. Tali alternative sono dette anche Pareto-efficienti o semplicemente

efficienti.

Ciò implica che la scelta della soluzione da applicare non è più direttamente il risultato dell’ot-

timizzazione, ma emerge da una successiva fase di negoziazione fra i portatori d’interesse (stakehol-

ders), e da una fase decisionale. L’obiettivo della fase di ottimizzazione diventa quindi il supporto

alla negoziazione e alla decisione, e la scelta di un algoritmo fra quelli esistenti deve essere orientata

in questa prospettiva.

I metodi tradizionalmente più applicati in questo settore sono la programmazione lineare (LP) e la

programmazione dinamica (DP). Il primo è particolarmente efficace per sistemi di grandi dimensioni,

essendo molto veloce ed efficiente; d’altra parte richiede che il sistema da ottimizzare sia lineare (o

linearizzabile), anche per quel che riguarda vincoli e obiettivi.

La programmazione dinamica non impone, invece, cos̀ı forti ipotesi sul sistema (che deve essere,

però, discretizzato) ed è particolarmente adatta a problemi con decisioni ricorsive come, appunto,

la gestione ottima dei serbatoi. Il limite principale di questa tecnica risiede nella dimensionalità: il

tempo e le risorse necessarie per il calcolo crescono esponenzialmente con il numero di stati in cui il

sistema può trovarsi1.

Entrambi i metodi descritti operano su problemi a singolo obiettivo, ed è quindi necessario l’uso

di tecniche per ridurre l’originario problema MO in una serie di problemi di questo tipo. Diverse

sono le opzioni disponibili, brevemente presentate nel paragrafo 1.2. Una delle più diffuse, il metodo

dei pesi, consiste nell’aggregare gli N diversi obiettivi con una media pesata; variando il vettore

dei pesi impiegati (w) si possono ottenere diverse soluzioni efficienti. Si può dimostrare che, se la

Frontiera di Pareto è convessa, l’esplorazione dello spazio dei pesi W corrisponde all’esplorazione

della Frontiera di Pareto stessa2.

Il principale problema di questo approccio è che il modo in cui i vettori vengono scelti in W non

viene specificato. Nonostante esistano criteri di campionamento, questo fatto diventa sempre più

limitante all’aumentare del numero di punti della Frontiera di Pareto e del numero N di obiettivi.

Infatti, dati due vettori w1, w2 ∈ W , (i) non è possibile sapere a priori se essi individuano due punti

1Una trattazione più ampia di queste e delle altre principali tecniche di ottimizzazione, insieme ad alcuni esempi
di applicazione alla gestione dei serbatoi idrici, viene presentata nei paragrafi 1.1 e 1.1.1.

2Si veda, a questo proposito il paragrafo 2.2, e in particolare il corollario 1.
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distinti nello spazio degli obiettivi e, (ii) se individuano due punti distinti, non è possibile sapere se

e quanti punti sono compresi fra i due.

L’algoritmo qui proposto, il Neighbour Search, è una possibile soluzione a questo problema. In-

fatti, per un’ampia classe di problemi3, esso sfrutta alcune proprietà geometriche della Frontiera di

Pareto per determinarla completamente. L’approccio consiste nel partire da un punto noto (deter-

minato, ad esempio, tramite la DP) e trovarne i “vicini” (neighbours) nello spazio dei pesi e sulla

Frontiera di Pareto; dopodichè, iterando il procedimento, si procede nell’esplorazione.

Due sono i principali concetti su cui si basa l’algoritmo:

La Q-function di una politica ϕ, per una coppia stato-controllo (x, a), esprime i costi-futuri attesi

ottenibili partendo dallo stato x, applicando il controllo a al primo passo temporale e la politica

ϕ per il resto dell’orizzonte temporale. E’ quindi una funzione Q(ϕ, x, a) : X × A → RN , una

volta definita la politica ϕ. Applicare il metodo dei pesi, dato un vettore w ∈ W , equivale a

trovare la politica ϕ∗ tale che4:

∀x, min
a
〈Q(ϕ∗, x, a), w〉 = 〈Q(ϕ∗, x, ϕ∗(x)), w〉 (1)

Il Preference set. In un sistema discreto, ogni politica ottima ϕ∗ (a cui corrisponde un punto s∗

della Frontiera di Pareto) è tale non per un singolo vettore dei pesi w, ma per un insieme di

pesi. Più precisamente definiamo il preference set W (s∗) di un punto s∗ l’insieme dei pesi

per i quali tale punto è l’ottimo. Come si può intuire, questo è equivalente a dire che se e

solo se w ∈ W (s∗), la minimizzazione descritta dall’equazione 1 ha come risultato la politica

corrispondente a s∗.

Proprio basandosi su quest’ultima proprietà l’algoritmo può, data una politica ottima ϕ∗ e la sua

Q-function, determinarne il preference set e i “neighbours” ϕ∗1, ϕ
∗
2, . . .. A questo punto è sufficiente

calcolare le Q-function di queste nuove politiche e iterare il procedimento finchè non si è coperto

l’intero insieme W .

Il risultato di questo processo è, come già accennato, l’intera Frontiera di Pareto del problema.

Si può immaginare che nel caso di sistemi molto grandi, in particolare con una Frontiera costituita

da un elevato numero di punti, l’incremento dei tempi di calcolo faccia optare per una esplorazione

solo parziale della Frontiera stessa. Il NS si presta anche a questo tipo di analisi, visto che può essere

vincolato ad operare solo in sottoinsiemi di W .

La forma più ampia e generale del Neighbour Search è descritta nell’articolo (Dorini et al., 2006a),

dove ne viene dimostrata l’efficacia. Viene anche presentato un esempio di come esso possa essere
3L’algoritmo come viene enunciato qui di seguito e, più esaustivamente, nel capitolo 2, lavora su Markov Decision

Processes (MDP) finiti, e il sistema deve essere quindi discretizzato, finito e stocastico. Sostanzialmente queste ipotesi
sono le stesse imposte dalla Programmazione Dinamica.

4L’operatore 〈x, y〉 è il prodotto scalare; si vedano le definizioni date nel paragrafo 2.1.
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impiegato per ottimizzare un generico MDP. Il lavoro descritto in questa tesi, invece, rappresenta la

prima applicazione di tale approccio a un caso reale.

Il problema che è stato preso in esame è l’ottimizzazione della gestione del serbatoio di Hoa Binh.

Si tratta di un grande lago artificiale nel nord del Vietnam, che capta le acque del fiume Da, principale

affluente del fiume Rosso (figura 3.1). La diga è operativa dal 1990, con i due obiettivi principali di

laminazione delle piene a valle e di produzione idroelettrica. Tali obiettivi sono conflittuali durante la

stagione delle pioggie (da giugno a settembre) quando, a causa del regime dei monsoni, è concentrato

l’80% delle precipitazioni annuali5.

Infatti, se si invasano grandi quantità d’acqua si aumenta la disponibilità di energia elettrica

(l’impianto idroelettrico di Hoa Binh soddisfa il 40% del fabbisogno dell’intero Paese) ma, nello

stesso tempo, si riduce la capacità di laminazione se si presenta un evento di piena. Si consideri

che la costruzione del serbatoio è stata motivata proprio dalla vulnerabilità alle piene della ricca e

popolosa regione del delta del fiume Rosso, che comprende la capitale del Vietnam Hanoi.

L’attuale regolazione usa una legge di controllo che dipende dal periodo dell’anno, dal livello delle

acque nel serbatoio e da una previsione del livello ad Hanoi per il giorno successivo. Per realizzare

tale previsione vengono impiegate le misure di portata realizzate sugli altri due principali affluenti,

il Thao e il Lo, oltre che il rilascio da Hoa Binh.

Il serbatoio e la sua legge di controllo sono già oggetto di due studi svolti da Le Ngo et al. (2006) e

Madsen et al. (2006). Gli autori hanno realizzato un modello idraulico del sistema usando il software

MIKE-11 (DHI, 2005), e hanno ottimizzato alcuni parametri dell’attuale regolazione tramite un al-

goritmo genetico, attraverso uno schema di simulazione-ottimizzazione su scenari deterministici. I

dati riguardanti il sistema impiegati in questo lavoro, cos̀ı come i risultati dei due studi, sono stati

gentilmente forniti dagli autori citati.

Il modello del sistema che è stato realizzato (descritto in dettaglio nella sezione 3.2) comprende

tre variabili di stato:

1. l’invaso del serbatoio s, la cui dinamica è regolata da un’equazione di bilancio di massa integrata

su passi di 20 minuti (equazione 3.4),

2. il livello delle acque ad Hanoi h, che viene determinato ad ogni passo da una rete neurale i cui

ingressi sono i rilasci dal serbatoio, le portate dei due affluenti non regolati e il livello al passo

precedente (si veda il paragrafo 3.2.5),

3. la configurazione degli scarichi della diga b, necessaria per poter tenere conto di alcuni vincoli

imposti ai rilasci ammissibili (si veda il paragrafo 3.2.4).

5Una descrizione dettagliata del sistema è presentata nel paragrafo 3.1.
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Sono inoltre presenti tre disturbi stocastici, di distribuzione lognormale, che rappresentano le portate

negli affluenti. Sono indicati come wDa, wThao e wLo.

Il controllo del sistema è svolto tramite la variabile discreta a, che rappresenta il “numero di

rilasci aperti alla fine del passo temporale”. Tale formulazione, che può apparire inusuale, ben si

presta a rappresentare le decisioni di rilascio da Hoa Binh: tre diversi canali sono infatti disponibili

per i deflussi, cioè le otto turbine, i dodici scarichi di fondo e i sei sfioratori. E’ quindi più agevole

definire quali di questi rilasci aprire o chiudere, piuttosto che una portata o un volume d’acqua. Il

passo temporale scelto fra una decisione e la successiva è di 48 ore (paragrafo 3.2.2).

Per definire le curve di rilascio dei diversi canali sono state usate interpolazioni dei dati disponibili,

cos̀ı come è stato fatto per le curve di produzione delle turbine.

L’attuale politica di regolazione è rigida per quanto riguarda il massimo invaso ammissibile:

quando si raggiungono i 5 m dal livello critico per la diga, è obbligatorio rilasciare una portata alme-

no pari all’afflusso. Per evitare di limitare il modello in questo modo, pur senza creare rischi per il

serbatoio, si è trasformato il vincolo in un obiettivo che penalizza gli invasi troppo elevati. Questo,

insieme agli altri due costi considerati (esondazioni di valle e deficit idroelettrico), è esplicitato nel

paragrafo 3.2.6.

Una volta definito il modello, se ne è ricavato il Markov Decision Process corrispondente (questa

operazione è descritta nella sezione 3.3). Questo comporta la discretizzazione dello spazio di stato

X, dei controlli A e degli afflussi W e la simulazione del sistema per ogni possibile elemento di

X×A×W . Il risultato è la probabilità di transizione di stato p(y|x, a) e il vettore di costi associato

g(x, a).

Grazie ai risultati delle ricerche di Madsen e Le Ngo, è stato possibile procedere a una validazione

della struttura della legge di controllo implementata nel modello. Infatti, se si confronta quest’ultima

con quella attualmente applicata, appaiono alcuni differenze sostanziali. In particolare:

1. il passo temporale delle decisioni è di 48 ore invece che di 6 (intervallo fra le misure),

2. le decisioni dipendono solo dai livelli nel serbatoio e ad Hanoi, e non anche dal periodo dell’anno

e dagli afflussi,

3. si usano 27 controlli ammissibili, selezionando solo una parte di quelli realmente disponibili,

4. la politica è definita solo per le classi di stato, e quindi su un insieme discreto,

5. d’altra parte la “forma” della politica è libera, e non vincolata da una funzione di cui si

ottimizzano solo pochi parametri come nel caso di Madsen e Le Ngo.

Ci si è quindi posti il problema di verificare se una legge di controllo definita su queste basi può

ottenere performance almeno analoghe a quelle della regolazione attuale. Tale validazione è stata
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effettuata (si veda la sezione 3.4) e i risultati sono mostrati in figura 3.12. Come si può vedere ciò

conferma le scelte modellistiche fatte.

Una volta ricavato il MDP e verificata la struttura della legge di controllo, si è potuto applicare il

Neighbour Search al sistema. Questa ottimizzazione ha dato come risultato una frontiera di Pareto

costituita da più di un milione di punti, di cui è rappresentato un dettaglio in figura 4.1 e le tre

proiezioni bidimensionali, rispetto alle diverse coppie di obiettivi, nelle figure 4.2, 4.3 e 4.4.

Per fornire degli esempi delle possibilità offerte al processo decisionale dalla conoscenza di tutte le

alternative ottime, nel capitolo 4 è illustrata una serie di politiche ricavate dalla Frontiera di Pareto

usando diversi criteri:

1. punti estratti con una ricerca su tutta la Frontiera basata sui valori degli obiettivi (in questo

caso, i minimi per ciascuno di essi),

2. punti estratti sulla base della posizione nella Frontiera, selezionati visivamente (in particolare

si sono estratti due punti agli estremi della zona di basso tasso marginale di sostituzione fra

gli obiettivi V HyPow e V UFlood),

3. punti estratti tramite movimenti vincolati nello spazio degli obiettivi. Più precisamente, par-

tendo da un punto dato, si sono ottenuti dei punti spostandosi su delle curve “iso-obiettivo”

(si veda la figura 4.10);

4. punti estratti perchè “vicini” di un punto dato.

Alcune delle politiche ricavate sono mostrate nell’appendice A, sia esplicitamente sotto forma di

tabelle, sia simulate sullo scenario storico di afflussi, per valutarne i comportamenti.

Quello che è importante sottolineare di questi esempi sono le diverse possibilità che vengono

offerte, ai portatori d’interessi e al decisore, per esplorare la Frontiera di Pareto. In particolare,

questo tipo di analisi può essere istantaneo e quindi condotto in tempo reale durante la negoziazione,

dato che le politiche sono note a priori6.

Nel caso il sistema sia troppo grande per calcolarne tutta la Frontiera indistintamente, come si

è detto il NS permette di limitarsi a sottoinsiemi di W.

Ciononostante, non necessariamente i portatori d’interesse o il decisore sono in grado di indicare

una zona significativa dello spazio dei pesi (si pensi, per esempio, ad una simile operazione in uno

spazio a 6 dimensioni). Di conseguenza, una delle più promettenti aree da investigare nelle future

ricerche sul NS è la possibilità di rendere l’algoritmo direzionabile, cioè permettere un’interazione

tale da poter dirigere l’algoritmo verso le parti più promettenti della Frontiera di Pareto. Questo
6E’ chiaro che, se vengono richieste le simulazioni delle politiche o altre elaborazioni, bisogna tenere in considera-

zione il tempo per produrle. Tuttavia questo è di norma ampiamente inferiore al tempo necessario per individuare e
calcolare le politiche ricercate.
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dovrebbe essere possibile sia fissando una direzione di riferimento costante, sia permettendo un

processo iterativo di confronto col decisore.

Queste ultime osservazioni suggeriscono che, per approfittare di tutte le potenzialità e della

flessibilità del Neighbour Search, potrebbe essere necessario sviluppare un sistema di supporto alle

decisioni (DSS) dedicato.

Infatti, la differenza chiave fra gli approcci tradizionali e il NS è che con quest’ultimo si trovano,

insieme ad ogni politica, delle informazioni aggiuntive sulla topologia della Frontiera di Pareto. Tali

informazioni possono essere, come si è in parte mostrato, di notevole utilità per la negoziazione e

per il processo decisionale. Appare chiaro che una riflessione più approfondita sui modi in cui queste

informazioni possono essere sfruttate a fondo può portare a ulteriori sviluppi e benefici.

In conclusione, da questa prima applicazione a un caso reale, emerge che l’approccio del Neigh-

bour Search può effettivamente dare un contributo per raggiungere un più efficiente, consapevole e

partecipato uso dell’acqua e, in generale, delle risorse naturali.
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Introduction

In the actual world trend to a more sustainable development, one important role is played, at any

scale, by the efficient use of natural resources. There are three main reasons: natural resources

are valuable because they are scarce, and although renewable, they not always have a sufficient

replacement rate. They are socially important, as access to such resources is fundamental for human

life. Last but not least they have a great importance for the environment, as they maintain ecological

equilibriums at both local and global scale. Therefore, using natural resources wisely must be one

of our main priority.

In addition to all the features stated above, freshwater has some distinctive traits: it is necessary

to all life-beings, and it is involved in most of the human activities. It is not always and everywhere

scarce but it is unequally distributed, spatially and temporally. This natural stochasticity creates

risks linked both to availability of supplies, and to natural disasters such as flooding. The manage-

ment of freshwater resources draws from a broad spectrum of disciplines, ranging from production

and treatment, to storage and distribution. For all those reasons, water management deserves great

attention and involvement, including a strong and continue research effort to improve our use of the

water resources.

This thesis focuses on reservoir optimal operation. It deals with the issues of regulating water

natural flow in order to reduce risks of flooding while maximizing availabilty of water for various

purposes.

At present, reservoir operation strategies are mainly based on heuristic procedures and/or on

subjective judgments of the operator. One consequence of this fact is that many large storage

projects worldwide are not providing the levels of benefits they were planned for (WCD, 2000).

Finding a way to better exploit the potential of such existing reservoirs is not only an economic

target, but enables to estimate the real need for further reservoirs, which are structures with high

environmental impact.

Reservoir operation optimization is a challenging problem. The systems involved are normally

high-dimensional, dynamic, non-linear and stochastic. Further, most of the reservoirs are multi-

purpose: they perform flood control and also provide water for hydropower production, irrigation,
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urban and industrial consumption, navigation and others. Since many actors and stakeholders are

typically involved, with different demands and purposes, optimization methods capable of handling

multiple objectives are usually required. Several solution techniques have been developed and ap-

plied to reservoir optimization, such as Linear Programming (LP), Dynamic Programming (DP)

or heuristic methods like Evolutionary Algorithms (EA). These alternatives will be presented in

chapter 1.

An important point to underline is that, in MO problems, an optimal alternative does not exist,

but only a set of efficient alternatives can be found. It means that the final decision is not the

result of the optimization process, but it emerges from a negotiation phase that involves all the

stakeholders. So, the purpose of the optimization is no more to find the better solution to the

problem but to support, in the better possible way, the negotiation and the decision-making. The

evaluation and the choice of an optimization method among the existing ones must be carried out

with this perspective.

