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Abstract. Lindborg et al. (2010) claim that the apparent
spectrum power lawE(k) ≈ k−3 on scales≥ 600 km ob-
tained with the help of commercial jetliner trajectory devi-
ations (GASP and Mozaic databases) could not be brought
into question (Lovejoy et al., 2009a), because this spectrum
corresponds to “a well known theory of quasi-geostrophic
turbulence developed by Charney (1971)”. Lindborg et al.
(2010) also claim that “limitations [of this theory] have been
relaxed in many of the modern models of atmospheric turbu-
lence”. We show that both claims are irrelevant and that gen-
eralized scale invariance (GSI) is indispensable to go beyond
the quasi-geostrophic limitations, to go in fact from scale
analysis to scaling analysis in order to derive better analyt-
ical models. In this direction, we derive vorticity equations
in a space of (fractal) dimensionD = 2+Hz (0≤Hz ≤ 1),
which corresponds to a first step in the derivation of a dy-
namical alternative to the quasi-geostrophic approximation
and turbulence. The corresponding precise definition of frac-
tional dimensional turbulence already demonstrates that the
classical 2-D and 3-D turbulence are not the main options to
understand atmospheric dynamics. Although(2+Hz)-D tur-
bulence (with 0<Hz < 1) has more common features with
3-D turbulence than with 2-D turbulence, it has nevertheless
very distinctive features: its scaling anisotropy is in agree-
ment with the layered pancake structure, which is typical of
rotating and stratified turbulence but not of the classical 3-D
turbulence.

1 Introduction

The scale analysis methodology developed byCharney
(1948) in his seminal derivation of the quasi-geostrophic
(QG) approximation has become standard in meteorology
and oceanography (Pedlosky, 1979). Unfortunately, its com-
mon and distinguishing features with respect to a scaling
analysis have not yet been fully recognized. It is ironical
that the source of the present debate on intermediate scale at-
mospheric dynamics presumably corresponds to the impor-
tation into meteorology of two successive techniques from
hydrodynamics at two different periods. In order to focus
the present paper on this question and therefore on the lim-
itations of the theory of quasi-geostrophic turbulence (QGT,
Charney, 1971) and show how to overcome them, let us
first reject the second claim of Lindborg et al. (2010), LT-
NCG hereafter, that models may overcome limitations of
a theory because in a very general manner models are ob-
tained by introducing further constraints into a given the-
oretical framework, e.g. boundary conditions, discretiza-
tion of partial differential equations, subgrid modelling and
other parametrizations. Furthermore, these constraints in the
unique quasi-geostrophic model simulation (Tung and Or-
lando, 2003) cited by LTNCG were such a problem that, as
discussed below, they seem to have introduced spurious nu-
merical estimates of the scaling ranges, instead of relaxing
limitations of the theory.

Before addressing QGT, we will first discuss a few fun-
damental features of the derivation of the QG approxima-
tion itself, as well as its motivation. This detailed discus-
sion (Sect. 2) is necessary (i) to better evaluate the limita-
tions of quasi-geostrophic turbulence (QGT, Sect. 3) and (ii)
to enable us to derive an alternative (Sect. 4). In particular,
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328 D. Schertzer et al.: Quasi-geostrophic turbulence and generalized scale invariance

we show that to better understand the fundamentals of atmo-
spheric dynamics a scaling analysis is required instead of a
scale analysis, which was the basic technique used by Char-
ney in his derivation and led to a drastic reduction of vortex
stretching. Both questions are discussed throughout our pa-
per and they enable us to obtain in a straightforward man-
ner a vorticity equation for a turbulence that at first glance
looks two-dimensional at large scales, three-dimensional at
small scales, but is in fact of (fractal) dimensionD= 2+Hz
(0≤Hz ≤ 1) at all scales as illustrated by Fig. 1. We believe
that this equation may satisfy those who asked for a dynam-
ical alternative to QGT (Yano, 2010), although this should
be completed by a similar treatment of the thermodynamic
energy evolution equation.

As our paper is already long, we prefer to acknowledge
the necessity of this second step rather than to proceed with
it. It may be helpful to note that this paper does correspond
to a reply to the comment issued by LTNCG on the paper of
Lovejoy et al. (2009a), LTSH hereafter. However, because
the debate with LTNCG bears on very fundamental issues
and not on technical details this yielded a stand alone pa-
per that has many more original results (e.g. new dynamical
equations, as well an original technique to derive them) than
a usual reply to a comment. As mentioned in the title, it is
a “theoretical reply”, because it is focused on theory, not on
the empirical evidence brought by LTSH that the empirical
spectral slope value is closer to 2.2 (as for buoyancy sub-
range) than to 3 (as for the enstrophy (i.e. square vorticity)
inertial subrange of 2-D turbulence) and could correspond to
the fact that aircraft sample the vertical fluctuations instead
of the horizontal ones. The present paper is indeed focused
on the dynamical/physical modelling of these observations.