In this work, the Neighbor Search (NS) optimisation proposed by Dorini et al. (2006a) is ap-

plied for the first time to the problem of multi objective optimization of reservoir operation. We

believe that this algorithm has wide application possibility in decision-support systems (DSS), that

will benefit from it. In a wide range of cases7, it allows the exhaustive exploration of the set of

efficient alternatives (the Pareto-set), providing the negotiation stage with a complete knowledge of

optimal solutions. This exploring capability can also be used in an iterative search process, where

stakeholders and decision-makers can indicate the exploring directions.

The case-study to which the NS algorithm is applied is the Hoa Binh reservoir optimization. Hoa

Binh is a large reservoir in northern Vietnam, in operation on the Red river since 1990 with the two

main purposes of flood control and hydropower generation. These purposes are conflicting during

the rain season (from June to September) when because of the monsoon climate, is concentrated

80% of the annual rainfall.

Storing large amounts of water will guarantee power supply availability during the dry season

(Hoa Binh hydropower plant produces 40% of the whole Vietnam electric supply). On the other

hand, if a major flood event occurs, unused storage capacity can be exploited to reduce flooding

damage in the Red river delta region. The Hoa Binh dam was built to protect this rich and densily-

populated area, including Vietnam capital Hanoi.

The reservoir is currently operated using a rule-curve depending on the period of the year, on

the water-level in the reservoir and on a forecast of the water-level in Hanoi.

Hoa Binh reservoir and operation rule have been already studied by Le Ngo et al. (2006) and

7It can be applied to all systems for which a Markov Decision Process approach is suitable.
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Madsen et al. (2006). They produced an hydraulic model of the system using the MIKE-11 soft-

ware (Le Ngo et al., 2006; DHI, 2005), and they optimized the operation rule-curve using a genetic

algorithm in a simulation-optimization framework (Madsen et al., 2006). The data pertaining the

model of the system used in this thesis, as well as the results used for comparison purposes, was

kindly provided by authors of these studies.

In chapter 1 the existing techniques used in multi-objective reservoir optimization are shortly

described. In chapter 2 is discussed the Neighbor Search algorithm. In chapter 3 the Hoa Binh

system and the corresponding models are presented, while in chapter 4 the system optimization is

detailed. Chapter 5 concludes this thesis with some observation and discussion on future work.
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Chapter 1

Multi-objective optimization of

reservoir operation

1.1 Review of methods for reservoir operation optimization

Several techniques have been applied to reservoirs operation optimization, attempting to improve

their performances. Few basic methods are generally used, although many variants have been im-

plemented in order to overcome some limitation of the method or to deal with some particular

application. A state-of-the-art review, particularly focused on multi-reservoirs systems, is presented

in (Labadie, 2004). A wide sample of real-case applications of optimization techniques to both single-

and multi-purpose reservoir operation can be founded in (Wurbs et al., 1985).

Historically, one of the most favored optimization technique is linear programming (LP). It has

some notable advantage: several highly-efficient solving algorithms are available; it is able to solve

extremely large-scale problems; it converges to globally-optimal solutions; theory for sensitivity

analysis is well-developed.

Linear programming is particularly useful for large multi-reservoirs systems. Hiew et al. (1989)

applied deterministic LP for the optimization of the Colorado-Big Thompson eight-reservoir system,

obtaining optimal storage guide-curves. In this particular case, a close-to-linear behavior of the

system allowed to obtain good results. Actually the main limitation of this method is that the

model, including constraints and objectives, must be linear or linearizable.

Several adaptations of the method have been implemented to bypass this strong hypothesis. For

example, in separable programming, piecewise linear approximations of nonlinear functions are used.

On the other hand, such extensions make the problem dimensions grow and the solver efficiency de-

crease. Moreover, for some case the convergence to a global optimum can not be guaranteed. These

14



CHAPTER 1. MULTI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION 15

methods have been applied to some real case, such as the multi-reservoir Metropolitan Adelaide

water supply system in Australia, by Crawley and Dandy (1993).

Despite this adaptations, many reservoir optimization problems cannot be realistically modeled

as linear or piecewise-linear function. Typically hydropower generation functions can hardly be

approximated as linear, as the head effects on production are strongly nonlinear. A possible solution

to this issue can be founded through non-linear programming, that requires only differentiability of

the model’s equations.

Also for this method several implementations exist. The far most efficient, according to Hiew

(1987) and Grygier and Stedinger (1985), is the so-called successive linear programming (SLP), based

on a iterative linearization-LP loop. The main disadvantage of SLP, as pointed out by Bazarra et al.

(1993) is that this method is not guaranteed to converge.

Barros et al. (2003) applied the SLP technique to the Brazilian hydropower system, one of the

largest in the world. This study confirmed the good performance of the method, in terms of accuracy

and computational efficiency. Other NLP variants have been applied to the four-reservoir Zambezi

river system by Arnold et al. (1994) and to the Highland Lakes of the Lower Colorado River basin

by Unver and Mays (1990).

Besides LP and NLP, which are defined for deterministic problems, other methods have been

adopted for solving stochastic problems. Kall and Wallace (1995) propose a two-stage optimization,

where the objective to minimize is the cost from first-stage decision plus the expected future costs,

evaluated over several scenarios, each with an assumed probability of occurrence. Following imple-

mentation of the first-stage decisions, the problem is reformulated starting with the next time-step

decisions and solved over the remainder of the operational horizon. The difficulty with this formu-

lation is that, if many possible scenarios are taken into account, the resulting problem can become

too resources-expensive. Improved versions of this technique coupled with LP are used by Jacobs

et al. (1995) to optimize the Pacific Gas and Electricity hydropower system in northern California,

and by Seifi and Hipel (2001) for the Great Lakes Reservoir system.

The last 10 years have witnessed significant advances in the development of heuristic-based

optimisation methods, and in particular Evolutionary Algorithms (EAs), which work by repeatedly

sampling the search space, guided by the information collected during the search process and held

as a memory in the form of a population of solutions. EAs are derivative-free global search methods,

and they were shown to work well on nonlinear, nonconvex, and multimodal problems (Back et al.,

1997). One of the earliest applications of EA in reservoir control was the work by Esat and Hall

(1994). They applied a GA to a four reservoir problem in order to maximize the benefits from power

generation and irrigation water supply subjected to constraints on reservoir storages and releases.
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Sharif and Wardlaw (2000) used Genetic Algorithms (GA) to optimize a real multireservoir problem

- Brantas Basin in Indonesia. They considered 4 case studies: (i) maximizing hydropower returns;

(ii) maximizing hydropower and irrigation returns; (iii) same as (ii) but including a future water

resources development scenario; and (iv) same as (iii) but including more reservoirs in the system.

Generally, for EAs dealing directly with multi-objective problems (often addressed as MOEAs),

convergence to Pareto-optimal solutions can not be guaranteed. For some particular techniques,

however, proofs of convergence are showed by Rudolph (1998) and Hanne (2001, 1999). Laumanns

(2003) demonstrates that although the convergence (to the limit) can be assured by such techniques,

it is not guaranteed a good distribution of the solutions.

1.1.1 Markov Decision Processes and Dynamic Programming

All the methods introduced share a limitation about time-steps: increasing the number of time-

steps (i.e.: optimizing over a longer time-horizon, or considering shorter intervals between decisions)

bring to an exponential augmentation of calculus-time. For this reason, to keep low the time-steps

number, most of the applications cited optimize monthly decisions. If such a period can be adapted

for some cases, in many other it will be too long, giving an information insufficient to actually

manage efficiently the reservoir system. For example, in a flood event, a regulation should be taken

hourly, in order to effectively minimize damages. In such a situation the operator will not be helped

by the knowledge of the monthly average flow he or she has to release.

A technique which can overcome this problem, for this reason one of the most popular for

reservoir operation optimization, is Dynamic Programming (DP, for an extensive discussion, see

Bertsekas (1995)). This method exploits the sequential nature of reservoir operation and reduces

the optimization-time dependence by the number of time-steps from exponential to linear. The key

strategy of the DP is to split the whole optimization problem in a series of one-stage (i.e.: time-step)

interrelated sub-problems, and then to solve them sequentially. A second important advantage of

DP is that objective functions must be defined under fairly weak conditions.

Moreover DP optimization, through expected-cost functions, can take in account the stochastic

nature, typical of reservoir control problems1. This stochastic case can be usefully expressed as an

optimization program for a Markov Decision Process. The general definition of MDPs will be given

in chapter 2, while a detailed discussion of their use for water reservoir optimization can be found

in Lamond and Boukhtouta (2002).

Labadie (1993) applied DP to the Valdesia Reservoir in the Dominican Republic. Terry et al.

(1986) compared optimal DP solutions with traditional rule curves for the Brazilian system, ob-

taining substantially improved results. Several other researchers applied stochastic DP to reservoir

operation, such as Stedinger et al. (1984) that worked on the High Aswan dam system, Huang et al.

1This is why in this work no distinctions are made, as some authors do, between DP and stochastic DP (SDP). In
what follows it will be used “DP” to refer to this latter case.
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(1991), Vasiliadis and Karamouz (1994). In (Tejada-Guibert et al., 1993, 1995) different DP ap-

proaches are applied to the Shasta-Trinity system, a multi-reservoir subsystem of the Central Valley

Project, California.

The main issue of using DP is the so-called curse of dimensionality : optimization time depends

exponentially on the number of state-class. It involves that for a multi-state system (typically, but

not always, a multi-reservoir system), or for a finely-discretized system, the necessary computation

effort can overcome disposable resources. Many variations of the basic algorithm have been im-

plemented to overcome this problem, but a completely satisfying and general solution is not yet

founded.

Examples of these approaches are the Differential Dynamic Programming (DDP), extended linear

quadratic Gaussian control (ELQG) and Neural Dynamic Programming (NDP).

DDP, developed by Jacobson and Mayne (1970), searches analytical solutions of the problem,

without discretization of the states. This requires to impose additional strong conditions on the

model’s equation, and resemble to a NLP formulation, but with the strong advantage of stage

separation proper of DP. DDP has been applied to the Mad River system in California by Jones

et al. (1986).

ELQG (Bertsekas, 1995) is based on the same idea of a continuous state and an analytical

solution. In this approach the state-variables are replaced by their mean and variance, and assump-

tions on their probability distributions are required. This method has been implemented for the

High Aswan Dam by Georgakakos (1989), obtaining more efficient reservoir operation policies than

Stedinger et al. (1984).

NDP is a different approach that approximate the cost-to-go function2 with an Artificial Neural

Network. The conditions to apply this method are weak and its convergence to a good solution

is guaranteed (see Bertsekas and Tsitsiklis (1996)). Application of this method to reservoir oper-

ation is discussed in (De Rigo et al., 2001) and tested on the three-reservoir Piave Project, Italy

(Soncini Sessa, 2004).

1.2 Multi-objective optimization

With the exception of MOEAs, optimization techniques described above deal with a single objective.

This require to use methods to extend the application of such methods to MO problems.

In a MO contest, one optimal solution can not, generally, be founded. The reason is that a direct

comparison between two alternatives will not always issue in an ordering relation, as an alternative

can perform better than the other for an objective and worse for another. In the case a order can
2Obtaining this function, in DP, is dual to finding the optimal policy.
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be founded through the comparison (i.e.: solution A is better than solution B regarding to all the

objectives) it will be said that A dominates B and that B is dominated. In general, the solution of a

MO problem is the set of all the non-dominated alternatives, also called Pareto-set. The alternatives

forming the Pareto-set are also called efficients because, for each of those, no solution can be found

that improves an objective without degrading another.

A formal definition of domination and Pareto-set is given in chapter 2. Here is just underlined

that several methods are available, to reduce a MO problem in order to solve it with one of the

single-objective techniques just described.

The constraint method requires to transform N−1 of N objectives in constraints, and to define a

threshold for each of them. Then the SO problem is solved. Varying the set of thresholds, different

points of the Pareto-set can be calculated. Yeh and Becker (1982) applied this system to study

the trade-off between hydropower generation and water supply for the Central Valley Project in

California.

A second way is the weights method that consists in aggregate all the objectives in a single scalar

through a weighted sum. Varying the coefficients of the sum allows to find different points of the

Pareto-set. A comparison between this method and the preceding one was performed by Ko et al.

(1992) on a 4-objectives study of the Han river reservoir system, Korea. The conclusions of this

study was that the weights method was preferable for large numbers of objectives. The negative

aspect of this latter method is that it works less effectively on concave Pareto-fronts. In such cases,

the method can not find all the optimal policies.

Another technique is the so-called goal-programming. It has been applied to the TVA’s reservoir

system by Eschenbach et al. (2001). This method requires a hierarchic ordering of the objectives.

Each objective function is then minimized individually following the ordering. All the alternatives

that satisfy a goal posed for the objective are conserved, and passed to the further optimization

(i.e. for the next objective of the hierarchy). This method works well only if many alternatives pass

through each level and, further, some knowledge about the preference structure of the decision-maker

is necessary to obtain a good result.



Chapter 2

The Neighbour Search for

constructing Pareto sets

The Neighbour Search approach (NS) is a methodology for exploring Pareto sets in multi-objective

frameworks, in where performance sets are convex polytope. Typical problems that can be effec-

tively addressed by NS are multi-objective linear programming and multi-objective Markov Decision

Processes. In this chapter NS and the application for MDP is described. The reader that is inter-

ested in more details about the theoretical bases, and the proofs of the propositions, is referred to

the article (Dorini et al., 2006a) and the thesis (Dorini, 2006).

2.1 Notation and basic definition

In what follows, there are few words about the notation adopted throughout the chapter. Vectors

of RN are columns, upper indices x1, x2, . . . correspond to different vectors, whilst lower indices are

the vector components: x = (x1, x2, . . . , xN ) ∈ RN . The scalar product
∑N

k=1 xkyk is denoted with

〈x, y〉; ’Def.’ is the abbreviation for ’Definition’.

Def. 1. A set D ∈ RN is a convex set, iff for every pair of points x, y ∈ D, the whole segment

θx + (1− θ) y, θ ∈ [0, 1] belongs to D.

Def. 2. A convex polyhedrical set D, or simply polyhedron, is the intersection of I < ∞ halfspaces

in RN , namely:

D =
I⋂

i=1

{
x ∈ RN |

〈
x, vi

〉
≤ bi, vi ∈ RN , bi ∈ R

}
Bounded polyhedra are called (convex) polytopes.

The dimension of a polytope D ∈ RN is the dimension of the space H given by the intersection of
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all hyperplanes in RN that contain D. Obviously, if D is not a singleton, H is always a hyperplane

of various dimensions. In literature, H is often denoted as the affine hull of D. A d−polytope, is a

polytope with d dimensions.

Def. 3. A convex subset F of a convex set D is called extreme if representations θx + (1− θ) y ∈
F, θ ∈ [0, 1] is possible only if x, y ∈ F . A convex subset F of a convex set D is called face if there

is a hyperplane H ⊂ RN supporting D in F , namely: H ∩D = F .

Clearly, a face is a polytope itself, and vice versa. A d−polytope is actually a d−face; (d− 1)−faces

are called facets; 1−faces are called edges and 0−faces are vertices. The faces F 2, F 3, . . . of a poly-

tope D can be (partially) ordered by the inclusion. A face F ⊂ D is said to be a maximal face if it

is not a strict subset of any face F j .

Def. 4. The convex hull of a set S ∈ RN , denoted with conv (S), is the intersection of all convex

sets that contain S. In case of finite S =
{
s1, . . . , sK

}
, the corresponding convex hull is:

conv (S) =

{
K∑

k=1

pksk|pk ≥ 0,
K∑

k=1

pk = 1

}

It can be proved (McMullen and Sherphard, 1971, pp. 43-47) that the convex hull of a finite

set of points is a convex polytope, and that conversely, a convex polytope is the convex hull of a

set of points. A very important relationship between a finite set of points S and its convex hull

D = conv (S), is that for every supporting hyperplane H, the corresponding face F = D∩H can be

derived by S in the following way: F = conv (S ∩H).

2.2 Description of the Neighbour Search

Suppose that a decision maker has K possible decisions, and that a decision k is associated to a

vector of performances (losses)

sk =
(
sk
1 , sk

2 , . . . , sk
N

)
∈ RN

Different decisions lead to different performances; the performance set S is a set of points of RN .

Decisions can also be randomized: let pk be the probability for the k-th decision to be taken, the

adopted performance of such randomized decision is the expectation
∑N

k=1 pksk ∈ D, where the

performance set D is a convex polytope of RN , generated by conv (S). For the sake of comparing

different solutions, points in D are partially ordered with respect of the dominance. A point x ∈ RN

is dominated by a point y ∈ RN , if vector x− y has non negative components, namely

xi − yi ≥ 0 for every i ∈ {1, . . . , N}

xi − yi > 0 at least for one i ∈ {1, . . . , N}
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A decision a is said to be dominated by a decision b if the performance xb ∈ D dominates performance

xa ∈ D. Obviously, there is no reason for a decision maker (DM) to prefer a to b; and when it comes

to the whole performance set D, there is no reason for the DM to consider any options whose

performance is dominated by some other point of D.

Def. 5. A point x ∈ D is called Pareto optimal (or efficient or minimal), if it is not dominated by

any point in D. Collection of all Pareto points of a convex set D is denoted as Par (D).

Decisions whose performance belongs to Par (D), are called Pareto optimal. Only Pareto optimal

decisions are of interest of the DM; hence, the main objective of the research presented in Dorini

et al. (2006a), was to develop a methodology for constructing such Pareto set. A common approach

for performing such task, is to solve several scalar programs in the form 〈x,w〉 → minx∈D, where w

is a vector of the space:

W =

{
w ∈ RN |

N∑
i=1

wi = 1, wi > 0

}
Note that W is a polytope. It is well known that such scalar optimization leads to Pareto optimal

solutions; furthermore, for a convex D, the set Par (D) can be entirely explored by varying the

vector w (see corollary 1). Essentially, the exploration of Par (D) corresponds to the exploration

of W ; such approach is often called the weighting method. The problem of such approach, is that

the way the vectors should be selected from W is not specified. As consequence, there are no clear

directions for the exploration of Par (D), and this becomes more and more a limit when the number

of options K and the number of objectives N increases. The Neighbour Search is a possible solution

of such problem; one of the main concept behind NS, is the preference set.

Def. 6. Given a point x∗ ∈ D, a vector w ∈ W is a preference vector for x∗ if

〈w, x∗〉 = min
s∈S

〈w, s〉 = min
x∈D

〈w, x〉

The collection of all preference vectors for x∗ is called preference set, and it is denoted with W (x∗).

Proposition 1. (a) If there is a point x∗ ∈ Par (D), then there is a vector w ∈ W (x∗) such that

w ∈ W . (b) If there is a point x∗ ∈ D, and a vector w ∈ W such that w ∈ W (x∗), then x∗ ∈ Par (D)

A straightforward consequence of Proposition 1, is the following corollary

Corollary 1. (a) Par (D) =
⋃

w∈W {x∗| 〈w, x∗〉 = mins∈S 〈w, s〉 = minx∈D 〈w, x〉}.
(b) W =

⋃
x∗∈Par(D) W (x∗)

A vector w ∈ W defines a hyperplane Hw

Hw =
{

x ∈ RN | 〈x,w〉 = min
s∈S

〈s, w〉
}
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Such hyperplane supports S on a subset Sw = S ∩Hw, and D on a face Fw = Hw ∩D = conv (Sw).

Both Sw and Fw belong to Par (D), in particular Fw is a Pareto face. It is easy to verify that W is

always a (N − 1)−polytope. For a point s∗ ∈ Par (S), the preference set W (s∗) is a polytope too.

In fact, the expression

W (s∗) =
{

w ∈ W |s∗ = min
s∈S

〈s, w〉 = min
x∈D

〈x,w〉
}

can be rewritten as

W (s∗) = {w ∈ W | 〈s∗ − s, w〉 ≤ 0, s ∈ S \ {s∗}}

which is equivalent to

W (s∗) =

{
w ∈ RN | 〈s∗ − s, w〉 ≤ 0,

N∑
i=1

wi = 1, wi > 0, s ∈ S \ {s∗}

}
(2.1)

that is a polytope. Of course, the dimension of W (s∗) cannot be more than the dimension of

W . In particular W (s∗) is a (N − 1)−polytope, if there is a vector w ∈ W (s∗) such that 2.1

holds with strict inequalities, and consequentially the hyperplane Hw supports S in Sw = {s∗}, so

Fw = conv (Sw) = {s∗}. In other words, iff W (s∗) has N − 1 dimensions, then s∗ is a vertex of D.

A vector w̄ such that 2.1 is defined with at least one equality, is a vector that belong to the faces

of W (s∗); w̄ is preferential for a set of points Sw̄ that includes s∗ and as many other points, as the

number of equalities. Consequentially, F w̄ is a Pareto face with one or more dimension, because it

is the convex hull conv (Sw) of a set that has at least two distinct points. Note that W (s∗) does

not necessarily contain all the faces; in fact some boundaries could be defined, according to 2.1, by

one or more of the N strict inequality condition (wi > 0, i = 1, . . . , N). The following proposition

establish a relationship between the faces of W (s∗) and the corresponding faces of Par (D).

Proposition 2. Consider a point s∗ ∈ Par (D), and a preference vector w ∈ W (s∗), and let

Fw = conv (Sw) be the corresponding Pareto face. If s∗ is a vertex of D, then (a) W (s∗) is a

(N − 1)−polytope. Furthermore (b), for (0 ≤ k < N), if w belongs to the relative interior of a

(N − 1− k)−face of W (s∗), then the corresponding Pareto faces Fw = conv (Sw) is a k−face.

All the reasoning done so far, plus proposition 2, lead to the conclusion that W is the union of

the preference set of vertices of Par (D). Such preference sets are (N − 1)−polytopes, and their

non empty intersections are always (N − 1− k)−polytopes, made of vectors that are preferential

for Pareto k−faces, k > 0. Notice that whenever a vector w is randomly extracted from W , then

with probability 1, it will belong to the relative interior of the preference set W (s∗) of some vertex

s∗, then Sw = {s∗}. On top of this, several search strategies can be built.

Def. 7. Let s∗ ∈ Par (D) be a Pareto vertex; a point s1 ∈ S \ {s∗} is a Neighbour of s∗ if it is a

vertex, and if conv
({

s∗, s1
})

is a Pareto edge of D.



CHAPTER 2. THE NEIGHBOUR SEARCH FOR CONSTRUCTING PARETO SETS 23

In other words, the neighbours of a Pareto vertex s∗ are other Pareto vertices that are connected

to s∗ through a edge, and that simply correspond, according to Proposition 2, to the facets of

polytope 2.1. Finding the facets of polytope given by the intersection of K hyperplanes is a standard

computational geometry problem, (see for instance Preparata and Shamos (1993), pp.315-320 and

pp.287-299). Article (Dorini et al., 2006a) shows that Par (S) is a connected graph, meaning that it is

always possible to link two vertices sa, sb ∈ Par (S) by moving from neighbour to neighbour, through

a finite sequence sa, s1, s2, . . . , sb. This vertex-to-vertex approach is the idea behind Neighbour

Search that enables the exploration of every vertex and edge of Par (D) in a finite number of

iterations, as shown in the following algorithm.

Algorithm 1. Neighbour Search for Convex Polytopes

Step 0 (INITIALIZATION ). Given a random w0 ∈ W , the first vertex s0 can be found by solving

the problem

〈s, w〉 → min
s∈S

= min
x∈D

〈x, w〉

Initialize a set Sq =
{
s0

}
, set Sp = � and set I = 0

Step 1 if Sq is empty then go to Step 5, otherwise extract a point s∗ ∈ Sq and update Sq = Sq \ {s∗}
and Sp = Sp ∪ {s∗}

Step 2 Compute the polytope

W (s∗) =

{
w ∈ RN | 〈s∗ − s, w〉 ≤ 0,

N∑
i=1

wi = 1, wi > 0, s ∈ S \ {s∗}

}

and extract a vector for each of its M facets: W facets =
{
w1, w2, . . . , wM

}
.

Step 3 If W facets is empty, go to Step 1. Otherwise extract a vector w ∈ W facets and update

W facets = W facets \ {w}.

Step 4 If Hw supports S only on two points: Sw = {s∗, sv}, then Fw = conv (Sw} is a Pareto edge

and sv is a vertex. Actually this is quite always the case. In case Sw =
{
s∗, s1, s2, . . .

}
, face

Fw is still a Pareto edge, resulting from the convex hull of several points laying on a straight

line. In order to find which point of Sw \ {s∗} is the actual vertex, one can solve the following

problem

〈s, w〉 → min
s∈Sw

= min
x∈F w

〈x, ŵ〉

where ŵ belongs to the set

Ŵ = {w ∈ W | 〈s∗ − s, w〉 > 0, s ∈ Sw \ {s∗}}
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Update Sq = Sq ∪ {sv}, set I = I + 1 and define a new set EI = {s∗, sv}. Finally, go to Step

3

Step 5 (TERMINATION ). Set Sp contains all the vertices of Par (D), and sets E1, E2, . . . , EI gen-

erate all the I Pareto edges, i.e. conv
(
Ei

)
belongs to Par (D)

Clearly the Neighbour Search is not the only way to apply proposition 2, for exploring Pareto

sets. Many other approaches are possible. For example the so called Neighbourhood Search, described

in Dorini et al. (2006a), is another algorithm based on the same principles, that can effectively find

every Pareto face, and not only vertices and edges. Finally, other methodologies can be developed

for performing partial searches, rather than exhaustive explorations of Pareto Sets.

2.3 Application of Neighbour Search to Markov Decision

Processes

Consider a Markov Decision Process (MDP) M = {X, A,A (•) , p (•) , g (•)}, where X is a finite state

space; A is a finite action space; A (x) ⊂ A are the sets of available actions at state x ∈ X; p (y|x, a)

are transition probabilities form X ×A to X; g (x, a) = (g1, g2, . . . , gN ) are N−dimensional vectors

of costs (losses), where (x, a) ∈ X × A. A submodel M1 of a model M , denoted with M1 ⊆ M ,

is identical to M but with a reduced set of available actions: A1 (x) ⊆ A (x) , x ∈ X. A model

M2 ⊆ M is the submodel of M that is complementary to M1, and it is denoted as M2 = M \M1,

if its action set A2 is

A2(x) =

{
A(x) if A1(x) = A(x)

A(x) \A1(x) if A1(x) ⊂ A(x)

A stationary randomized policy, is a transition probability π (a|x) from X to A concentrated on

the set A (X). A stationary policy is non-randomized if π is concentrated into a single action for

each x ∈ X: π (ϕ (x) |x) = 1. With some abuse of notation, ϕ is said to be a non-randomized policy.

According to Ionescu Tulcea theorem (Bertsekas and Shreve, 1978; Dynkin and Yushkevich,

1979), (Piunovskiy, 1997, Theorem A1.11), a policy π and an initial probability distribution µ on X

define a unique probability distribution Pπ
µ on the space of trajectories (X ×A)∞ = (x0, a0, x1, . . . ).

The corresponding mathematical expectation is denoted by Eπ
µ . Notation Pπ

x and Eπ
x are used in

case the initial distribution µ is concentrated into a single state x.

For a fixed initial distribution µ the performance of a policy π is evaluated by a vector V µ (π) =

(V µ
1 (π) , V µ

2 (π) , . . . , V µ
N (π)), where

V µ
i (π) = Eπ

µ

[ ∞∑
t=0

βtgi (xt, at)

]

and β ∈ (0, 1) is the discount factor. The set Dµ of all possible vectors V µ (π) under different
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policies π is called Performance Set ; if the attention is restricted to non randomized policies only,

the corresponding performance set is denoted with Sµ, which is a fine set of points, as the number

of non randomized policies is finite. As pointed out in (Dorini et al., 2006a, Remark 4) it has been

proved that Dµ is a convex polytope, whose vertices are generated by stationary non randomized

policies. The vertices of a face Fµ generated by a hyperplane H, supporting Dµ, also belong to the

subset H ∩Pµ. Such vertices are the performances of some non randomized stationary policies, that

can be combined in many ways (convex combinations), for creating other policies (Mixtures), whose

performances can correspond to any point of Fµ = conv (H ∩ Pµ). More in general, the whole set

Dµ can be generated by stationary non randomized policies: Dµ = conv (Pµ). The reader can find

more details on the papers (Feinberg and Shwartz, 1996; Feinberg, 2000) and on the monographs

(Heyman and Sobel, 1994; Piunovskiy, 1997).

A key aspect of the applicability of the Neighbour Search to MDPs is to understand how to

determine the set

Sw
µ =

{
s ∈ Sµ| 〈s, w〉 = min

s∈Sµ

〈s, w〉 = min
d∈Dµ

〈d, w〉
}

for a given vector w ∈ W . A possible way is the Dynamic Programming approach (DP), which is

based on the following relationship:

〈V µ (π) , w〉 = Eπ
µ

[ ∞∑
t=0

βt 〈g (xt, at) , w〉

]

that makes problem 〈d, w〉 → mind∈Dµ
equivalent to the problem

〈V µ (π) , w〉 → min
π

(2.2)

For solving problem 2.2, one has to solve the Bellman equation

v (x) = min
a∈A(x)

〈g (x, a) , w〉+ β
∑
y∈X

p (y|x, a) v (y)

 x ∈ X (2.3)

and then

min
π
〈V µ (π) , w〉 =

∑
x∈X

µ (x) v (x)

Bellman equation can be solved using the value iteration, or, if X does not have too many elements,

the policy iteration (Bertsekas, 1995). It is well known (Piunovskiy, 1997, p.53) that the minimum

of equation 2.2 can be attained by any policy that belongs to the submodel Mw with the following
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action set:

Aw (x) =

a ∈ A (x) |v (x) = min
a∈A(x)

〈g (x, a) , w〉+ β
∑
y∈X

p (y|x, a) v (y)


 x ∈ X (2.4)

Set Sw
µ is the collections of all the performances generated by all non randomized policies of Mw;

similarily, Fw
µ = conv

(
Sw

µ

)
= Dw

µ : the face Fw
µ of Dw

µ coincised with the total performance set of the

submodel Mw. It is very important to notice that Mw does not depend on the initial distribution

µ. In order to obtain the coordinates of the points in Sw
µ , one has to evaluate every policy ϕ from

Mw, solving the equation

Ji (ϕ, x) = gi (x, ϕ (x)) + β
∑
y∈X

p (y|x, ϕ (x)) Ji (ϕ, y) , x ∈ X, i ∈ {1, . . . ,K} (2.5)

so that V µ
i (ϕ) =

∑
x∈X µ (x) Ji (ϕ, x).

A second key aspect of the applicability of the Neighbour Search to MDPs is to understand how

to determine the preference set of a vertex. As already mentioned, for a vector ŵ that is randomly

selected from W , it is theoretically garanteed and practically safe to assume, that Sŵ only contains

a Pareto vertex s∗; that means, V µ (π) = s∗ for every π of M ŵ. In order to define the preference

set W (s∗), consider a fix non randomized policy ϕ̂ from M ŵ: ϕ̂ (x) ∈ Aŵ (x) for all x ∈ X.

W (s∗) =
{

w ∈ W |s∗ = min
s∈Sµ

〈s, w〉 = min
x∈Dµ

〈x, w〉
}

is equivalent to the following

W (s∗) = {w ∈ W |ϕ̂ (x) ∈ Aw (x) , x ∈ X} (2.6)

Where Aw is defined by 2.4. Clearly the preference set is not useful in the form 2.6, and it has to

be turn into an explicit intersection of halfspaces like 2.1. The equation 2.3 is identical to

v (x) = min
a∈A(x)

〈g (x, a) , w〉+ β
∑
y∈X

p (y|x, ϕ̂ (x)) v (y)

 x ∈ X, w ∈ W (s∗) (2.7)

and it is easy to verify that

v (x) = 〈J (ϕ̂, x) , w〉 , x ∈ X (2.8)

substituting 2.8 into 2.7 results in

〈J (ϕ̂, x) , w〉 = 〈Q (ϕ̂, x, ϕ̂ (x)) , w〉 = min
a∈A(x)

〈Q (ϕ̂, x, a) , w〉 x ∈ X, w ∈ W (s∗) (2.9)
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where

Qi (ϕ̂, x, a) = gi (x, a) + β
∑
y∈X

p (y|x, ϕ̂ (x)) Ji (ϕ̂, y) , a ∈ A (x) , x ∈ X (2.10)

is called Q-function, and it only depends on ϕ̂. At this point, the set Aw can be redefined with

respect of the Q-function:

Aw (x) =
{

a ∈ A (x) | 〈Q (ϕ̂, x, ϕ̂ (x)) , w〉 = min
a∈A(x)

〈Q (ϕ̂, x, a) , w〉
}

x ∈ X, w ∈ W (s∗) (2.11)

or, equivalently

Aw (x) = {a ∈ A (x) | 〈Q (ϕ̂, x, ϕ̂ (x))−Q (ϕ̂, x, a) , w〉 ≤ 0} x ∈ X, w ∈ W (s∗) (2.12)

finally the preference set 2.6 can be redefined as

W (s∗) = {w ∈ W | 〈Q (ϕ̂, x, ϕ̂ (x))−Q (ϕ̂, x, a) , w〉 ≤ 0} a ∈ A (x) , x ∈ X (2.13)

which is the intersection of halfspaces that are exclusively defined by the Q-function. For a vector w

that belongs to the relative interior of W (s∗), the set Aw resulting from 2.12, always coincides with

Aŵ. If w belongs to a face of W (s∗), then, for some x ∈ X, Aw will be more rich: Aŵ (x) ⊆ Aw (x),

thus M ŵ ⊂ Mw. The performance set Sw
µ generates a face Dw

µ given by the convex combinations of

non randomized policies in M ŵ with non randomized polices of Mw \M ŵ. In particular, if w belongs

to a facet of W (s∗), then Dw
µ is a edge, and most likely, all the policies of Mw \M ŵ, generate the

other edge, hence, Pw
µ = {s∗, sv}, (see Algorithm 1, Step 4 ). However, in the general case, submodel

Mw \ M ŵ could contain non randomized policies, resulting in several distinct points laying on a

straight line. In such case, sv and the corresponding submodel should be determined. A possible

action scheme follows:

a) extract a non randomized policy ϕ from Mw \ M ŵ, and calculate the function Ji (ϕ, x) , x ∈
X, i ∈ {1, . . . ,K}

b) Denoting with Ã the action set of Mw \M ŵ, verify that for every a ∈ Ã (x)

Ji (ϕ, x) = gi (x, a) + β
∑
y∈X

p (y|x, ϕ (x)) Ji (ϕ, y) , x ∈ X, i ∈ {1, . . . ,K}

if that is the case, every policy of the complementary model generate a single point that is the

other vertex of the edge: sv
i = V µ

i (ϕ) =
∑

x∈X µ (x) Ji (ϕ, x).

c) If statement in point b) is not verified, the model that generates sv can be found by solving
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the Bellman equation again; the resulting action set is the followinga ∈ Ã (x) |v (x) = min
a∈Ã(x)

〈g (x, a) , w〉+ β
∑
y∈X

p (y|x, a) v (y)

 x ∈ X

where w must belong to a set

W (s∗) = {w ∈ W | 〈Q (ϕ, x, ϕ (x))−Q (ϕ, x, a) , w〉 > 0} a ∈ Ã (x) , x ∈ X.

Introducing the scheme above, and definition 2.13, in the algorithm 1, is possible to explore the

Pareto set of a Markov Decision Process through the Neighbor Search approach.



Chapter 3

The case study: Hoa Binh system

3.1 The System

Hoa Binh is the largest reservoir in Vietnam, with a total storage capacity of 9.5 billion m3 and a

live storage of 5.6 billion m3. It has been operated in the Red river basin since 1990, its two main

purposes being flood control and hydropower generation.

3.1.1 Red river basin

Red river has a total catchment area of 169,000 km2, 50% of it lies in Vietnam, the remainder in

China and Laos (see figure 3.1).

Upstream of Hanoi the three major tributaries Da, Thao and Lo join to form the Red river

delta. This region, about 17,000 km2 of flat land only 2 m above sea level, is actually a high density

(1,000 persons per km2) mainly rural area. Delta region is now fundamental for Vietnam agriculture

and, according to government forecasts, in the next decades it will incur a strong urbanization and

industrialization. The delta (including Hanoi) has already a population of 17 million people, 70%

of the whole Red river basin population (Tinh, 1999).

Another key aspect of the system is the basin climate and its hydrological characteristics: mainly

in a subtropical area, basin climate is dominated by the monsoon winds of East Asia. This implies

a strong seasonal component in rainfall distribution. The mean annual rainfall is in the range 1200–

4800 mm, but only 20% of it falls in the dry season, from November to April. The remainders falls

in the rainy season, from May to October. Consequently the flow of the Red river varies during the

year.1

Economical and social importance, along with the vulnerability of the area (an average of 6

1from a minimum recorded discharge of 370 m3/s to a peak of 38,000 m3/s measured at Hanoi during the flood
event of 1971.