2 QG vorticity equation and scale analysis

Before discussing the derivation of the QG approximation,
let us highlight why this approximation has remained so at-
tractive and therefore popular. Historically, it was the first
mathematically self-consistent derivation of a closed dynam-
ical system from the diagnostic geostrophic and hydrostatic
approximations. It also respects the conservation laws of po-
tential temperature and absolute potential vorticity, at least
their corresponding first order expressions within the QG ap-
proximation. Furthermore, the global mathematical proper-
ties (e.g. for large times) of QG solutions are known, unlike
those of the Navier-Stokes equations, as well as the fact that
exact results were obtained on their order of approximation
with respect to the primitive equations (PE) with rather mild
restrictions on the initial conditions (Bourgeois and Beale,
1994). However, PE correspond already to a given set of ap-
proximations (e.g. inviscid, incompressible flow with vari-
able density, Boussinesq and (quasi-) hydrostatic assump-
tions, (Pedlosky, 1979) for discussion), which can be brought
into question on various ranges of scale.

Fig. 1. Vertical cut of the average eddies -more precisely: average
iso-contours of the horizontal velocity fluctuations- of a turbulence
in a space of (fractal) dimensionD= 2+Hz (0≤Hz ≤ 1) (here with
the theoretical valueHz = 5/9, see text). The largest structures are
flattened along the horizontal in agreement with the layered pan-
cake structure, which is typical of rotating and stratified turbulence,
but remain distinct from 2-D structures.This flattening is more pro-
nounced for lower and lower values ofHz.

Let us also recall that the derivation by Charney (1948) of
the QG approximation was based on a scale analysis, bor-
rowed from aerodynamic boundary layer theory (Charney
refers to Goldstein, 1938) tointentionallyfilter out the “me-
teorologically insignificant wave components” from the “me-
teorologically significant motions”. The latter were consid-
ered to be distinguishable from all other types of atmospheric
motion only by a great difference in scales. This question
of filtering was essential for the sake of the pioneering de-
velopment of numerical weather forecasting (Charney et al.,
1950) and a part of the paper by Charney (1948) was indeed
devoted to checking that this filtering was efficient for acous-
tic waves. Nevertheless, the more general question of which
structures were filtered out was not addressed. Another im-
portant requirement put forward by Charney was also related
to numerical forecasts: the approximation should be (easily)
computable. It is worthwhile noting that none of these is-
sues is related to the question of obtaining a rather complete
description of the atmospheric dynamics.

More precisely, the scale analysis performed by Char-
ney was based on the common idea in meteorological prac-
tice that large scale dynamics were quasi-two-dimensional,
quasi-geostrophic and quasi-hydrostatic, due to the fact that
the rotation� and the gravitational fieldg of the Earth intro-
duce preferential directions in the Navier-Stokes equations:

Du/Dt+2�×u= −∇p/ρ+g+ν1u (1)

whereu is the velocity,p the pressure,ρ the density,ν the
viscosity,D/Dt denotes the material derivative, i.e. the time
derivative following the motion (∂/∂t+u ·∇), ∇ denotes the
3-D gradient operator,1= ∇2 the 3-D Laplace operator. The
velocity field is assumed to be solenoidal (div(u)= 0), so the
mass conservation equation reads:

Dρ/Dt = 0 (2)
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Although the assumption of incompressibility introduces
limitations, it can be argued that this assumption is justifi-
able for small scales, and pressure coordinates may avoid
this issue for large scales. There is no fundamental difficulty
in dealing with these equations in spherical coordinates, or
more generally in local manifold coordinates, however it is
usual to approximate Eq. (1) on the tangent space to the Earth
at a given point of longitudeφ0 and latitudeθ0, with a vertical
unit vectorn:

Du/Dt+fn×u= −∇p/ρ+g+ν1u (3)

where only the vertical componentfn of the Earth’s angular
velocity is taken into account,f being the Coriolis param-
eter at the latitudeθ0. Furthermore, the variation off with
respect to the south-north coordinatey = a(θ−θ0) (a being
the Earth radius), is usually linearized (the so-calledβ -plane
approximation):

f (y)= f0+βy; (f0,β)= 2�(sinθ0,cosθ0) (4)

The scales of interest being much larger than those of the
dissipation range, the corresponding term will be omitted
in the following (without excluding an effective dissipation
at small scales), i.e. the viscosity is considered as infinitely
small or the Reynolds numberRe=UL/ν=ZL2/ν and the
Ekman numberE = gL/� as infinitely large, whereZ de-
notes the (relative) vorticity scale of the atmosphere,L the
outer scale of the horizontal fluctuations,U the correspond-
ing scale of the (horizontal) velocity. For infinitely small
Rossby numbersRo= Z/� , the Navier-Stokes equations
reduce to the (diagnostic) geostrophic balance equation with
the corresponding 2-D geostrophic solution:

2�×ug = −∇p/ρ+g⇒ug =�×(g−∇p/ρ)/(2�2) (5)

The latter can furthermore be approximated with the help
of Eq. (3) and of the stream functionψ as:

ug =n×∇ψ = ∇ ×nψ;ψ = (p/ρ0−gz)/f0 (6)

the sub-index 0 of the (barotropic) hydrostatic densityρ0,
as for other variables, refers to a reference or background
vertical profile, which can be understood as a time average
of instantaneous profiles. The vertical variation of the stream
function corresponds to:

∂ψ/∂z= ∂(p−p0)/ρ0f0∂z= −∂ρ/ρ0f0∂z (7)

The QG approximation corresponds to introducing a lin-
ear three-dimensional ageostrophic perturbation(uag,w) of
orderRo to the zero-order two-dimensional geostrophic so-
lution (ug,0) and similarly for the relative vorticityζ

u= (uh,w)≈ (ug,0)+(uag,w); ζ = (0,ζg)+ζ ag (8)

The material derivative is systematically approximated by its
geostrophic approximation (∇h denotes the horizontal gradi-
ent):

Dg/Dt = ∂/∂t+ug ·∇h (9)

which, as emphasized by Charney, is much more manageable
than the horizontal material derivative (Dh/Dt = ∂/∂t+uh ·

∇h). In particular,Dg/Dt is easily defined with the help of
the stream functionψ , (J denotes the 2-D horizontal Jaco-
bian):

Dg/Dt = ∂/∂t+J (ψ,.) (10)

To derive the QG approximation, it is convenient to start
from the vorticity equation (the curl of Eq. (1),ω= 2�+ζ

denotes the total vorticity):

Dω/Dt = s+b; s= (ω ·∇)u; b= ∇ρ×∇p/ρ2 (11)

We respectively call the vectorss andb stretching and baro-
clinic vectors, because the main action of the former is to
stretch the vortex field, although it also has the important role
of tilting the vorticity from one direction to another, and the
latter is both the source and a measure of the flow baroclin-
icity (e.g. it is obviously zero for barotropic flows, where∇ρ

and∇p are collinear). Whereas the baroclinic vectorb is of
second order in a quasi-barotropic flow, the stretching vector
s is of first order and non-zero contrary to strictly 2-D fluid
motions (including geostrophic motions), because the (verti-
cal) vorticity and the (horizontal) velocity gradient would be
orthogonal in this case. For QG, the leading term is obtained
as the product of the (small) vertical gradient of the velocity
with the (large vertical) vorticity component:

(ζ +fn) ·∇u≈ f ∂w/∂z≈ f0∂w/∂z (12)

We consider that usually this approximation is not suffi-
ciently discussed. Whereas it has the interest to preserve a
non-zero term, as in 3-D turbulence and contrary to 2-D tur-
bulence, the linear assumption inherent in the QG stretching
term (Eq. 12) unfortunately suppresses nonlinear growth of
vorticity, which is the mechanism that can generate a catas-
trophe/divergence of enstrophy in a finite time and gives the
possibility of a non-zero energy dissipation for an infinitesi-
mally small viscosity in 3-D turbulence (e.g. Lesieur, 2008).
The resulting QG vorticity equation corresponds to:

Dg(ζg+βy)/Dt = f0∂w/∂z (13)

Together with a linearisation of the thermodynamic energy
evolution equation (briefly discussed below), this yields the
conservation law of the quantityq called the pseudo poten-
tial vorticity (or QG potential vorticity) by analogy to Ertel’s
theorem (Ertel, 1942, for review: Mueller, 1995):

Dgq/Dt = 0; q = ζ +βy−gf0∂(ρ/N
2ρ0)/∂z (14)

As explained in the next section, this conservation law is fun-
damental for QG dynamics and its scaling. This law is ob-
tained by eliminating the vertical velocityw from the vortic-
ity equation (Eq. 13) with the help of the mass conservation
linearly approximated by:

Dgρ/Dt−wN
2ρ0/g= 0;N2

= gdLog(θ0)/dz (15)
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whereN is the (mean) Brunt-Vaisala frequency defined with
the help of the vertical profile of the background potential
temperatureθ0, which is assumed to be smooth, i.e. no im-
portant temperature gradients along the horizontal. It is re-
markable that Charney (1971) – as emphasized by Schertzer
and Lovejoy (1985a) – readily admitted the limitations of the
QG approximation and expressed the question of separation
of scales in terms of temperature gradients that must remain
quite moderate.