29
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Figure 3.1: Map of the Red River basin (Le Ngo et al., 2006)

typhoons a year hit the coastal area) explain the need of the population for a flood control system,

which is designed around the Hoa Binh dam and its operation.

3.1.2 Hoa Binh dam

The Hoa Binh reservoir drains the water of the main Red river tributary (see table 3.1), the Da

river.

The dam was designed to reduce the peak flood level at Hanoi by 1.5 m during flood events with

a return period of 200 years (like the one occurred in 1971). New assessments estimate that human

intervention affected the riverbed, reducing the reservoir effect to only 0.6 m Tinh (1999).

Hydroelectric power plant connected to the reservoir is equipped with eight 240 MW turbines,

corresponding to a maximum power generation capacity of 1920 MW. The annual average production
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Da Thao Lo
µ 3268.8 1968.1 2139.6
σ 2111.6 1282.8 1269.4

Table 3.1: Average and standard deviation of flows (m3/s) in the three tributaries over 20 rain
seasons (between 1963 and 1996).

is 7.8 billion kWh, approximately 40% of the whole Vietnam electric supply.

Due to its great importance for the country energy resources, maximizing hydropower production

is the second objective of Hoa Binh operation. Actually during the dry season it is the main one,

and operation of the reservoir is directly controlled by Electricity Viet Nam. Only in the period

from 15 June to 15 September, the control passes to the Central Commitee for Flood Control.

The problem faced in this work concerns these three months of the year only, when hydropower

maximization conflicts with flood control purposes so, in what follows, only this period will be con-

sidered.

Additionally to turbines, the reservoir has several discharge ways that can be controlled to raise

or lower releases. The controller may activate 12 bottom gates and 6 spillways to increase outflow

(Le Ngo et al., 2006). Whereas turbines admit continuous control (i.e. each release between 0 and

2400 m3/s is allowed), bottom gates and spillways can be only completely open or close. Obviously

spillways are not effective if water level in the reservoir is below a certain threshold (+102.5 m,

corresponding to 7.04 billion m3 of water stored).

The only rule that must be respected in releases control is that the first six bottom gates that

are opened or the last six that are closed have to be operated with 6 hours of gap between each

operation.2 The purpose of this rule is to avoid too fast variation of downstream flow, considering

that discharge through two bottom gates (1000 - 1800 m3/s each) is of the same magnitude of the

discharge through the eight turbines combined (2400 m3/s). However, if the six first bottom gates

are opened, any operation of further bottom gates and spillways is allowed.

3.1.3 Actual regulation

Operations rule actually in use for the Hoa Binh reservoir during the flood season is based on four

main key parameters (Le Ngo et al., 2006; CCFSC, 2005):

Water level at Hanoi. Because Hanoi is the most important site for flood control in the Red

river basin, the water level at Hanoi is a key parameter to measure the safety level of the flood

control system. It is also a representative characteristic for the dyke system in the basin.

Water level at Hoa Binh reservoir. As just explained, Hoa Binh reservoir plays an important
2In what follows this operating rule will be addressed as the “6 hours rule”.
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role in flood control in the basin. Keeping water level low allows to store major floods but

threatens hydropower supply.

Hydrological forecast information. One of the most important inputs for actual reservoir oper-

ation is hydrological forecast information. In this case 24-hour forecasts of the reservoir inflow

and of the water level at Hanoi are used in the regulation. Data used to perform forecasts are

flows on the Da, Thao and Lo rivers measured in upstream stations3, and outflow from the

Hoa Binh reservoir.

Season. In order to ensure both flood protection and efficient hydropower generation, three regu-

lation periods have been defined:

- Pre-flood season from 15 of June to 15 of July;

- Main flood season from 16 of July to 20 of August;

- Post-flood season from 21 of August to 15 September.

Target water levels and other parameters of the operation rule vary from period to period.

Operating rule is based on a strict hierarchy of objectives: reservoir protection is the primary one,

flood control the second and at last hydropower generation. On this basis, rule results in a sequence

of evaluation of the key parameters above, that lead to an opportune operational procedure.

For example, the procedure for reducing regular floods is applied if predicted level at Hanoi exceed

+11.50 m within the next 24 hours and level in the Hoa Binh reservoir is below +100 m. It consists

in reducing reservoir release closing the turbines; the aim is to keep level at Hanoi below +11.50

while avoiding that the water level in the reservoir exceeds +100 m.

If level at Hanoi is expected to be below the flood threshold, the operational procedures applied are

only power generation-aimed. Otherwise, if a major flood is occurring, higher levels are admitted

in the reservoir to smooth the flood event. If the stored water level reaches +120 m the priority

becomes reservoir protection and the release is then kept as much similar as possible to the inflows,

to avoid a further level raising.

This hierarchic control system is presented in Le Ngo et al. (2006), where it is modeled and

described as a decision tree. The tree is constituted by a list of more than 100 logical statements

referred to the key parameters and ordered according to the priorities given.

The operating rule optimization proposed in Madsen et al. (2006) is based on this rule model. The

optimization is made varying seven thresholds that identifies the different operational procedures.

I.e., in the previous example the +100 m level that limits the regular floods procedure is moved

in a feasible parameter space [+100 m, +103 m] to find the optimum. The objectives optimized

are pertaining to flood reduction and hydropower production (the objectives are formally stated in

section 3.4).
3In the order: Ta Bu, Phu Tho and Vu Quang measurement stations.
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3.1.4 Available data

For this research, the data used belongs to two classes:

Measured data. Direct measures for 20 flood seasons in the period between 1963 and 1996 are

available. The time interval between each measure is 6 hours.

The measured data used are flows in the three tributaries Da, Thao and Lo.

Calculated data. Measures cover mainly a period during which the dam was not operating yet,

or not even built. Consequently, for the purpose of optimizing the reservoir operations, direct

measures of downstream variables are useless. On the other hand a hydraulic description of

the system (including the reservoir) has been implemented in the MIKE-11 model (Le Ngo

et al., 2006; Madsen et al., 2006; DHI, 2005). Thanks to this model high-quality hydraulic

simulation of the system are available for the 20 seasons of measure as if the reservoir was

already operating, obtaining estimations of the downstream variables of interest. Also this

data are available with time intervals of 6 hours.

The calculated data employed are reservoir water level and release, and water level in Hanoi.

The further information available about the system are the release functions for bottom gates

and spillways and the production curve for turbines, expressing hydropower generation in relation

to headwater and flow through turbines. The release functions are given by several (71) points, the

production curve by an analytical interpolation function. Both are described in section 3.2.

3.2 The Models

In this section the modeling of the Hoa Binh system is detailed. A logical scheme of such system is

showed in figure 3.2 (Madsen et al., 2006; Le Ngo et al., 2006).

Beside the planning model that is used in the optimization process, two more models are consid-

ered here:

The Validation Model. In this work a comparison term is offered by the studies of Le Ngo et al.

(2006) and Madsen et al. (2006). Also if the aims are different, and consequently the results

can not be directly compared, their work is used as a validation test. With this purpose a

second model is prepared to verify some of the assumptions made4.

The POLFC Model. Once obtained an operating rule for the planning model, it could be applied

to the real system through a POLFC (Partial Open Loop Feedback Control) in order to

improve the policy effectiveness (Bertsekas, 1995). As the purpose of this work is to test the

4In particular about the discretization described in section 3.3 and about the validity of the control law optimized.
The comparison is discussed in section 3.4.
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NS algorithm, and the planning problem is already suitable for this, the POLFC application

is not implemented. However, it is shortly discussed in section 3.2.7.

Figure 3.2: Scheme of the system

3.2.1 Definitions

The variables used in what follows are:

- wDa
t , wThao

t , wLo
t ∈ R+, average flows (in m3/s) in the three tributaries during the time step

[t, t + 1).

- bt ∈ X1, number of dam’s bottom gates opened at time t.

- st ∈ X2, reservoir’s storage (in billion m3) at time t.

- ht ∈ X3, maximum water-level at Hanoi registered during the time-step (t− 1, t].

- at ∈ A, regulation of dam’s release during the time step [t, t + 1).

- rt ∈ R+, average release from the reservoir (in m3/s) during the time step [t, t + 1).

- ∆t ∈ R+, duration (in hours) of the time step [t, t + 1).

3.2.2 Time-steps

Different time-steps have to be considered in the model setting: the main constraint for the choice

of the minimal pace come from the available measures, which have a 6-hours interval between each.

The control time-step can also be reasonably considered 6-hours long, remembering the “6-hours

rule” described in section 3.1.3 that limits application of more frequent decisions.
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On the other hand, a 6-hours time-step could not be practical (nor really useful) for a model with

only planning purpose. In fact, managing a system with 6-hours time-steps for seasons of 4 months

could only strongly increase the state dimension without bringing effective improvements. Outside

major flood events, actually, a decision-making with frequency higher than daily seems normally not

necessary. The implementation of the POLFC will anyway give a more detailed control when it will

be necessary.

Consequently, for the planning and validation model a 48-hours time-step is used, with decisions

made of a sequence of 8 elementary controls (see section 3.2.4). This is both to keep models state-

dimension low, and to make easy to integrate, for example, a 6-hours time-step POLFC with the

policies obtained.

3.2.3 The upstream model

Inflows to the system from the three tributaries are wDa
t , wThao

t , wLo
t . Their description changes in

the three models and it actually represents the main difference between them. The POLFC model

description must be the most accurate. The two other will be simpler.

wDa
t , wThao

t , wLo
t are expressed in m3/s and represent the average inflows from the three rivers,

assumed equally distributed throughout [t, t + 1). In all the three models, they are treated as

stochastic variables:

wDa
t ∼ φDa

t (·), wThao
t ∼ φThao

t (·), wLo
t ∼ φLo

t (·)

The description of inflows for the POLFC model is not detailed in this thesis, but in section 3.2.7

its form is discussed.

For the other two models purely stochastic variables are used, lognormal distributed:

log wDa
t ∼ N(µDa, σDa), log wThao

t ∼ N(µThao, σThao), log wLo
t ∼ N(µLo, σLo) (3.1)

The parameters of the distributions are different for the planning and validation model:

Planning model. To calibrate the inflows model all the available time-series (20 years) have been

used. Through the analysis of these series, however, it has been decided to consider only the

central period of each (i.e.: from 1 July to 2 September). This period is the core of the flood

season, when rainfall is more abundant and water management is more delicate. In figure 3.2.3

average and standard variation for the Da river flows during the season are shown; the period

considered is indicated by the vertical lines.

Validation model. The purpose of this model being the comparison with Madsen et al. (2006), it

has been calibrated using the synthetic time-series presented in the cited article. This series

is made of four flood-season records: the 1971 series (i.e. the inflows that generated the most

severe flooding recorded) and three synthetically generated seasons. Such series have been
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generated scaling existing records in order to obtain an Hanoi flooding of the same level of the

1971’s.

This operation results in a inflows scenario more severe than the historical one and more

challenging for flooding prevention policies. Moreover, some optimization result is available

for this scenario. These series are, consequently, a good benchmark for the model and the

consequent MDP described here.

The distribution parameters for the two models are listed in table 3.2
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Figure 3.3: Average and standard deviation of the Da river flow during the rain season

Model µDa σDa µThao σThao µLo σLo

Planning 8.1609 0.51357 7.5772 0.54717 7.7071 0.4857
Validation 8.5649 0.4709 7.9644 0.5756 8.0523 0.4941

Table 3.2: Parameter set for inflows distribution

This simple description of the inflows presents two main issues:

- a purely stochastic model does not take into account the inflow self-correlations typical of a

large basin,

- a stationary model does not represent the seasonal variations of rainfall.
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A classical solution to these issues is, for example, the use of ARMA models as suggested by Lamond

and Boukhtouta (2002). However in this work the first issue has been indirectly faced introducing an

auto-regressive component in the downstream model (i.e.: the model that estimates Hanoi water-

level, detailed in section 3.2.5). Further, the role of taking into account any self-correlation and

time-dependence of the inflows is left to the POLFC, which can deal with it without surcharging

the planning phase.

3.2.4 The reservoir

Figure 3.4: Reservoir model scheme

The storage

The reservoir storage (s) can vary between 4.4 and 10.45 Gm3, and its evolution is described by the

mass-balance differential equation:

ds(t, s, b, a)
dt

= it(s)− rt(s, b, a), s ∈ X2 = [4.4, 10.45] , (3.2)

where it(s) is the net inflow in the reservoir at time t (expressed in m3/s). It can be generally

expressed as

it(s) = wDa
t − et(s) + qt(s)
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where et(s) is the instant evaporation from the reservoir depending on the water surface. It is

assumed that this term can be disregarded during the flood season, when air moisture is generally

high. qt(s) is the rainfall over the reservoir. Considering the surfaces of the basin producing the

inflows and of the reservoir, also this term is disregarded. Consequently equation 3.2 can be written:

ds(t, s, b, a)
dt

= wDa
t − rt(s, b, a) (3.3)

This equation can be integrated on a time interval [t, t + τ ]:

st+τ (s, b, a) = st + (wDa
t − rt(s, b, a)) · τ (3.4)

where wDa
t and rt(s, b, a) are, respectively, the average instant inflow from the Da river and the

average instant release from the reservoir in the τ interval.

As described in section 3.2.2, the control could change each 6 hours. On the other hand, a such

time-step is too long to accurately describe dependence of outflow from storage s. Then the choice is

τ = 1200 s, after a sensitivity analysis: the release variation have been measured from the reference

case of 1-second time-steps both in a fast-filling situation and in a fast-emptying one for several τ

values. The 20-minutes pace performed as a good trade-off between precision (difference from 1s-case

< 0.1 %) and number of iterations per time-step (18 per 6-hours step, 144 per 48-hours step).

Finally, the rt(s, b, a) term in equation 3.4 is a linear interpolation of the instant release curve

(in what follows shortly called release curve) considered constant over a 20-minutes interval5.

The release curve

The release from the reservoir is the sum of several terms, corresponding to turbines, bottom gates,

spillways and extra-spillways.

The turbines can release from 0 to 300 m3/s each, corresponding to a total range, completely

controllable, from 0 to 2400 m3/s.

The release curves for spillways and bottom gates that, as stated, can be only completely closed

or opened, have been interpolated from disposable data points (see figure 3.5). Two 4th-order

polynomial curves have been used, with a R2 value of 0.9996 and 0.998 respectively for bottom gates

and spillways.

In dam description there is no automatic spillway for over-storing events. This probably because

the main priority of the actual regulation (see section 3.1.3) is to prevent such events to protect

dam. However in the present model such priority is not given; consequently a upper limit to storage

capacity must be set. This limit has been implemented as an additional automatic release that
5Also a quadratic interpolation for the release curve has been experimented. Actually, noise in the points defining

the curve was too high to obtain a smooth second derivative of the curve itself, and it was more convenient to stop
at the first order.
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Figure 3.5: Release curve for each bottom gate and spillway

prevents the reservoir to store more than the maximal capacity (i.e.: 10.45 billion m3). To describe

the dam-protection priority in the model, a further cost is added, the upstream flooding, that is

presented in section 3.2.6.

The control system

Description of controls as a simple release decision is not straightforward for the Hoa Binh reservoir.

As mentioned, in facts, many release-way are available, different time-steps should be used in the

models and the 6-hours rule limits the operations.

Some hypothesis are made on the control system:

• There is no point in keeping any bottom gate or spillways open if turbines are closed. In other

words, until the maximum turbines outflow capacity is reached, any further release must be

done through turbines;

• There is no difference in releasing a certain flow through bottom gates or spillways.

• Each of the eight turbines can be only opened or closed. This corresponds to a 9-classes

discretization of the release range [0,2400] m3/s.

Controls are implemented in terms of “release-ways opened at the end of the time-step”. This

means that given a control as “all turbines and bottom gates opened, one spillway open”, the system

will react opening or closing any release-way necessary to reach, as soon as possible, the desired

configuration, and then keeping it until next decision is taken.
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“As soon as possible” is to underline that not any control can be immediately executed. Actually,

if time-step is too short, some controls can not be completed before another decision is taken6.

On the other hand, this description allows all possible regulations only for a 6-hours time-step.

For a longer one some possible regulation is lost (e.g.: the alternate opening and closing of a bottom

gate each 6 hours) but a reasonable set of it is maintained. This assumption is part of the validation

discussed in section 3.4.

The obtained control set A is defined:

A = {1, . . . , 27} (3.5)

The meaning of each decision is described by:

at = 1 → no release-way opened at time t + 1,

at = i, i ∈ [2, . . . , 9] → i− 1 turbines opened at time t + 1,

at = i, i ∈ [10, . . . , 21] → 8 turbines and i− 9 bottom gates

opened at time t + 1,

at = i, i ∈ [22, . . . , 27] → 8 turbines, 12 bottom gates and

i− 21 spillways opened at time t + 1,

(3.6)

To implement the 6-hours rule, and so to describe bottom gates dynamics in the model, the dimension

b is added to the state of the system, defined as follow:

bt = 1 → no bottom gates are opened at time t,

bt = i, i ∈ [2, . . . , 6] → i− 1 bottom gates are opened at time t,

bt = 7 → 6 or more bottom gates are opened at time t.

6As an example, it can be considered a 24-hours time-step: if an “all bottom gates opened” control is given and all
bottom gates are closed, the control execution will require 30 hours (6 hours for each bottom gate, the first opened
immediately). Before this time passed, another decision is taken.
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The admitted control set At can be consequently defined as A(bt) 7, and the b-state evolution is

described by the deterministic equation:

bt+1 =


1 if at ≤ 9

at − 8 if 9 < at < 15 , at ∈ A(bt)

7 otherwise

(3.7)

The hydropower plant

Let us define

hUpstream
t = 46.758 · s0.402

t

hDownstream
t = 8 · 10−12 · r3

t − 2 · 10−7 · r2
t + 2.3 · 10−3 · rt + 10.936

∆ht = hUpstream
t − hDownstream

t (3.8)

where hUpstream
t , hDownstream

t are the water levels, respectively upstream and downstream8, and

consequently ∆ht is the headwater.

Let rTurbines
t ∈ [0, 2400] the average release through turbines (m3/s) during [t, t + 1), and Pt ∈

[0, 1920] the average hydroelectric production (MW) during [t, t + 1). rTurbines
t is defined by:

rTurbines
t = min(rt, 2400) (3.9)

The power generation is described by the function:

Pt =


rT urbines

t ·3.6
10.56−0.069·∆ht

if ∆ht < 88m,

rT urbines
t ·3.6

7.12−0.03·∆ht
if ∆ht >= 88m.