One reason for the enormous success of the QG approxi-
mation is that the pseudo potential vorticity (Eq. 14) can be
rewritten with only the help of the stream functionψ (due to
Eq. 7):

q =1ψ+βy+∂(f 2
0 ∂ψ/N

2∂z)/∂z (16)

which together with Eqs. (10), (14) yields a compact dynam-
ical equation for the stream function:

(∂/∂t+J (ψ,.))(1ψ+βy+∂(f 2
0 ∂ψ/N

2∂z)/∂z)= 0 (17)

3 Scaling analysis of the QG approximation and QG
turbulence

The domain of validity of the QG approximation is a pri-
ori restricted to intermediate scales (relatively small Rossby
numbers), because a series of assumptions bring into ques-
tion the QG validity on large scales (infinitely small Rossby
numbers: quasi-uniform reference state density, simplified
representation of the Coriolis force, Eq. 4) whereas other as-
sumptions (linearisation of the stretching vector and of the
thermodynamic energy evolution equation) do it at small
scales (large Rossby numbers). However, this does not pre-
vent the possibility of studying the scaling behaviour of its
solutions over a wider scale range. In particular, one can
always argue (Yano, 2011) that the a posteriori domain of
validity of a given approximation can be wider than the va-
lidity domain of its original derivation. However, this can-
not be overstated, because there is in the present case not
only the lack of empirical evidence (as discussed by Lovejoy
et al., 2009a), but also the general fact that a linear approxi-
mation of a nonlinear system like QG may hold only over a
limited range of scale. In the present case, this requires that
small scale turbulence does not destroy the conditions of ap-
plicability of this approximation at intermediate scales, i.e. a
separation of scales that we will discuss below.

The fact that the QG vorticity equation (Eq. 13) can be
transformed into a conservation law of the pseudo poten-
tial vorticity (Eq. 14), similarly to the vorticity of 2-D tur-
bulence, enabled Charney (1971) to argue that QG turbu-
lence (QGT) should display, like 2-D turbulence, both a di-
rect (downscale) enstrophy and an inverse (upscale) energy
inertial range (Fjortoft, 1953; Kraichnan, 1967). Let us men-
tion that both the expressions “inertial range” and “cascade”
used by different authors (including in the present debate on

the atmospheric dynamics at intermediate scales) denote the
same physical phenomenon (nonlinear transfer of a given
quantity across scales in a conservative manner), although
with a slightly different emphasis on the possible underlying
dynamical mechanisms.

More precisely, Charney claimed that there exists a math-
ematical isomorphism between the 2-D relative vorticity and
the 3-D quasi-potential vorticity, although this is not straight-
forward as soon as the Brunt-Vaisala frequency is variable
along the vertical (Herring, 1980) because whereas QG in-
volves a 2-D advection operator, the advected quasi-potential
vorticity is 3-D. Nevertheless, this theoretical possibility has
been rather confirmed with the help of analytical closures
(Herring, 2001, 1980; Salmon et al., 1978; Salmon, 1978)
and numerical simulations (McWilliams et al., 1994; Hua
and Haidvogel, 1986; Vallis, 1985; Fu and Flierl, 1978).
However, Herring (2001) concluded that many questions re-
mained open. In particular, he mentioned the empirical find-
ing by Lindborg (1999) that the the spectrumE(k)≈ k−5/3

thought to be a 2-D inverse energy inertial range by Gage
(1979) and by Lilly and Paterson (1983) was rather a direct
energy inertial range.

Some numerical evidence in the direction of a compos-
ite horizontal spectrum of the typeAk−5/3 +Bk−3 was ob-
tained by Tung and Orlando (2003), which is the unique ref-
erence issued by LTNCG to numerical models. However, this
was obtained with only the help of a two-layer QG model
(Welch and Tung, 1998), contrary to the simulations by Hua
and Haidvogel (1986) that involved a large number of lay-
ers. With only two layers, not much can be done about either
the boundary layer, therefore the boundary conditions, nor
the horizontal/vertical anisotropy. The upper rigid bound-
ary condition considered requires the introduction of Ekman
damping whose exact choice would influence the large scale
behaviour. Furthermore, Smith (2003) convincingly pointed
out that the estimated “meso-scale” spectrum slope≈ 5/3
may well be spurious due to an artificial build up of enstro-
phy (and therefore of energy) at the smallest explicit model
scales.