(3.10)

As described in section 3.2.4, the reservoir integration time-step τ is different from ∆t, and

so n = t/τ values st+kτ and rt+kτ , k ∈ [1, . . . , n] are available. Consequently a time-aggregation

7For [t, t + 1) = 48h, A(bt) ≡ A because each control can be applied in the timestep, while for ∆t = 6h, A(bt) is
defined as follow:

A(1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
A(2) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A(3) = {11, 12, 13},
A(4) = {12, 13, 14},
A(5) = {14, 15, 16},
A(6) = {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27},
A(7) = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}.

8The two functions are interpolation from the data set; respectively R2=0.9996 and R2=0.9917
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criterion for Pt+kτ must be selected:

Pt =
1
n

n∑
i=1

Pt+iτ (3.11)

3.2.5 The downstream model

Figure 3.6: Downstream model scheme

The downstream model purpose is to evaluate the water level at Hanoi, through the relation:

ht = f(rt, wThao
t , wLo

t ) (3.12)

As mentioned in section 3.2.3, to take into account auto-regressive dependence of inflows, an auto-

regressive term is introduced in the downstream model. So h is treated as a state variable, described

by equation 3.12 that becomes:

ht = f(rt, wThao
t , wLo

t , ht−1) (3.13)

Further, the data set available for ∆t = 48h is larger than rt, wThao
t , wLo

t , ht−1. In fact the reservoir’s

equation integration provides the series:

{rt, rt+τ , rt+2τ , . . . , rt+7τ} ,

with τ = 6h. Consequently, the h state evolution can be better described by:

ht = f(rt, . . . , rt+7τ , wThao
t , wLo

t , ht−1), if ∆t = 48h (3.14)
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To estimate this relation from the time series an artificial neural network has been implemented (in

what follows: ANN). A feed-forward network made by two layers of neurons has been used.

The calibration series is made by 7000 inputs structured as follow: 8 6-hours average releases,

Thao and Lo 48-hours average inflows and Hanoi maximum level in the past 48-hours. A series of

2712 inputs has been used for validation.

Good results are obtained (see figure 3.7) with an hidden layer of 10 neurons with a tan-sigmoid

transfer function; followed by a linear, single-neuron output layer.
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Figure 3.7: Neural network calibration results

3.2.6 Costs-per-stage

Three cost-per-stage function are defined.

Downstream Flood. It represents the Hanoi-flooding cost.

Hydropower Generation. It is the hydroelectric power plant unemployed capacity during the

time-step [t, t + 1].

Upstream Flood. This cost shows if the water level approaches or exceed the reservoir critical

storage capacity.
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For the planning model the costs-per-stage are defined:

gDFlood
t =

{
0

(ht − 11.5)3
if ht ≤ 11.5 m

else

gHyPow
t =

{
0

1920− Pt

if Pt = 1920 MW

else

gUFlood
t =

{
0

(st − 9)5
if st ≤ 9 · 109 m3

else

(3.15)

3.2.7 Partial Open-loop Feedback Control

As mentioned in the beginning of this chapter, the problem setting described is intended for the Hoa

Binh reservoir operations planning.

So, optimal controls resulting from that optimization will not be applied directly on the real

system. However they could be used, through the corresponding optimal cost-to-go function, in an

on-line control system that will provide the actual regulation to apply to the reservoir.

This approach has positive effects both on the planning process, and on the system actual

management. On the planning side, simplifications can be done without relevant losses on final

performances; consequently the costs linked to optimization (time, resources) are reduced. On

the management side it is possible, thanks to on-line control, to involve in the decision a set of

informations about the system not available for the planning process. A typical example of such

informations for reservoir operation are weather forecasts over the basin.

One effective on-line control system is the Partial Open-loop Feedback Control, discussed by

Bertsekas and Tsitsiklis (1996). Using a POLFC consists in determining the control to apply at time

t through a finite-horizon optimization computed at the same time t. Such optimization is connected

to a previous less detailed planning, for example on a infinite horizon, through the optimal cost-to-go

function: the final step of each POLFC optimization must coincide with a step of the planning; the

cost-to-go function of the planning is used as a final cost for the POLFC.

The main difference between using a POLFC and applying directly the planning result, is the

availability, at time t, of a vector It of further information about the system. The optimization

problem over the finite horizon h becomes:

a∗t = arg min
at,p[t+1,t+h]

E{wτ}

[
t+h−1∑

τ=t

gτ (xτ , aτ , wτ ) + gt+h(xt+h)

]
(3.16)

That means to determine the optimal policy on the period [t, t + h] using as a penal the optimal
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cost-to-go of the final state given by the solution of the planning problem; and using the noise distri-

butions conditioned by the available information It : wDa
t ∼ φDa

t (·|It), wThao
t ∼ φThao

t (·|It), wLo
t ∼

φLo
t (·|It).

Two remarks:

1. The length of the horizon h is decided mainly with regards to noise distribution: if ∀τ >

h̄, φ·t (·|It) = φ· (·), there is no point in the use of any h ≥ h̄, because the additional information

It does not change the a priori knowledge of the system used in planning. Beside, as on-line

policy must be calculated in a really short time, h must be reasonably small.

2. Solving problem 3.16, it is possible to consider directly one aggregated objective. This because

the planning phase is already accomplished and the decision maker preference is already known

through a λ weights-vector.

3.3 From the model to the MDP

Once defined completely the model, expressing it as a finite Markov Decision Process consists of two

phases:

Discretization. To obtain a finite process, the state, control and inflow spaces must be discretized

and finite. In this phase a classification for these spaces is defined.

Simulation. For all initial states, given controls and stochastic inflows, the evolution of the system

has to be simulated, to obtain the final state, its probability and the pertaining costs.

The latter phase could be done through a Montecarlo simulation, which does not require a discretiza-

tion of the inflows. Although, given the model of the inflows described in section 3.2.3, which admits

that the stochastic distribution is known, the exhaustive simulation on the discretized inflows-space

is more convenient.

3.3.1 Discretization

As described in section 3.2.4, the control description used for the system is already defined on a

finite set A = {1, 2, . . . , 27}. Differently, the system’s state x = (b, s, h) is defined in a 3-dimensional

space X = X1×X2×X3. Only the component X1, which represent the bottom gates configuration

b, is already discretized.

To decide the X2 discretization, some alternatives have been tested through simulations. A set

of 6 alternatives has been considered, ranging from 11 to 81 storage classes. Simulations have been

run constraining the state s into the defined classes. The whole data set of 20 rain-seasons is used

as inflows scenario, and three different policies are applied. The variation from the non-classified

simulation, through the distances in cost values is evaluated. In figure 3.8 is showed the maximal cost
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distance from the non-classified simulation, over all the time-series and scenarios, for the different

classifications. The 21-states discretization has been implemented.
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Figure 3.8: Maximal cost-distances from the continuous-state simulation

A similar approach to classify the X3 space has been tried. However, the neural network used

for the downstream model (see section 3.2.5), gives bad results with classified inputs. A different

approach has consequently been used. Several classes-sets has been defined, and a new ANN trained

for each one. Then the selection is done among these couple ANN-classes following three criteria:

Precision. The searched ANN must offer a good description of the system. It means that the

estimations of the h-class have to be accurate.

Pessimism. The main purpose of the reservoir is to prevent flooding in Hanoi, and the ANN is

describing exactly this part of the system. So a model that, also when not accurate, never

underestimates the Hanoi level h is needed.

Smallness. To keep the state as smaller as possible, the previous objectives must be satisfied with

the minor number of classes.

The result of this selection is a 9-classes discretization. In figure 3.9 is shown the validation result

of the training. It is possible to see the good R result, and that the estimation errors committed are

mainly overestimations.
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The classes are described on table 3.3. It is noticeable that classes are more narrow around

the flooding limit (+11.5m). This pattern showed consistently better results compared to equally

distributed classes.
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Figure 3.9: Validation results for the selected discrete ANN

Also the inflows-space is a 3-dimensional space W = WDa × WThao × WLo. For each of the

three dimensions a equally probable class definition is used. It is considered then, for simulation

purposes, the .5-quantile of each class. The resulting W space is a set of equally probable inflows

combinations w = (wDa, wThao, wLo).

3.3.2 Simulation

The aim of the simulation is to determine:

p(y|x, a) is the probability transition: X ×A → X, ∀x, y ∈ X, ∀a ∈ A, (3.17)

g(x, a) = (gDFlood, gHyPow, gUFlood), ∀x ∈ X, ∀a ∈ A. (3.18)
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class lower limit (m) upper limit (m)
1 - 8
2 8 9.75
3 9.75 10.75
4 10.75 11.25
5 11.25 11.5
6 11.5 11.75
7 11.75 12.25
8 12.25 13.25
9 13.25 -

Table 3.3: Classes of set X3

A series of one-stage simulation of the system, as described in section 3.2, are ran varying the

initial state, the control and the inflows through all X ×A×W , recording the costs generated and

assigning the probability of w ∈ W to the final state y ∈ X of the single iteration.

The result of such operation are the functions p(·), g(·) that, united to the sets {X, A,A(·) ≡ A},
form the Markov Decision Process searched.

3.4 Validation

After the setting up of the MDP, a validation for some of the modeling choices is required. In

particular the validation discussed here focuses on two aspects of the model:

1. The state discretization,

2. The control law structure.

More in detail, this validation aims to verify if a stationary policy, defined on the state classes

listed in section 3.3, with decisions taken each 48 hours among the set A defined in 3.2.4, can obtain

good performances when applied to the system. For this purpose, a comparison with the results

obtained by Madsen et al. (2006) is described in this section.

In the cited article, a rule-curve optimization is performed, using GA. As stated in section 3.1.3,

the actual operation rule and the optimized one are based on four key parameters (i.e.: water-levels

in Hanoi and reservoir, inflows measures, season9), for which several thresholds are defined. A

hierarchical check of parameters values (i.e.: a nested structure of “if. . . else. . . ” statements) defines

the decision to apply.
9The control law of the MDP discussed here is based only on the two water-levels. The POLFC could take into

account the two other parameters.
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In the optimization performed by Madsen and Le Ngo, seven of the thresholds are varied in a

range, with the aim of minimizing two objectives representing “Hanoi flooding” and “hydropower

potential deficit”10, calculated for the four synthetic flood seasons described in section 3.2.3. Such

time-series are showed in figure 3.10.
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Figure 3.10: Synthetic series for validation (Madsen et al., 2006)

The two objectives minimized are11:

V DFlood,V =
4∑

i=1

max
j

(hi,j)2

V HyPow,V =
4∑

i=1

1
T

T∑
j=1

(117− level(si,j))2 (3.19)

where hi,j is the level in Hanoi at the j-th stage of the i-th season, and level(si,j) is the water-level

in the reservoir expressed in m, at the j-th stage of the i-th season.

The result achieved is a Pareto front for these two objectives, presented in figure 3.11. It can be

noticed that the present regulation is largely dominated.
10Actually Madsen et al. (2006) performs a two-stage optimization: once obtained the results of the described

minimization, another one is done varying other thresholds to improve two more objectives, related to hydropower
production. Also the time-series used varies from one optimization to the other. In this thesis only the comparison
with the first optimization is done. A second validation, requiring the creation of another MDP, should not bring
further important information.

11The validation objectives are marked with a V to distinguish them from the optimization ones.
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Figure 3.11: Pareto front proposed in Madsen et al. (2006)

The validation consists in an optimization of the model described in section 3.2, over the four

synthetic seasons, minimizing the two objectives V DFlood,V , V HyPow,V .

One additional constraint has been added to the validation model: in present regulation, the

control rule imposes to release at least the inflow quantity of water, when the level in the reservoir

attains +117 m. This is made with the purpose of preventing a dam overflow. Madsen and his

colleagues does not change this constraint in their optimization. To keep this constraint effective in

the present validation, and because an exact application of it is impossible12, it has been strengthen

in the model imposing that for each reservoir storage excessing the +117 m level, all the release way

must be opened. I.e.:

∀x = (b, s, h) ∈ X : level(x) ≥ +117m, A(x) = {27} (3.20)

In the optimization model, as described in section 3.2.6, one further objective is defined to avoid

reservoir’s overflows. For such reason this constraint is not necessary on the optimization phase.

The validation model, with the constraint 3.20, has been optimized over the synthetic series. As

this is not an MDP optimization, but a simulation-optimization approach, the Neighbour Search is
12The control law does not depend on inflows measures.
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not applicable to this case. The method employed is the Noisy Cross-Entropy algorithm (Rubinstein,

1999; Dorini et al., 2006b). The application of the algorithm to this case will be the subject of a

further paper. Here only the results are shown, in figure 3.12. The validation non-dominated policies

corresponds to different objective weights; the policies signed as “Minimum downstream flooding”,

“Compromise alternative”, and “Minimum hydropower deficit” are shown, as examples, in appendix

A.
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Figure 3.12: Results of the validation

Figure 3.12 shows that validation policies are, at least, never dominated by solutions by Madsen

et al. (2006). Moreover some of the validation policies dominate, partially or entirely, the whole

Pareto-front described in the cited article.

This result confirms that the proposed control law structure can perform better than the present

regulation structure, also if the latter is improved through optimization. Also the discretization

made of the state space is validated, as it gives a support to policies detailed enough to perform as

shown.

3.5 Optimization

The achievement of the preceding phases is a Markov Decision Process with 1323 states and 27

available controls, describing the Hoa Binh system.



CHAPTER 3. THE CASE STUDY: HOA BINH SYSTEM 52

A DP optimization for a given weights-vector w requires an average of 6 seconds on the available

computers. To calculate the Q-function for a policy ϕ through the policy-evaluation (PE) process

(i.e.: iterating the equation

Q(x, u) = g(x, u) + 〈p(y|x, u), Q(y, ϕ(y))〉 (3.21)

until convergence) requires an average time of 4 seconds, including the Neighbor Search. In fact

this process is computationally similar to DP, but generally needs less iterations to converge, as the

policy is fixed.

However, in a 3 or more objective case, if two neighbours ϕ1, ϕ2 of a given point ϕ3 are known

with their Q-functions Q1 and Q2, the system{
〈Q1, wA〉 = 〈Q3, wA〉
〈Q2, wB〉 = 〈Q3, wB〉

(3.22)

can be considered, where wA and wB are the weights corresponding to the edges between ϕ1 and

ϕ3 and between ϕ2 and ϕ3. If system 3.22 admits one and only one solution (i.e. iff the edges

corresponding to wA, wB are not aligned), the Q3 function can be computed solving it. Several

efficient algorithms are available to find the solution of a linear system and such calculation requires,

in the case considered, a time of magnitude 10−1 seconds allowing, when it can be applied, a relevant

time gain.

It must be noticed that the solution of the equation 3.21 (the more time-consuming operation of

the whole process) suffers of the curse of dimensionality, i.e. increasing the number of state-variables

leads to an exponential growth of the calculation-time. In the other hand increasing the number

of time steps, using a cyclic system, causes only a linear increase of calculation-time, as for DP.

However, applying the Neighbour Search in cyclic system cases requires to operate on the enlarged-

state Q-function (i.e.: including the time variable). As several Q-function must be stored during

the optimization, in order to exploit as often as possible the system 3.22, memory requirements

consistently increase. If memory availability does not support such increase, the optimization process

speed decrease at a rate larger than linear, although this is theoretically possible.



Chapter 4

Results

In this chapter, the optimization results (i.e.: the Pareto-front of the MDP)is presented in detail.

Further some discussion on the advantages offered by the complete knowledge of the Pareto-front,

enabled by the NS is given through a set of examples.

4.1 The Pareto-front

Figure 4.1: Detail of the Pareto front

53
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In figure 4.1 is represented a part of the Pareto-front resulting from the optimization. It is to

remark that the Pareto-front is formed by faces, as described in chapter 2. In what follows, however,

for ease of readability , the front will be represented by points, corresponding to the stationary

policies (i.e.: the vertices of the faces). In figures 4.2, 4.3, 4.4 the three bi-dimensional projections

of the front are presented with this criterion.

Figure 4.2: The Pareto front - Projection on V DFlood and V HyPow
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Figure 4.3: The Pareto front - Projection on V DFlood and V UFlood
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Figure 4.4: The Pareto front - Projection on V HyPow and V UFlood
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The analysis of the solutions providing the optimum for each individual objective represents the

first step toward the policies’ performance assessment. This usually provides insight to understand

patterns with regards to the different purposes of the policies. Such points are highlighted in the front

projections, and the corresponding policies are detailed in appendix A (sections A.2.1, A.2.2, A.2.3).

The policies are there shown both explicitly (as tables) and through their simulated application to

the 20-years long available time series1.

Some preliminary observation can be made, comparing the extreme policies for V HyPow and

V UFlood with the V DFlood one, :

- The policy minimizing V HyPow tends to keep the reservoir quite full, releasing as often as

possible only through the eight turbines: as it can be observed from simulated trajectories, in

several years the water storage reach the maximum allowed. This behavior is dangerous both

for the dam and for Hanoi. In fact, one more flooding is registered downstream (season 2) that

could be avoided applying the V DFlood optimal policy.

- The optimal policy for V UFlood shows an opposite trend: it maintains the water level in the

reservoir as low as possible. This also causes the Hanoi flooding in the second season, but only

with the aim of keeping the storage capacity unused. In the remaining seasons, this policy

performs well regarding to the downstream flooding control. It yields a consistent increase of

hydropower deficit.

It could be argued that the degradations shown by the first and second objectives when this

policy is applied are not outweighed by the lowering of the reservoir level, that is kept always far

from the attention threshold. The decision-maker could be probably interested in policies that

exploits more the reservoir storage capacity, in order to protect Hanoi and produce electricity.

As it was expected, V HyPow is conflicting with the two other objectives. This because it increases

with the available flow through turbines and with the water level in the reservoir (essentially for

its effect on headwater). The conflict between V HyPow and V UFlood is illustrated in figure 4.5 by

means of a parallel coordinates plot (Wegman, 1990), where several policies are represented as lines,

connecting the values of the objectives of the policy.