Overall, models do not seem to overcome the intrinsic
limitations of the QG approximation. The first reason is
that the QG approximation is fundamentally inappropriate
for the mesoscale range: all the necessary approximations
are no longer justified (e.g. the Rossby number becomes
much larger than unity). Therefore, it seems unreasonable
to hope that some 3-D-like behaviour would occur over the
mesoscale range in a QG model, independently of the fact
that it presumably occurs in nature. Secondly, the direc-
tions of the transfer in the inertial ranges can be theoretically
inferred from inviscid statistical equilibria of the systems
(Kraichnan, 1971), which yield an inverse energy and a direct
enstrophy inertial range for both 2-D and QG turbulences.
Therefore, we can safely conclude – contrary to LTNCG –
that there is neither theoretical argument nor model evidence
in favour of two direct inertial ranges. Let us mention that the

Atmos. Chem. Phys., 12, 327–336, 2012 www.atmos-chem-phys.net/12/327/2012/



D. Schertzer et al.: Quasi-geostrophic turbulence and generalized scale invariance 331

fact that pressure coordinates are commonly used in meteo-
rology – as advocated by LTNCG – does not prevent them
from theoretically introducing biases in statistical analyses
because their possible dynamical significance strongly de-
pends on the validity of a number of approximations that we
have brought into question above.

It is worthwhile noting that a QG model cannot give in-
sights on the separation of scales that would ensure its own
physical relevance. This separation of scales between a 2-D
regime and a 3-D regime, if it existed, could be easily desta-
bilised by the vortex stretching mechanism, and we have al-
ready discussed the fact that the QG approximation greatly
modifies the corresponding vector in the vorticity equation.
More generally, small scale 3-D turbulence cannot be un-
derstood as only dissipating large scale structures by eddy
viscosity, because it also generates larger scale structures by
backscattering (Lesieur and Schertzer, 1978) or renormal-
ized forcing (Forster et al., 1977; Fournier and Frisch, 1983).
The zigzag instability (Billant, 2010; Billant et al., 2010),
which bends 2-D columnar vortices and introduces a full 3-
D regime is rather illustrative of the instability of 2-D tur-
bulence to 3-D perturbations. The crucial importance of the
separation of scales for numerical weather forecasts was ex-
plicitly stated and discussed by Monin (1972) and it explains
why the concept of “mesoscale gap”(Van der Hoven, 1957)
was so cherished during the early history of weather forecast-
ing, this despite its existence having been criticised on obser-
vational grounds by Robinson (1967). This question of scale
separation must not be reduced to a problem of boundary
layer modelling as suggested by LTNCG, because this prob-
lem must be solved over all horizontal levels. We already
mentioned that Charney was well aware of this problem.

LTNCG are right to point out that in QG it is the sum
of potential and kinetic energy that takes the place of the
kinetic energy. However, this cannot solve the problem of
vertical statistical exponents being different from the hori-
zontal ones. Indeed, the naive scaling exponents, i.e. with-
out including intermittency effects or logarithmic corrections
(Kraichnan, 1967), obtained by argumentsà la Kolmogorov
(1941) are ultimately based on dimensional analysis of the
relevant fluxes. Therefore in order to get different horizon-
tal and vertical scaling exponents (scaling anisotropy) one
needs to consider a vertical turbulent flux with physical di-
mensions different from energy. The theoretical choice of the
buoyancy force variance flux (Schertzer and Lovejoy, 1984,
1985b) still seems reasonable, although it was a bit bold
when first proposed. Indeed, since the pioneering studies
of Adelfang (1971) and Endlich et al. (1969) and especially
since the 1980s, there has been a growing body of evidence
that the scaling is indeed anisotropic with at least roughly
the predicted exponents, see the numerous references cited
in our previous comment (Lovejoy et al., 2009b).

4 Direct scaling analysis and Generalized Scale
Invariance

To avoid the limitations induced by the QG approximation,
we must proceed to a direct scaling analysis of the Navier-
Stokes equations. We first recall how it can be done, when
there is no rotation and/or gravitational field, in a formal
manner which is both more straightforward and more gen-
eral than a spectral analysis. This corresponds to analysing
how the equations could be invariant under a space con-
traction/dilation, i.e. how the different fields (velocity, pres-
sure, etc.) can balance at all scales. This is therefore
quite distinct from a scale analysis, where only a few rele-
vant fields at a given scale are preserved. This is obtained
by analysing the effect of a space contraction/dilation on
each field, something that is classically done for isotropic
space contraction/dilation, whereas stratified and rotating
flows require a generalisation to strongly anisotropic space
contraction/dilations, e.g. they scale differently according to
space directions, as illustrated by Fig. 1. These contrac-
tion/dilations were considered in the framework of Gener-
alised Scale Invariance (GSI, Schertzer and Lovejoy, 1985b)
that was first presented at the AMS Charney Memorial con-
ference (Boston, 1983), In this section, we introduce an orig-
inal technique to systematically study the relevance of such
transforms in nonlinear equations.