The intersections are a visual measure of the conflict: if, moving from one alternative to another

one objective increases while the other decreases (i.e.: the objectives are conflicting), the lines

corresponding to the alternatives have opposite orientations. The parallel coordinates plot of non-

conflicting objectives would show non-intersecting lines.
1This is just one of the possible ways to illustrate a policy, as it is possible to calculate different performance

parameters that synthesize the simulation (i.e.: maximal water levels, number of days of flooding in a period,. . . )
or it is also possible to run Markov simulations. This offers an evaluation of how the policy affects the MDP. Also
selected scenarios could be effective for a policy representation. The choice to use the historical time-series simulation
is made in order to give to the decision-maker a simple and readable information, considering that nothing is known
about his/her preferences.
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Figure 4.5: Parallel coordinates plot for the objectives V HyPow and V UFlood

More interesting is the conflict between V UFlood and V DFlood, which is illustrated in figure 4.6.

For high values of the objectives (in the plots they are normalized in a 0 to 1 range) they are

non-conflicting (i.e.: keeping the reservoir level low helps to prevent Hanoi flooding, and viceversa).

However, for solutions with good performances, the two objectives conflict.

Such behavior can be explained through the following observation: until the water-levels (both

in Hanoi and in the reservoir) are non-critical, any optimal policy will release enough to keep the

reservoir storage low, but not so much to produce a downstream flooding. However, when a critical

situation occurs, the differences between policies will become significant: a policy rewarding V DFlood

will store into the reservoir as much water as possible to try avoid Hanoi flooding, even if it will

result in a critical level for the dam. On the contrary, a policy with a lower V UFlood will release any

quantity of water necessary to keep the reservoir safe, also causing downstream floods.

4.2 Exploration of the Pareto-front

Building on the considerations presented in the previous section, it is possible to explore the Pareto-

set searching for one or more potential compromise solutions. Since the decision-maker (i.e.: the

vietnamese government) was not directly involved, this exploration is given just as a reasonable

example of a decision process based on the NS results.

Let us consider figure 4.4. This projection of the front shows two large and extremely steep
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Figure 4.6: Parallel coordinates plots for the objectives V Dflood and V UFlood
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extremes, and a relatively small “knee area”. The steepness of the front can be read in terms of

trade-off between objectives: in a nearly horizontal or vertical part of the Pareto-front, one objective

can be consistently improved with a small degradation of the other. In general, it is reasonable

to assume that the decision maker is more interested in the portions of the objective space with

low marginal rates of substitution; moreover, for the case study considered, the extreme point for

the objective non-represented (i.e.: V DFlood) is situated in that lower corner area. This offers an

additional reason to focus on this part of the front.

However, it is necessary to verify that the consistent increase of V UFlood does not cause an

unacceptable risk for the reservoir. To evaluate this risk and the variations in electrical production,

two points have been chosen on the edges of the corner area, and the corresponding policies were

simulated. The points are marked P1 and P2 in figure 4.7; the simulated reservoir levels and

hydropower deficits are plotted in figures 4.8 and 4.9.

Figure 4.7: Detail of the Pareto-front projection on V HyPow and V UFlood

Quite expectedly, both P1 and P2 show an improvement in power generation, compared to the

minimal V UFlood. However, the difference between the two points is not so consistent, and it is

concentrated in heavy rain seasons (e.g.: season 1). At the same time, if P1 keep the water-level

far enough from the upper limit, moving from P1 to P2 causes the storage to reach this limit two

additional times, on the historical scenario. The advantage in power generation does not seem to

justify the increased risk. P1 is then assumed as a good compromise alternative between V HyPow

and V UFlood.



CHAPTER 4. RESULTS 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

10

R
es

er
vo

ir 
st

or
ag

e 
(G

m
3 )

Time (seasons)

5

10

15

20

25

C
on

tr
ol

s 
ap

pl
ie

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

H
yd

ro
 p

ow
er

 d
ef

ic
it 

(G
W

h)

Time (seasons)

5

10

15

20

25

C
on

tr
ol

s 
ap

pl
ie

d

Figure 4.8: Simulation of P1
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Figure 4.9: Simulation of P2



CHAPTER 4. RESULTS 62

The decision maker may not be satisfied by the downstream flooding performance of the selected

policy P1, and he may desire to reduce the performances on the two other objectives to improve

that one. In this circumstance the a priori knowledge of the Pareto front in its entirety offers “”

advantage.

Figure 4.10 shows projections of the Pareto front on V DFlood and V HyPow corresponding to

different levels of the V UFlood objective, ranging from 2 to 4 with a .2 interval. The policy P1 is

also highlighted.

Three new policies are explored from P12:

- P3 is on the iso-V UFlood curve passing through P1. It corresponds to an improvement in

V DFlood obtained without losses on the dam-protection objective.

- P4 has the same V DFlood value than P3. The same improvement in the objective obtained

through P1→P3 is obtained through P1→P4, but with losses only in V DFlood and not in

hydropower production.

- P5 is obtained choosing an intermediate point between P3 and P4. It has the same V DFlood,

but losses are distributed between V HyPow and V UFlood.
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Figure 4.10: Pareto-front projection on V Uflood and V HyPow.

2The coordinates of the points are reported in table 4.1, and the corresponding simulations are shown in appendix
A.
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Point V Dflood V HyPow V Uflood

P1 1.1053 84.632 2.1842
P3 1.0348 124.436 2.1535
P4 1.0348 84.633 3.4862
P5 1.0348 108.792 2.5667

Table 4.1: Coordinates of points P1, P3, P4, P5

Only minor differences can be noticed among the three policies’ performances on the historical

scenario simulations. For example, applying P3 or P4 causes a peak in power generation deficit in

season 15, which is avoided applying P5.

In order to appropriately compare these alternatives, a larger set of evaluation criteria would

be required, involving synthetic series, Markov simulations, or other more sensitive parameters.

However, such fine comparison is not within the scope of this thesis.

Another advantage offered by NS approach, useful for decision “fine tuning”, is the knowledge of

the neighbourhood of all policies: given a selected point of the Pareto-front, all its neighbours can

be extracted and evaluated. Moreover, any policy with a performance lying in the neighbourhood

can be generated through randomization. An example of neighbourhood is plotted for the policy P5

in figure 4.11

4.3 Discussion

The Neighbor Search technique was shown to enable the exploration of the Pareto front efficiently

and exhaustively. In the case study considered, such method founded more than 1 million optimal

policies and all their geometrical relationships in a reasonable time.

The concept behind NS is to generate simultaneously, at each iteration of the algorithm, both

a point of the Pareto-front and the directions to find the next ones. This is possible, for a defined

class of problems including finite MDP, exploiting geometrical properties of the Pareto-front itself.

Traditional single-objective optimization techniques provide no information about exploring di-

rections in the Pareto-set. The limits of such approaches emerge when the dimensions of the searched

front increase, in terms of number of points and of objectives.

Multi-objective methods, such as MOEAs, can find several solutions per run. However, it is not

straight-forward to obtain from such heuristic methods accurate information about the Pareto-front:

nothing is known about the front’s shape between two points, and a non-trivial tuning is necessary

in order to obtain a good sampling of the Pareto-set. Moreover, only in particular cases it is possi-

ble to guarantee that the solutions found really belong to the Pareto-set and are not only sub-optimal.

The knowledge of the entire Pareto-front and of its geometrical structure (vertices, edges and

faces) substantially improves the decision-making: given two or more policies, it is always possible
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to know if other policies exists with performances lying on the hyperplane they define, and how

many they are. Moreover, if no such policies exist, the edge or face supporting them is known, and

it is possible to achieve any performance along this segment using randomized policies. This clearly

facilitates the negotiation process between conflicting stakeholders.

NS offers also a further advantage compared to other techniques: as described in chapter 2, it

generates for each policy found the directions of all the neighbours, which in further iterations are

explored following a random order. It is possible to intervene on such order to specify a directional

priority for the exploration process.

It is therefore possible to explicit such information within an interactive search, whereby decision

maker and stakeholders preferences are elicited iteratively to direct the exploration and focus on sub-

portions of the Pareto-front.
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Chapter 5

Conclusions

The focus of this thesis is to show, through a real-case application, how the NS can be useful to

improve the decision-making process for multi-objectives reservoir operation planning.

After a survey of the principal techniques employed in literature to solve such problems, the NS

algorithm has been discussed.

Further, the case-study has been presented. Hoa Binh is the largest reservoir in Vietnam, pro-

viding 40% of its total power supplies and protecting the capital Hanoi from major flooding events.

This double purpose generates conflicts in its management planning.

A model of the system has then be detailed. A control law giving 48-hours release-ways regulation

on the basis of water-levels in the reservoir and in Hanoi, and of the dam’s bottom-gates configuration

has been implemented. Inflows have been represented as a pure stochastic process while downstream

model is simulated through an auto-regressive artificial neural network.

Further, the model state-space and noise-space have been discretized in order to describe the

system as a finite Markov Decision Process.

The modeling phase is concluded by a validation of the control law structure and of discretization.

Such validation required to optimize the implemented control law over a deterministic severe flooding

scenario provided by Madsen et al. (2006). The results obtained in this phase, compared with those

obtained by the cited authors, confirmed the modeling approach used.

Once the model of the system validated, the corresponding MDP has been optimized applying

the NS algorithm. This optimization provided more than 1 million policies of the Pareto-front, and

the geometrical relationships among them.

Building on these results, an example of Pareto-front exploration was illustrated. The aim of

such exploration was to provide instances of the analysis allowed to extract selected policies from

the front:

65
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- extraction of points through a whole-front search based on objective values (i.e.: the single-

objective extremes),

- extraction of points based on the Pareto-front positioning through a visual selection (i.e.: P1

and P2, on the edges of the V HyPow − V UFlood low marginal substitution rate area),

- extraction of points through constrained movement on the objective space, both with mono

and bi-dimensional constraints (i.e.: P3 and P4 constrained to a 1D space, P5 to a 2D).

- extraction of the neighbors of a selected point using faces informations.

The first three category of extractions are possible because all the Pareto-front is known. Such explo-

rations are then theoretically feasible, but not straight-forward, also using traditional optimization

techniques. On the contrary, the last one is obtained through the geometrical properties of the front,

which are not provided by any other technique.

Some of the extracted policies have been simulated on the historical scenario, to asses their

performances.

Finally, it has been highlighted how the NS approach generates and uses more information than

traditional techniques at each iteration of the optimization process, and how this feature represents

an advantage for the decision-making process.

The case-study presented in this thesis represents a first step toward the development of a

competent DSS based on the NS, and it suggests some future research areas.

The main area to investigate is the possibility of integrating the NS into an interactive optimiza-

tion method, thereby enabling the selected exploration of the Pareto-set under the control of the

decision-maker. This method could be useful in applications that involve large state systems, for

instance multi-reservoir optimization, allowing a fast exploration of most interesting areas. In fact,

although a rule to a priori determine the number of efficient policies for a model has not be found

yet, when the dimension of the system increases, this number normally also increases, and so does

the number of iterations required by NS. In such cases a method to focus on sub-portions of the

Pareto-front would be desirable.

The application of the Neighbor Search approach to the operation optimization of the Hoa Binh

reservoir has been used as a benchmark for this new algorithm. It demonstrates that such algorithm

is an efficient and exhaustive way to find the optimal solutions for this class of problems and that it

substantially improves the decision-making process. One of the most important feature that make

NS approach so useful for decision processes is the additional geometric information this technique

provides about the Pareto-front.

In conclusion, the results presented motivate further research into the application of the NS to

water management problems. In fact, in the authors’ opinion, the NS could be successfully used to
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achieve a more efficient, conscious and participated use of such an important natural resource.



Appendix A

Policies

In this appendix the policies described in the text are shown through simulation and tables. The

simulations of validation policies (see section 3.4) are calculated over the four synthetic season

described by Madsen et al. (2006). The Pareto-optimal policies for the MDP (see chapter 4) are

simulated over the whole 20-seasons time-series. For each simulation the controls applied are shown,

together with the reservoir’s inflows and storage, and the level in Hanoi. For optimal policies, also

the hydropower deficit for each time-step is plotted.

How to read the policy tables is explained in figure A.1.

Figure A.1: How to read policies
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A.1 Validation policies

The three policies shown in this section are results of the validation process presented in section 3.4.

It can be noticed from the tables how these policies do not show continuous trends varying the

state. The reason of this behavior can be found in the optimization process that generated them.

In fact, the validation policies are the result of a deterministic simulation-optimization approach on

a given scenario (see figure 3.10). The control laws are consequently optimized only for the states

reached through the simulation. To obtain policies optimized for all states it is necessary to use a

different approach such as DP or, in this case, NS.
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b=7 1 2 3 4 5 6 7 8 9
1 8 8 0 = lock H 8 3 0 H 8 12 2 = 8 6 0 = 2 0 0 H 8 9 0 = 6 0 0 H 8 7 0 =
2 2 0 0 H lock H 7 0 0 H 8 0 0 H 7 0 0 H 8 12 2 = 8 3 0 H 8 3 0 H 1 0 0 H
3 3 0 0 H 8 12 1 = 8 7 0 = 8 0 0 H 8 9 0 = 8 12 1 = 8 12 4 = 8 2 0 H 8 1 0 H
4 1 0 0 H 7 0 0 H 8 12 4 = 6 0 0 H 8 12 4 = 8 5 0 H 8 1 0 H 8 7 0 = 7 0 0 H
5 8 6 0 = 8 2 0 H 8 2 0 H 8 12 5 = 8 6 0 = 8 12 5 = 8 12 0 = 8 2 0 H 8 11 0 =
6 8 3 0 H 8 5 0 H 4 0 0 H 8 12 1 = 8 12 4 = 8 5 0 H 6 0 0 H lock H 8 12 5 =
7 8 12 0 = 8 12 3 = 8 12 6 = lock H 2 0 0 H 8 3 0 H 8 6 0 = 8 12 2 = 1 0 0 H
8 8 10 0 = 8 2 0 H 8 12 2 = 3 0 0 H 1 0 0 H 8 10 0 = lock H 8 9 0 = 8 10 0 =
9 5 0 0 H 5 0 0 H 2 0 0 H 8 12 6 = 4 0 0 H 8 9 0 = 8 12 3 = 7 0 0 H 8 6 0 =
10 8 7 0 = 3 0 0 H 8 12 0 = lock H 8 9 0 = 8 10 0 = 8 2 0 H 8 12 3 = 8 3 0 H
11 8 1 0 H lock H 8 11 0 = 8 8 0 = 7 0 0 H 6 0 0 H 6 0 0 H lock H lock H
12 4 0 0 H lock H lock H lock H 8 1 0 H 2 0 0 H 7 0 0 H 8 11 0 = lock H
13 8 0 0 H 8 12 4 = 8 6 0 = lock H 8 3 0 H 4 0 0 H 8 2 0 H 8 7 0 = 8 9 0 =
14 8 7 0 = 8 12 2 = 5 0 0 H lock H 8 5 0 H 6 0 0 H 6 0 0 H 8 12 0 = 8 4 0 H
15 8 10 0 = 8 6 0 = lock H 6 0 0 H 8 12 4 = 3 0 0 H 6 0 0 H 8 7 0 = 7 0 0 H
16 8 7 0 = 8 0 0 H 6 0 0 H 8 4 0 H 8 12 2 = 5 0 0 H lock H 8 12 3 = 8 8 0 =
17 8 7 0 = 8 11 0 = 1 0 0 H 8 8 0 = 8 6 0 = 2 0 0 H 8 4 0 H 6 0 0 H 8 12 2 =
18 5 0 0 H 8 12 0 = 8 3 0 H 8 12 6 = 8 5 0 H 8 10 0 = 8 5 0 H 8 1 0 H 1 0 0 H
19 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 =
20 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 =
21 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 = 8 12 6 =

b=6 1 2 3 4 5 6 7 8 9
1 5 0 0 H 8 12 2 M 2 0 0 H 8 11 0 M 8 3 0 H 7 0 0 H 7 0 0 H 8 7 0 M 8 12 4 M
2 8 9 0 M 8 8 0 M 8 12 4 M 8 6 0 M 2 0 0 H 8 9 0 M 8 12 1 M 8 5 0 = 8 9 0 M
3 8 1 0 H 4 0 0 H 8 8 0 M 8 9 0 M 8 7 0 M 3 0 0 H 8 10 0 M 8 12 4 M 1 0 0 H
4 8 1 0 H lock H 8 9 0 M 8 12 2 M 8 12 5 M 8 5 0 = 8 6 0 M 8 1 0 H 8 6 0 M
5 8 2 0 H 8 2 0 H 8 12 6 M 8 5 0 = 4 0 0 H 8 6 0 M 5 0 0 H 8 5 0 = 8 11 0 M
6 4 0 0 H 8 6 0 M 8 1 0 H 7 0 0 H 8 6 0 M 8 12 0 M 8 1 0 H 8 11 0 M 8 8 0 M
7 8 4 0 H 8 12 2 M 6 0 0 H 8 12 3 M 8 1 0 H 1 0 0 H 4 0 0 H 8 0 0 H 8 12 4 M
8 8 9 0 M 8 9 0 M 8 12 0 M 8 9 0 M 8 12 6 M 8 1 0 H 8 2 0 H 8 12 6 M 8 4 0 H
9 8 12 2 M 8 12 2 M 7 0 0 H 8 12 1 M 8 1 0 H 4 0 0 H 8 12 6 M 8 0 0 H 8 6 0 M
10 8 1 0 H 8 12 5 M 8 0 0 H 8 12 0 M 8 0 0 H 8 4 0 H 8 12 4 M 6 0 0 H 8 12 6 M
11 8 5 0 = 8 0 0 H 8 2 0 H 8 12 4 M 8 6 0 M 2 0 0 H 8 12 0 M 8 12 5 M 8 2 0 H
12 8 3 0 H 8 8 0 M 5 0 0 H 8 12 3 M 8 0 0 H 8 12 1 M 8 10 0 M 8 12 1 M 8 12 0 M
13 8 6 0 M 8 11 0 M lock H 8 1 0 H 8 0 0 H 8 12 5 M 8 11 0 M 8 12 3 M 5 0 0 H
14 2 0 0 H 8 6 0 M 8 11 0 M 6 0 0 H 8 11 0 M 8 6 0 M 8 7 0 M 8 9 0 M 8 0 0 H
15 8 12 3 M 2 0 0 H 2 0 0 H 8 12 3 M lock H 8 12 6 M 2 0 0 H 8 12 5 M 8 12 2 M
16 8 2 0 H 8 5 0 = 8 12 0 M 8 12 4 M 8 12 0 M 8 0 0 H 8 12 1 M 8 10 0 M 8 12 0 M
17 6 0 0 H 8 12 4 M 4 0 0 H 8 12 2 M 8 12 2 M 8 12 4 M lock H 7 0 0 H 4 0 0 H
18 8 8 0 M 8 4 0 H 8 1 0 H 7 0 0 H 8 12 6 M 8 12 0 M 8 3 0 H 8 9 0 M 8 12 1 M
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M