In the present case, we want to reconcile the facts that vor-
ticity at large scales is dominated by Earth’s rotation and that
the nonlinearity of the vorticity equation generates scaling
by transferring this large scale input across a wide range of
scales. We are therefore led to a generalisation of the clas-
sical notion of spontaneous symmetry breaking. The latter
corresponds to the fact that solutions of a system having a
given symmetry, e.g. rotational symmetry for the vorticity
equations, do not in general respect individually this symme-
try, whereas they usually do it statistically. A classical ex-
ample is the buckling of a cylindrical pillar under an increas-
ing axial load: the pillar finally bends towards some definite
direction rather than to being cylindrically deformed. With
the help of such anisotropic space transforms, we generate a
statistical break of the statistical rotational symmetry of the
vorticity equations to obtain a new set of equations whose
symmetry corresponds to anisotropic scaling. As discussed
below, to systematically study the effect of space contrac-
tion/dilations, it is convenient to use the general notion of a
“pullback” transform of a field by these contraction/dilations.

When there is neither rotation nor gravitational field, the
Navier-Stokes equations (Eq. 1) and the mass conservation
equation (Eq. 2) are rotationally invariant, as well as formally
invariant under isotropic contraction/dilationTλ of space for
any arbitrary scale ratioλ (λ> 1 for a contraction,λ< 1 for
a dilation):

x 7→ Tλx= x/λ (18)
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332 D. Schertzer et al.: Quasi-geostrophic turbulence and generalized scale invariance

It suffices indeed to suitably renormalize/rescale the other
variables by various powers of this scale ratioλ:

t 7→ t/λ1+γ
;u 7→uλγ ;f 7→f λ2γ+1

;ν 7→ νλγ−1
;ρ 7→ ρλγ

′

(19)

defined by the singularitiesγ,γ ′ of respectivelyu,ρ, see
(Schertzer and Lovejoy, 2004) for further discussion in par-
ticular on the question of the dissipation and forcing terms.

For a unique singularityγ , the corresponding power spec-
trum is a power-lawE(k) ≈ k−β with the spectral slope
β = 1−2γ , because it scales likeu2l. One thus obtains the
celebrated Kolmogorov scaling of the velocity field for the
(Kolmogorov’s) singularityγK = −1/3, which is defined by
considering that the energy flux densityǫ, which scales like
u3/l, is homogeneous and strictly scale invariant in the iner-
tial range (Kolmogorov, 1941).

We are now looking for a generalisation of this scaling
analysis for anisotropic equations with the help of gener-
alised contraction/dilation operatorsTλ, which still form a
one-parameter multiplicative group (Tλ′ ◦Tλ = Tλ′·λ), as in
the isotropic case, and have therefore a generatorG. In
the framework of linear GSI, which is also known under the
name of “operator scaling”,G andTλ are matrices:

Tλ= exp(−GLogλ)= λ−G (20)

Obviously, G = Id (Id being the identity matrix) corre-
sponds to the classical, scalar scaling (Eq. 18). It is now con-
venient to use the notion of a “pullback” transform (or “com-
position operator”, Shapiro, 1993) of a fieldu by a given
space transform, here a contraction/dilationTλ. It is so gen-
eral that it is often passed over without mention and it can be
just seen as a convenient and compact notation for the scaling
of a given field. As illustrated by Fig. 2, the pullbackT ∗

λ cor-
responds to a straightforward generalisation to (infinite di-
mensional) functional spaces of the (contravariant) change
of coordinates on (finite dimensional) vector spaces:

∀x : T ∗
λ (u)(x)= u(Tλx) (21)

The composed functionu(Tλ) pulls back the fieldu from
the coordinatesy to x, with the “change of coordinates”
y = Tλ(x) (for further discussion see Schertzer et al., 2010;
Schertzer and Lovejoy, 2011). This transform can be ex-
tended for differential operatorsD:

∀f : T ∗
λ (D)T

∗
λ (f )= T

∗
λ (Df ) (22)

For instance, the pullback of the gradient operator∇ is:

T ∗
λ (∇)= T

−1
λ ∇ (23)

due to the fact that the transformTλ is linear and is therefore
its own Jacobian matrix. To study the (possible) anisotropy
of atmospheric dynamics, it is sufficient to consider a diago-
nal generator under the following form:

G= diag(gi); g1 = g2 = 1; g3 =Hz = 1−h (24)

� �
Tλ

T (�)*

T (�)(�)��(�)��(T (�))

�
λλλλ

λλλλ*λλλλ

Fig. 2. Scheme of the “pullback”T ∗
λ that pulls back the fieldu

from the coordinatesy to x with the help of the (anisotropic) space
contraction/dilationTλ.

with an exponent 0≤Hz ≤ 1 that defines the anisotropy of
Tλ. For instance,Hz = 0 corresponds to a (scaling) 2-D flow,
Hz = 1 to a 3-D (isotropic scaling) flow, and more generally
intermediate values to a(2+Hz) – dimensional (anisotropic)
scaling flow. Now, a generalised scaling of the fieldu(x,t)
is defined by the fact that its pullback transformT ∗

λ corre-
sponds to a (possibly random) generalised contraction with a
generatorŴ:

T ∗
λ u= λŴu (25)

The simplest case corresponds to the fact that both generators
G andŴ commute, i.e. are diagonal on the same vector base.
We consider the following particular case:

Ŵ= diag(γi);γ1 = γ2 = γ ;γ3 = γ +h (26)

whereγ is a given (scalar) singularity.
To give an illustration, let us consider the scaling model

of a stratified atmosphere based on the conservation (i.e.
strict scale invariance) of the energy flux along the horizon-
tal and of the buoyancy force variance flux along the ver-
tical (Schertzer and Lovejoy, 1984, 1985b). These conser-
vation laws single out respectively the Kolmogorov’s sin-
gularity γK = −1/3 and the Bolgiano-Obukhov singularity
γBO = −3/5. The latter is obtained similarly to the for-
mer, but for a flux that scales likeu3/l5 (Bolgiano, 1959;
Obukhov, 1962). Note that these scaling exponents were
both obtained assuming homogeneous and isotropic fluxes,
whereas Schertzer and Lovejoy considered heterogeneous
and anisotropic fluxes. In this anisotropic framework the the-
oretical valueHz = 5/9 of the exponent of anisotropy merely
results from the correspondence between the singularities of
Kolmogorov and Bolgiano-Obukhov:γK =Hz ·γBO.

The choice of having the sameh in Eqs. (24), (26) not
only makes, regardless of theh value, the incompressibility
condition scale invariant, but also ensures that the advection
term and the material derivative have the same scalar scaling:

T ∗
λ (u ·∇)= λγ+1u ·∇;T ∗

λ (D/Dt)= λ
γ+1D/Dt (27)
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Fig. 3. Scheme of the vertical vorticityωv, generated by the hori-
zontal shears of the horizontal velocity, and the two components of
the horizontal vorticityσ andτ generated respectively by horizontal
shears of the vertical velocity and vertical shears of the horizontal
velocity.

Because we consider an asymmetry between the horizon-
tal and the vertical, it is useful both for the derivation and the
expression of the fractional vorticity equations to decompose
the fields and operators into horizontal and vertical compo-
nents (with respective indicesh andv), e.g. for the velocity
field u and gradient operator∇:

u=uh+uv;∇ = ∇h+∇v (28)

rather than with respect to a three-dimensional basis
(e1,e2,e3), e.g.:

u= (u1,u2,u3); ∇ = (∂1,∂2,∂3); (29)

One readily obtains the following scaling for the velocity
field u and gradient operator∇:

T ∗
λ (u)= λ

γ (uh+λhuv); T
∗
λ (∇)= λ(∇h+λ−h

∇v) (30)

Due to their difference of scaling (as confirmed below),
we have to distinguish the horizontal vorticity components
respectively yielded from vertical motions (σ ) and from hor-
izontal motions (τ ), see Fig. 3 for illustration:

ω=ωv +ωh; ωh = σ +τ ;ωv ≡ ∇h×uh; σ ≡ ∇h×uv; τ

≡ ∇v ×uh (31)

It is straightforward to obtain the respective scaling of the
vorticity components from Eqs.(30–31):

T ∗
λ (ωv)= λ

1+γωv; T
∗
λ (σ )= λ

1+γ+hσ ; T ∗
λ (τ )= λ

1+γ−hτ (32)

On the other hand, the stretching vector has the following
decomposition:

s= ((σ +τ ) ·∇h+ωv ·∇v)(uh+uv) (33)

that yields the following scaling ((σ ·∇h)uv = 0 due to the
asymmetry ofσ ):

T ∗
λ (s)= λ

2(1+γ ) [ λh(σ ·∇h)uh+λ−h( τ ·∇h

+ωv ·∇v )(uh+λhuv) ] (34)

Due to the fact that the vorticity equations should be sat-
isfied for anyλ, which appears with three distinct exponents
(2(1+γ )(h,0,−h)), we obtain from Eqs.(27), (34) (ignoring
for the present time the baroclinic vector) the following set
of (barotropic) fractional vorticity equations:

Dσ/Dt = (σ ·∇h)uh (35)

Dτ/Dt = (τ ·∇h+ωv ·∇v)uh (36)

Dωv/Dt = (τ ·∇h+ωv ·∇v)uv (37)

which can be rewritten under the following coordinate form:

D∂2u
3/Dt = (∂2u

3∂1−∂1u
3∂2)u

1
;−D∂1u

3/Dt

= (∂2u
3∂1−∂1u

3∂2)u
2 (38)