b=5 1 2 3 4 5 6 7 8 9
1 8 12 3 M 5 0 0 H 8 2 0 H 8 1 0 H 8 12 1 M 8 9 0 M 8 3 0 H 8 4 0 = 8 12 2 M
2 8 1 0 H 8 2 0 H 8 8 0 M 8 0 0 H 8 9 0 M 5 0 0 H 8 12 5 M 8 12 4 M 8 12 6 M
3 8 12 3 M 1 0 0 H 8 0 0 H 8 9 0 M 8 12 1 M 8 12 1 M 8 11 0 M 6 0 0 H 8 4 0 =
4 8 12 0 M 8 12 4 M 3 0 0 H 8 12 5 M 8 1 0 H 8 11 0 M 4 0 0 H 8 4 0 = 8 0 0 H
5 8 5 0 M 8 2 0 H 8 8 0 M 8 7 0 M 8 12 0 M 8 2 0 H 8 5 0 M 7 0 0 H 8 5 0 M
6 lock H 5 0 0 H 8 12 5 M 8 7 0 M 8 1 0 H 4 0 0 H 8 0 0 H 5 0 0 H 2 0 0 H
7 8 5 0 M 3 0 0 H 8 2 0 H 8 4 0 = 8 9 0 M 8 12 4 M 8 3 0 H 2 0 0 H 8 4 0 =
8 8 8 0 M 8 12 4 M 8 9 0 M 8 8 0 M 3 0 0 H 8 12 2 M 8 9 0 M 8 2 0 H 8 12 2 M
9 8 12 5 M 8 12 3 M 8 10 0 M 8 9 0 M 8 11 0 M lock H lock H 8 12 5 M 3 0 0 H
10 8 0 0 H 1 0 0 H 1 0 0 H 8 9 0 M 8 12 5 M 6 0 0 H 8 7 0 M 8 12 2 M 8 8 0 M
11 8 10 0 M 3 0 0 H 8 7 0 M 8 11 0 M 8 9 0 M 7 0 0 H 6 0 0 H 8 8 0 M 8 8 0 M
12 8 11 0 M 8 12 5 M 8 12 0 M 8 1 0 H 1 0 0 H 8 8 0 M 8 12 6 M 8 10 0 M 8 4 0 =
13 8 1 0 H 3 0 0 H lock H 6 0 0 H 8 11 0 M 8 12 6 M 8 5 0 M 8 9 0 M 8 12 3 M
14 8 7 0 M lock H 6 0 0 H 8 7 0 M 8 5 0 M 8 5 0 M 8 4 0 = 8 0 0 H 8 12 6 M
15 8 12 4 M 3 0 0 H lock H 4 0 0 H 8 12 5 M 8 12 4 M 1 0 0 H 3 0 0 H 8 9 0 M
16 2 0 0 H 5 0 0 H lock H 8 12 6 M 8 1 0 H 8 9 0 M 8 12 1 M 8 7 0 M 8 12 5 M
17 8 12 3 M 1 0 0 H 8 8 0 M lock H 3 0 0 H 8 8 0 M 7 0 0 H 1 0 0 H 8 12 5 M
18 2 0 0 H 3 0 0 H 7 0 0 H 8 9 0 M 8 7 0 M 8 12 4 M 8 0 0 H 8 10 0 M 8 6 0 M
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M

b=4 1 2 3 4 5 6 7 8 9
1 1 0 0 H 1 0 0 H 8 12 3 M 8 4 0 M lock H 8 12 4 M 5 0 0 H 8 12 3 M 8 6 0 M
2 8 12 6 M lock H 7 0 0 H 8 6 0 M 8 12 2 M 8 0 0 H 8 12 0 M 8 11 0 M 8 4 0 M
3 8 6 0 M 8 7 0 M 8 12 1 M 8 1 0 H 2 0 0 H 4 0 0 H 8 5 0 M 4 0 0 H 8 6 0 M
4 8 12 4 M 2 0 0 H 8 10 0 M 8 5 0 M 8 6 0 M 8 12 5 M 8 9 0 M lock H 8 1 0 H
5 8 12 6 M 8 12 4 M 8 5 0 M 8 5 0 M 8 12 0 M 8 0 0 H 8 12 1 M 8 12 2 M 8 12 3 M
6 8 10 0 M 8 6 0 M 8 2 0 H 5 0 0 H 8 9 0 M 8 4 0 M 4 0 0 H 8 12 4 M 8 12 0 M
7 8 11 0 M 8 0 0 H 1 0 0 H lock H 8 12 6 M 8 12 5 M 8 12 5 M 8 11 0 M 5 0 0 H
8 8 4 0 M 8 3 0 = 7 0 0 H 8 11 0 M 8 6 0 M 8 6 0 M 8 6 0 M 7 0 0 H 8 12 0 M
9 8 12 4 M 5 0 0 H 8 12 0 M 8 9 0 M 8 12 3 M 8 8 0 M lock H 8 12 6 M 4 0 0 H
10 8 0 0 H lock H 8 10 0 M 2 0 0 H 8 8 0 M 8 8 0 M 1 0 0 H 1 0 0 H 8 7 0 M
11 8 1 0 H 1 0 0 H 8 12 0 M 8 8 0 M 8 8 0 M 8 12 6 M 8 8 0 M 8 10 0 M 8 11 0 M
12 8 10 0 M 3 0 0 H 8 12 6 M 8 12 3 M 3 0 0 H 8 1 0 H 8 7 0 M 8 11 0 M 8 12 6 M
13 8 5 0 M 5 0 0 H 8 5 0 M 1 0 0 H 8 12 0 M 8 0 0 H 8 2 0 H 8 1 0 H 6 0 0 H
14 8 6 0 M 8 6 0 M 8 3 0 = 8 12 0 M 8 10 0 M 8 12 5 M 8 12 3 M 8 12 4 M 8 0 0 H
15 3 0 0 H 8 12 1 M 7 0 0 H 8 10 0 M 4 0 0 H lock H 8 0 0 H 6 0 0 H 8 6 0 M
16 2 0 0 H 8 9 0 M 8 2 0 H 8 11 0 M 8 4 0 M 8 12 6 M 8 12 2 M 8 2 0 H 8 12 5 M
17 8 2 0 H 8 12 0 M lock H 7 0 0 H 8 4 0 M 8 12 1 M 8 12 6 M 8 8 0 M 5 0 0 H
18 8 12 5 M 6 0 0 H 8 11 0 M 8 12 3 M 6 0 0 H 1 0 0 H 8 0 0 H 8 12 6 M 8 9 0 M
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
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b=3 1 2 3 4 5 6 7 8 9
1 8 5 0 M 8 4 0 M 6 0 0 H 8 12 4 M 5 0 0 H 8 7 0 M 6 0 0 H 3 0 0 H 3 0 0 H
2 8 12 4 M 8 8 0 M 8 12 1 M 8 5 0 M 8 12 5 M 7 0 0 H 8 3 0 M 1 0 0 H 8 12 1 M
3 lock H 8 6 0 M 8 0 0 H 8 12 2 M 8 9 0 M 8 2 0 = 7 0 0 H 8 12 0 M 7 0 0 H
4 8 12 6 M 8 10 0 M 8 9 0 M 7 0 0 H 7 0 0 H 8 8 0 M 8 12 5 M 8 9 0 M 8 12 3 M
5 8 12 5 M 8 11 0 M 4 0 0 H 8 2 0 = 8 12 0 M 8 12 2 M 8 3 0 M 8 12 4 M 3 0 0 H
6 8 7 0 M 2 0 0 H 6 0 0 H 8 11 0 M 8 11 0 M 8 0 0 H 7 0 0 H 8 11 0 M 8 12 6 M
7 8 12 5 M 8 12 6 M 8 6 0 M 1 0 0 H 8 0 0 H 1 0 0 H 8 12 2 M 8 12 0 M 8 6 0 M
8 8 12 5 M 8 12 1 M 8 0 0 H 8 9 0 M 7 0 0 H 8 8 0 M 8 12 0 M 6 0 0 H 8 9 0 M
9 8 5 0 M 8 9 0 M 8 2 0 = 4 0 0 H 8 8 0 M 8 9 0 M 8 12 3 M 8 10 0 M 7 0 0 H
10 8 4 0 M lock H 8 2 0 = 6 0 0 H 8 3 0 M 3 0 0 H 8 5 0 M 8 1 0 H 8 4 0 M
11 2 0 0 H 8 2 0 = 8 8 0 M 8 3 0 M 8 6 0 M 8 1 0 H 4 0 0 H 8 4 0 M 8 2 0 =
12 8 5 0 M 8 12 1 M 8 11 0 M 2 0 0 H 8 11 0 M 8 12 2 M 8 12 0 M 8 7 0 M 8 12 5 M
13 8 12 3 M 8 6 0 M 8 3 0 M 4 0 0 H 8 6 0 M 8 12 1 M 8 12 0 M lock H 8 12 1 M
14 8 12 4 M 8 7 0 M 8 12 6 M 8 0 0 H 8 2 0 = 1 0 0 H 8 6 0 M 8 7 0 M 8 12 6 M
15 8 12 6 M 4 0 0 H 8 8 0 M 8 8 0 M 8 12 6 M lock H 4 0 0 H 8 4 0 M 8 12 3 M
16 8 2 0 = 8 9 0 M 8 10 0 M 8 12 6 M 8 3 0 M 4 0 0 H 8 0 0 H 8 4 0 M 8 9 0 M
17 8 3 0 M 8 6 0 M 8 8 0 M 8 3 0 M 8 12 0 M 8 5 0 M 8 12 4 M 4 0 0 H 8 12 4 M
18 8 10 0 M 4 0 0 H 8 12 4 M 1 0 0 H 8 6 0 M 3 0 0 H 3 0 0 H 8 3 0 M 8 12 4 M
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M

b=2 1 2 3 4 5 6 7 8 9
1 lock H 8 12 3 M 8 10 0 M 4 0 0 H 8 5 0 M 8 12 3 M 8 6 0 M 8 0 0 H 8 9 0 M
2 8 2 0 M 8 7 0 M 7 0 0 H 3 0 0 H 8 12 6 M 8 12 6 M 5 0 0 H 8 10 0 M 8 12 4 M
3 8 3 0 M 6 0 0 H 8 12 3 M 8 6 0 M 8 4 0 M 8 12 3 M 8 3 0 M 8 12 3 M 8 12 3 M
4 8 0 0 H 8 8 0 M 8 12 4 M 8 0 0 H lock H 8 7 0 M 8 12 4 M 8 3 0 M 5 0 0 H
5 8 12 5 M 8 12 6 M 8 10 0 M 8 4 0 M 4 0 0 H 8 1 0 = 8 2 0 M 1 0 0 H 8 12 2 M
6 8 11 0 M 8 5 0 M 5 0 0 H 8 10 0 M 8 1 0 = 8 12 0 M 8 10 0 M 4 0 0 H 8 8 0 M
7 1 0 0 H 1 0 0 H 8 9 0 M 8 6 0 M 3 0 0 H 1 0 0 H 7 0 0 H 8 9 0 M 8 4 0 M
8 8 7 0 M 6 0 0 H 3 0 0 H lock H 8 9 0 M 2 0 0 H 8 12 2 M 8 12 1 M 8 12 3 M
9 8 12 1 M 8 12 6 M 2 0 0 H 5 0 0 H 8 4 0 M 8 11 0 M 8 12 5 M 8 9 0 M 1 0 0 H
10 8 12 0 M 8 12 6 M 3 0 0 H 8 6 0 M 3 0 0 H 7 0 0 H 8 11 0 M 8 1 0 = lock H
11 8 12 3 M 5 0 0 H 4 0 0 H 8 12 6 M 2 0 0 H 4 0 0 H 8 12 6 M 8 1 0 = 4 0 0 H
12 1 0 0 H 3 0 0 H 8 5 0 M 5 0 0 H 8 12 1 M 8 1 0 = 8 12 3 M 8 12 3 M 8 6 0 M
13 lock H 8 4 0 M 8 5 0 M 8 12 4 M 8 3 0 M 3 0 0 H 8 12 5 M 8 12 2 M 7 0 0 H
14 8 11 0 M lock H 2 0 0 H 5 0 0 H 8 12 0 M 8 12 6 M 8 12 3 M 8 12 1 M 8 8 0 M
15 lock H 4 0 0 H 8 0 0 H 8 12 3 M 8 12 1 M 4 0 0 H 8 8 0 M 8 12 5 M 8 7 0 M
16 1 0 0 H 4 0 0 H 8 2 0 M 8 12 6 M 8 10 0 M 1 0 0 H 8 5 0 M 8 3 0 M 4 0 0 H
17 2 0 0 H 1 0 0 H 6 0 0 H 8 8 0 M 7 0 0 H 8 5 0 M 6 0 0 H 8 5 0 M 8 10 0 M
18 8 6 0 M 6 0 0 H 3 0 0 H 8 2 0 M 8 0 0 H 8 0 0 H 8 3 0 M 8 12 3 M 8 5 0 M
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M

b=1 1 2 3 4 5 6 7 8 9
1 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
2 1 0 0 = lock = 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
3 8 0 0 = 8 12 5 M 8 12 6 M 8 12 1 M 8 12 3 M 8 12 4 M 8 5 0 M 8 12 6 M 8 12 4 M
4 7 0 0 = 4 0 0 = 8 10 0 M 8 12 5 M 8 12 2 M 2 0 0 = 8 7 0 M 4 0 0 = 8 7 0 M
5 8 0 0 = lock = 8 4 0 M 1 0 0 = 8 4 0 M 8 0 0 = 8 1 0 M lock = 8 12 4 M
6 4 0 0 = 8 4 0 M 8 12 2 M 8 4 0 M 8 0 0 = 6 0 0 = 8 7 0 M 8 12 0 M 8 5 0 M
7 8 5 0 M 1 0 0 = 8 10 0 M 1 0 0 = 8 12 6 M 8 12 5 M 8 8 0 M 8 5 0 M 8 4 0 M
8 8 0 0 = 6 0 0 = 8 12 6 M 1 0 0 = 8 4 0 M 8 12 1 M 8 12 2 M 8 12 6 M 4 0 0 =
9 6 0 0 = lock = lock = lock = 8 12 5 M 2 0 0 = 8 1 0 M 8 3 0 M 8 9 0 M
10 8 0 0 = 6 0 0 = 3 0 0 = 5 0 0 = 8 3 0 M 8 11 0 M 8 9 0 M 8 5 0 M 8 9 0 M
11 4 0 0 = 2 0 0 = 8 4 0 M 8 7 0 M 8 2 0 M 8 12 2 M 8 0 0 = 8 11 0 M 7 0 0 =
12 8 0 0 = 3 0 0 = lock = 1 0 0 = 8 12 2 M 6 0 0 = 8 7 0 M 8 5 0 M 8 10 0 M
13 6 0 0 = 4 0 0 = 6 0 0 = lock = 8 12 1 M 8 12 0 M 8 5 0 M 8 0 0 = 8 12 5 M
14 5 0 0 = 1 0 0 = 5 0 0 = 8 6 0 M 5 0 0 = 2 0 0 = 4 0 0 = 8 0 0 = 8 5 0 M
15 lock = 2 0 0 = 3 0 0 = 8 1 0 M 8 6 0 M 3 0 0 = 8 1 0 M 8 7 0 M 8 5 0 M
16 lock = 8 1 0 M 8 4 0 M 7 0 0 = 8 2 0 M 5 0 0 = lock = 8 8 0 M 8 12 2 M
17 4 0 0 = 8 1 0 M 3 0 0 = 8 1 0 M 1 0 0 = 8 12 1 M 1 0 0 = 5 0 0 = lock =
18 8 1 0 M 8 7 0 M 8 4 0 M 8 3 0 M 6 0 0 = 8 4 0 M 8 12 6 M 3 0 0 = 7 0 0 =
19 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M



APPENDIX A. POLICIES 72

A.1.2 Compromise alternative
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A.1.3 Minimum hydropower potential deficit
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A.2 Optimization policies

The following tables and simulations describe the policies discussed in chapter 4.

An important aspect that can be noticed observing the simulations’ plots is the effect of the

purely stochastic description of inflows. In the series representing Hanoi levels, several flooding

events (i.e.: level higher than +11.5 m) are registered for each policy. Such flooding events, applying

the present control rule, have not occurred.

The reason of these apparently bad performances is, as stated above, the description of inflows

used in the planning model. Applying a purely stochastic model, events like several days of con-

tinuously high inflows, although registered in the historical time-series used for calibration, have a

minimal probability to happen. Any optimal policy obtained on this basis gives, consequently, a

minimal weight to this kind of events. However, the expectation for this kind of results motivated

the proposal of the POLFC described in section 3.2.7. Keeping into account the self-correlation of

inflows, this approach will compensate these lacks of the planning model, improving the resulting

policies.

A.2.1 Minimum downstream flooding
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b=7 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 2 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 2 0 H
13 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 3 0 H 8 2 0 H
14 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 2 0 H 8 3 0 H 8 2 0 H
15 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 3 0 H 8 2 0 H
16 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 2 0 H
17 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 2 0 H
18 8 5 0 H 8 5 0 H 8 5 0 H 8 5 0 H 8 5 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 2 0 H
19 8 5 0 H 8 5 0 H 8 5 0 H 8 5 0 H 8 5 0 H 8 5 0 H 8 4 0 H 8 4 0 H 8 4 0 H
20 8 6 0 = 8 6 0 = 8 6 0 = 8 6 0 = 8 6 0 = 8 5 0 H 8 5 0 H 8 4 0 H 8 3 0 H
21 8 7 0 = 8 7 0 = 8 7 0 = 8 7 0 = 8 7 0 = 8 6 0 = 8 5 0 H 8 4 0 H 8 4 0 H

b=6 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 1 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 1 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 2 0 H 8 3 0 H 8 1 0 H
14 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 3 0 H 8 1 0 H
15 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 1 0 H
16 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H
17 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 3 0 H 8 3 0 H
18 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 4 0 H 8 3 0 H 8 3 0 H
19 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 3 0 H
20 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 3 0 H
21 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 3 0 H

b=5 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 0 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 2 0 H
14 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H
15 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H
16 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H
17 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 3 0 H 8 2 0 H
18 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 3 0 H
19 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 3 0 H
20 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 4 0 =
21 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 4 0 =

b=4 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H
12 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
14 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H 8 1 0 H
15 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 1 0 H 8 1 0 H
16 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 =
17 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 3 0 =
18 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 =
19 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 =
20 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 3 0 =
21 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M
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b=3 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H 8 0 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 2 0 = 8 2 0 = 8 0 0 H 8 0 0 H
14 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 0 0 H 8 2 0 =
15 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 =
16 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 2 0 = 8 2 0 =
17 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 2 0 = 8 2 0 =
18 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 4 0 M 8 2 0 =
19 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 4 0 M 8 4 0 M 8 4 0 M
20 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 M 8 4 0 M 8 4 0 M
21 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 5 0 M 8 4 0 M 8 4 0 M

b=2 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
13 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
14 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 = 8 0 0 H
15 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 =
16 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 =
17 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 3 0 M 8 3 0 M 8 1 0 =
18 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 3 0 M 8 3 0 M
19 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 3 0 M 8 3 0 M
20 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 4 0 M 8 4 0 M 8 3 0 M
21 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 7 0 M 8 5 0 M 8 4 0 M 8 3 0 M

b=1 1 2 3 4 5 6 7 8 9
1 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
2 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
3 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
4 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
5 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
6 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
7 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
8 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
9 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
10 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
11 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
12 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
13 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 0 0 = 8 0 0 =
14 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 0 0 = 8 0 0 =
15 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 2 0 M 8 2 0 M 8 12 6 M
16 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 3 0 M 8 2 0 M 8 12 6 M
17 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 2 0 M 8 12 5 M
18 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 4 0 M 8 2 0 M 8 12 5 M
19 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 M 8 12 1 M 8 12 5 M
20 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 5 0 M 8 12 1 M 8 12 5 M
21 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 8 0 M 8 6 0 M 8 12 2 M 8 12 5 M
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A.2.2 Minimum hydropower deficit
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b=7 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
14 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
15 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H
16 8 0 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H
17 8 0 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H
18 8 0 0 H 8 2 0 H 8 3 0 H 8 2 0 H 8 3 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 2 0 H
19 8 1 0 H 8 2 0 H 8 3 0 H 8 2 0 H 8 1 0 H 8 2 0 H 8 3 0 H 8 4 0 H 8 2 0 H
20 8 1 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 3 0 H 8 1 0 H 8 3 0 H 8 4 0 H 8 2 0 H
21 8 1 0 H 8 2 0 H 8 4 0 H 8 4 0 H 8 3 0 H 8 1 0 H 8 3 0 H 8 4 0 H 8 2 0 H

b=6 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
14 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H
15 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H
16 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 1 0 H
17 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 1 0 H
18 8 2 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H 8 3 0 H 8 3 0 H 8 1 0 H
19 8 1 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 1 0 H 8 3 0 H 8 3 0 H 8 1 0 H
20 8 1 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 1 0 H 8 3 0 H 8 3 0 H 8 1 0 H
21 8 3 0 H 8 3 0 H 8 5 0 = 8 3 0 H 8 3 0 H 8 1 0 H 8 3 0 H 8 3 0 H 8 1 0 H

b=5 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
14 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
15 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H
16 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H
17 8 2 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H
18 8 2 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 0 0 H
19 8 3 0 H 8 3 0 H 8 4 0 = 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H
20 8 3 0 H 8 4 0 = 8 4 0 = 8 4 0 = 8 4 0 = 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H
21 8 3 0 H 8 4 0 = 8 4 0 = 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H

b=4 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
14 8 1 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
15 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
16 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
17 8 2 0 H 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
18 8 3 0 = 8 3 0 = 8 3 0 = 8 2 0 H 8 1 0 H 8 3 0 = 8 1 0 H 8 1 0 H 8 1 0 H
19 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
20 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
21 8 3 0 = 8 3 0 = 8 5 0 M 8 3 0 = 8 3 0 = 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
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b=3 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 1 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 0 0 H 8 0 0 H
14 8 1 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H 8 0 0 H 8 0 0 H
15 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 0 0 H 8 0 0 H 8 0 0 H
16 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 0 0 H 8 0 0 H 8 0 0 H
17 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 1 0 H 8 0 0 H 8 0 0 H 8 0 0 H
18 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 0 0 H 8 0 0 H
19 8 2 0 = 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
20 8 2 0 = 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 2 0 = 8 0 0 H 8 0 0 H 8 0 0 H
21 8 5 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H

b=2 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
11 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
12 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H
13 8 1 0 = 8 0 0 H 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
14 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
15 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
16 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 0 0 H 8 0 0 H
17 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 3 0 M 8 1 0 = 8 0 0 H 8 0 0 H
18 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 = 8 0 0 H
19 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 = 8 0 0 H
20 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 = 8 0 0 H
21 8 3 0 M 8 3 0 M 8 5 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 8 1 0 = 8 0 0 H

b=1 1 2 3 4 5 6 7 8 9
1 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
2 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
3 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
4 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
5 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
6 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
7 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
8 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
9 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
10 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
11 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
12 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
13 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
14 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
15 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 0 0 = 8 0 0 = 8 0 0 =
16 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 0 0 = 8 0 0 = 8 0 0 =
17 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 2 0 M 8 3 0 M 8 0 0 = 8 0 0 = 8 0 0 =
18 8 3 0 M 8 3 0 M 8 4 0 M 8 2 0 M 8 2 0 M 8 3 0 M 8 0 0 = 8 0 0 = 8 0 0 =
19 8 3 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 3 0 M 8 3 0 M 8 0 0 = 8 0 0 = 8 0 0 =
20 8 3 0 M 8 3 0 M 8 4 0 M 8 2 0 M 8 2 0 M 8 3 0 M 8 0 0 = 8 0 0 = 8 0 0 =
21 8 3 0 M 8 4 0 M 8 4 0 M 8 2 0 M 8 2 0 M 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 =
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A.2.3 Minimum upstream flooding
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b=7 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 4 0 H 8 2 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 4 0 H 8 3 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 4 0 H 8 2 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 4 0 H 8 4 0 H 8 2 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 0 0 H 8 4 0 H 8 4 0 H 8 2 0 H
9 8 0 0 H 8 1 0 H 8 0 0 H 8 1 0 H 8 3 0 H 8 0 0 H 8 4 0 H 8 4 0 H 8 2 0 H
10 8 0 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 5 0 H 8 0 0 H 8 4 0 H 8 4 0 H 8 2 0 H
11 8 0 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H 8 4 0 H 8 4 0 H 8 2 0 H
12 8 1 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 2 0 H
13 8 2 0 H 8 3 0 H 8 3 0 H 8 5 0 H 8 5 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 2 0 H
14 8 3 0 H 8 3 0 H 8 4 0 H 8 5 0 H 8 4 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 2 0 H
15 8 4 0 H 8 4 0 H 8 7 0 = 8 5 0 H 8 5 0 H 8 3 0 H 8 4 0 H 8 4 0 H 8 2 0 H
16 8 6 0 = 8 6 0 = 8 7 0 = 8 6 0 = 8 5 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 2 0 H
17 8 9 0 = 8 9 0 = 8 7 0 = 8 6 0 = 8 5 0 H 8 4 0 H 8 4 0 H 8 4 0 H 8 4 0 H
18 8 12 2 = 8 12 0 = 8 10 0 = 8 8 0 = 8 6 0 = 8 5 0 H 8 5 0 H 8 4 0 H 8 4 0 H
19 8 12 3 = 8 12 2 = 8 12 0 = 8 10 0 = 8 8 0 = 8 7 0 = 8 5 0 H 8 5 0 H 8 5 0 H
20 8 12 5 = 8 12 3 = 8 12 2 = 8 12 0 = 8 10 0 = 8 9 0 = 8 7 0 = 8 6 0 = 8 6 0 =
21 8 12 6 = 8 12 5 = 8 12 4 = 8 12 3 = 8 12 1 = 8 12 2 = 8 11 0 = 8 12 2 = 8 12 6 =

b=6 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 1 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 1 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 3 0 H 8 2 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 3 0 H 8 3 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 3 0 H 8 3 0 H 8 0 0 H
6 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 7 0 0 H 8 1 0 H 8 3 0 H 8 3 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 3 0 H 8 2 0 H 8 3 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 4 0 H 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H
10 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 5 0 = 8 3 0 H 8 3 0 H 8 3 0 H 7 0 0 H
11 8 1 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 5 0 = 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H
12 8 2 0 H 8 2 0 H 8 3 0 H 8 5 0 = 8 5 0 = 8 2 0 H 8 3 0 H 8 3 0 H 8 0 0 H
13 8 2 0 H 8 3 0 H 8 3 0 H 8 5 0 = 8 3 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 0 0 H
14 8 3 0 H 8 3 0 H 8 3 0 H 8 5 0 = 8 5 0 = 8 4 0 H 8 3 0 H 8 3 0 H 8 0 0 H
15 8 4 0 H 8 4 0 H 8 4 0 H 8 5 0 = 8 5 0 = 8 3 0 H 8 3 0 H 8 3 0 H 8 0 0 H
16 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 3 0 H 8 3 0 H 8 3 0 H
17 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 4 0 H 8 3 0 H
18 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 4 0 H 8 4 0 H
19 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 =
20 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 =
21 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 = 8 5 0 =

b=5 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 12 6 M 8 12 5 M
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 12 6 M
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 2 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 3 0 H 8 2 0 H 8 2 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 3 0 H 8 2 0 H 8 2 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 8 0 0 H
10 8 1 0 H 8 2 0 H 8 1 0 H 8 2 0 H 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 8 0 0 H
11 8 2 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 8 0 0 H
12 8 2 0 H 8 2 0 H 8 3 0 H 8 3 0 H 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H 7 0 0 H
13 8 3 0 H 8 2 0 H 8 3 0 H 8 4 0 = 8 4 0 = 8 2 0 H 8 2 0 H 8 2 0 H 3 0 0 H
14 8 4 0 = 8 4 0 = 8 6 0 M 8 4 0 = 8 4 0 = 8 2 0 H 8 2 0 H 8 2 0 H 8 0 0 H
15 8 6 0 M 8 6 0 M 8 7 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 3 0 H 8 2 0 H 8 2 0 H
16 8 6 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 4 0 = 8 2 0 H
17 8 6 0 M 8 6 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 = 8 4 0 = 8 4 0 =
18 8 7 0 M 8 9 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 = 8 4 0 =
19 8 8 0 M 8 9 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M
20 8 11 0 M 8 9 0 M 8 9 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 6 0 M
21 8 12 0 M 8 11 0 M 8 10 0 M 8 9 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M

b=4 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 0 0 H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 0 0 H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 0 0 H 8 0 0 H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H 8 1 0 H 8 0 0 H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 H 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
9 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 H 8 2 0 H 8 3 0 = 8 1 0 H 8 1 0 H 7 0 0 H
10 8 2 0 H 8 2 0 H 8 2 0 H 8 2 0 H 8 5 0 M 8 3 0 = 8 1 0 H 8 1 0 H 8 0 0 H
11 8 2 0 H 8 2 0 H 8 3 0 = 8 3 0 = 8 5 0 M 8 3 0 = 8 1 0 H 8 1 0 H 7 0 0 H
12 8 2 0 H 8 3 0 = 8 3 0 = 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 1 0 H 7 0 0 H
13 8 3 0 = 8 3 0 = 8 3 0 = 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 1 0 H 7 0 0 H
14 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 1 0 H 8 0 0 H
15 8 6 0 M 8 6 0 M 8 7 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 3 0 = 8 3 0 =
16 8 6 0 M 8 6 0 M 8 7 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 3 0 = 8 3 0 = 8 3 0 =
17 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 3 0 =
18 8 8 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 5 0 M
19 8 12 2 M 8 8 0 M 8 8 0 M 8 8 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M
20 8 12 2 M 8 9 0 M 8 9 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 6 0 M 8 6 0 M 8 6 0 M
21 8 12 2 M 8 12 0 M 8 11 0 M 8 9 0 M 8 8 0 M 8 7 0 M 8 7 0 M 8 5 0 M 8 5 0 M
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b=3 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H lock H lock H lock H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 5 0 0 H 2 0 0 H lock H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 3 0 0 H 1 0 0 H lock H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 2 0 0 H lock H lock H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H lock H lock H lock H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H lock H lock H lock H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 H 8 1 0 H lock H lock H lock H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 2 0 = 8 1 0 H 8 0 0 H lock H lock H
9 8 0 0 H 8 0 0 H 8 1 0 H 8 2 0 = 8 2 0 = 8 1 0 H 8 0 0 H 4 0 0 H 1 0 0 H
10 8 2 0 = 8 2 0 = 8 2 0 = 8 2 0 = 8 4 0 M 8 2 0 = 6 0 0 H 4 0 0 H lock H
11 8 2 0 = 8 2 0 = 8 2 0 = 8 5 0 M 8 5 0 M 8 2 0 = 5 0 0 H 2 0 0 H lock H
12 8 2 0 = 8 2 0 = 8 4 0 M 8 5 0 M 8 4 0 M 8 2 0 = 8 0 0 H 3 0 0 H lock H
13 8 4 0 M 8 4 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 2 0 = 8 2 0 = 8 0 0 H lock H
14 8 4 0 M 8 4 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 2 0 = 8 2 0 = 8 0 0 H
15 8 6 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 4 0 M 8 2 0 = 8 2 0 =
16 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 6 0 M 8 4 0 M 8 4 0 M 8 4 0 M 8 4 0 M
17 8 6 0 M 8 9 0 M 8 9 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 4 0 M 8 4 0 M 8 4 0 M
18 8 12 1 M 8 12 2 M 8 8 0 M 8 8 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 4 0 M
19 8 12 1 M 8 12 2 M 8 11 0 M 8 9 0 M 8 8 0 M 8 6 0 M 8 6 0 M 8 5 0 M 8 5 0 M
20 8 12 2 M 8 12 2 M 8 11 0 M 8 12 0 M 8 9 0 M 8 8 0 M 8 6 0 M 8 6 0 M 8 6 0 M
21 8 12 6 M 8 12 2 M 8 12 0 M 8 12 0 M 8 10 0 M 8 8 0 M 8 8 0 M 8 7 0 M 8 12 2 M

b=2 1 2 3 4 5 6 7 8 9
1 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 5 0 0 H lock H lock H
2 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 2 0 0 H 1 0 0 H
3 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 1 0 0 H lock H
4 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 1 0 0 H lock H
5 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 1 0 0 H lock H
6 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 = 8 0 0 H lock H lock H
7 8 0 0 H 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 = 8 3 0 M 8 0 0 H lock H 1 0 0 H
8 8 0 0 H 8 0 0 H 8 0 0 H 8 1 0 = 8 1 0 = 8 3 0 M 8 0 0 H lock H lock H
9 8 1 0 = 8 1 0 = 8 1 0 = 8 1 0 = 8 3 0 M 8 3 0 M 8 0 0 H lock H lock H
10 8 1 0 = 8 1 0 = 8 1 0 = 8 3 0 M 8 4 0 M 8 3 0 M 8 0 0 H lock H lock H
11 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 = 4 0 0 H lock H
12 8 3 0 M 8 3 0 M 8 3 0 M 8 5 0 M 8 4 0 M 8 3 0 M 8 1 0 = 6 0 0 H 4 0 0 H
13 8 3 0 M 8 3 0 M 8 3 0 M 8 6 0 M 8 4 0 M 8 3 0 M 8 1 0 = 8 1 0 = 5 0 0 H
14 8 4 0 M 8 4 0 M 8 5 0 M 8 5 0 M 8 5 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 1 0 =
15 8 6 0 M 8 7 0 M 8 12 4 M 8 6 0 M 8 5 0 M 8 4 0 M 8 3 0 M 8 3 0 M 8 3 0 M
16 8 6 0 M 8 11 0 M 8 12 3 M 8 6 0 M 8 6 0 M 8 5 0 M 8 4 0 M 8 3 0 M 8 3 0 M
17 8 9 0 M 8 12 1 M 8 12 3 M 8 7 0 M 8 7 0 M 8 5 0 M 8 5 0 M 8 4 0 M 8 3 0 M
18 8 12 3 M 8 12 6 M 8 12 3 M 8 11 0 M 8 7 0 M 8 6 0 M 8 5 0 M 8 5 0 M 8 12 6 M
19 8 12 4 M 8 12 6 M 8 12 2 M 8 12 2 M 8 12 5 M 8 12 5 M 8 12 5 M 8 12 6 M 8 12 6 M
20 8 12 4 M 8 12 6 M 8 12 6 M 8 12 3 M 8 12 5 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 6 M 8 12 6 M 8 12 5 M 8 12 4 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M

b=1 1 2 3 4 5 6 7 8 9
1 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 3 0 0 = lock = lock =
2 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 3 0 0 = lock = lock =
3 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 3 0 0 = lock = lock =
4 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 3 0 0 = lock = lock =
5 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 3 0 0 = lock = lock =
6 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 3 0 M 3 0 0 = lock = lock =
7 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 4 0 M 3 0 0 = lock = lock =
8 8 0 0 = 8 0 0 = 8 0 0 = 8 0 0 = 8 2 0 M 8 3 0 M 3 0 0 = lock = lock =
9 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 2 0 M 8 3 0 M 3 0 0 = lock = lock =
10 8 2 0 M 8 2 0 M 8 3 0 M 8 2 0 M 8 3 0 M 8 3 0 M 3 0 0 = lock = lock =
11 8 2 0 M 8 2 0 M 8 3 0 M 8 3 0 M 8 3 0 M 8 3 0 M 4 0 0 = lock = lock =
12 8 2 0 M 8 2 0 M 8 3 0 M 8 5 0 M 8 3 0 M 8 3 0 M 8 2 0 M 4 0 0 = 8 12 6 M
13 8 3 0 M 8 3 0 M 8 3 0 M 8 5 0 M 8 5 0 M 8 3 0 M 8 2 0 M 8 12 6 M 8 12 6 M
14 8 4 0 M 8 4 0 M 8 4 0 M 8 9 0 M 8 4 0 M 8 3 0 M 8 12 6 M 8 12 6 M 8 12 6 M
15 8 6 0 M 8 7 0 M 8 12 6 M 8 12 6 M 8 5 0 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
16 8 6 0 M 8 6 0 M 8 12 5 M 8 12 6 M 8 6 0 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
17 8 9 0 M 8 12 1 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
18 8 12 3 M 8 12 0 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
19 8 12 3 M 8 12 1 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
20 8 12 2 M 8 12 1 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
21 8 12 4 M 8 12 5 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M 8 12 6 M
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