−D∂3u
2/Dt = (∂1u

2∂3−∂3u
2∂1)u

1
;D∂3u

1/Dt

= (∂3u
1∂2−∂2u

1∂3)u
2 (39)

D(∂1u
2
−∂2u

1)/Dt = ( ∂1u
2∂3−∂3u

2∂1+∂3u
3∂2u

3

−∂2u
1∂3 )u

3 (40)

These equations (either under the vector or coordinate
form) correspond to splitting the dynamical equation of the
horizontal vorticityωh into two separate equations, respec-
tively for σ (the horizontal vorticity produced by vertical mo-
tions) andτ (the horizontal vorticity produced by horizontal
motions): this corresponds to the statistical break discussed
above of the rotational symmetry of the original 3-D vortic-
ity equations. Reciprocally, the latter equations are obtained
by coupling again these equations, either under vector form
(with (σ ·∇h)uv = 0 as mentioned earlier):

D(σ +τ )/Dt = (σ +τ ) ·∇huh+ωv ·∇vuh (41)

Dωv/Dt = (τ ·∇h+ωv ·∇v)uv (42)

or under the coordinate form:

D(∂2u
3
−∂3u

2)/Dt = ∂2u
3∂1u

1
−∂1u

3∂2u
1
+∂1u

2∂3u
1

−∂3u
2∂1u

1 (43)

D(∂3u
1
−∂1u

3)/Dt = ∂3u
1∂2u

2
−∂2u

1∂3u
2
+∂2u

3∂1u
2

−∂1u
3∂2u

2 (44)

D(∂1u
2
−∂2u

1)/Dt = ∂1u
2∂3u

3
−∂3u

2∂1u
1
+∂3u

1∂2u
3

−∂2u
1∂3u

3 (45)

This confirms the fact that solutions of Eqs. (35–37) form
the subset of solutions of Eqs. (43–45) that statistically re-
spect the anisotropic scaling prescribed by Eqs. (24), (26)
and statistically break therefore the isotropic scaling of
Eqs. (43–45).
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Whereas the QG linearisation of the stretching vector
keeps only the evolution of the vertical vorticity (Eq. 37),
with a unique source term(ωv · ∇v)uv and with the fur-
ther approximationωv ≃ 2�, the fractional vorticity equa-
tions preserve all the nonlinearities. For instance, the term
(ωv ·∇v)uh (in Eq. 36) tilts part of the vertical vorticityωv
into the horizontal componentτ , i.e. the latter does not nec-
essarily remain zero if it was thus initially. The absence
of a corresponding tilting term in the evolution equation of
σ (Eq. 35) shows thatσ and τ have no symmetrical roles
and it also emphasises the importance of the splitting of the
dynamical equation of horizontal vorticity into two separate
equations. However, bothσ and τ can undergo nonlinear
stretching by (non-zero) horizontal gradients of the horizon-
tal velocity (Eqs. 35–36), this implies in particular that so-
lutions withσ = 0 are unstable. These features are illustra-
tive of the huge difference between scale analysis and scal-
ing analysis: in the former case (QG) all the source terms
but one were cancelled in the vorticity equations, whereas
in the present anisotropic scaling analysis, they are all pre-
served but no longer contribute in an isotropic manner. For
instance, the interactions ofσ andτ with the horizontal gra-
dient of the horizontal velocity become differentiated (with
separate equations Eqs. 35–36), whereas only their sum in-
tervenes in the 3-D vorticity equations (Eq. 41).

Although our paper is focused on the barotropic case, let
us quickly show that the baroclinicity can be readily taken
into account at all scales. Indeed, the baroclinic vectorb has
the following pullback:

T ∗
λ (b)= λ

2(γ+1)(λ−hbh+bv) (46)

One may note it has an opposite behaviour to that of the po-
tential vectorψ :

T ∗
λ (ψ)= λ

γ−1(λhψh+ψv) (47)

which corresponds to the expected phenomenology: to be
aligned along the vertical for large scales, whereas it is no
longer the case for smaller scales. The comparison of the
scaling of the vorticity components (Eq. 32) and of the baro-
clinic vector (Eq. 46) shows that baroclinicity does not affect
the horizontal vorticity generated by vertical motions ofσ ,
a fact that emphasises its particularity with respect toτ and
ωv. The barotropic fractional vorticity equations (Eqs. 35–
37) yield therefore the corresponding baroclinic equations:

Dσ/Dt = (σ ·∇h)uh (48)

Dτ/Dt = (τ ·∇h+ωv ·∇v)uh+bh (49)

Dωv/Dt = (τ ·∇h+ωv ·∇v)uv +bv (50)

The fractional vorticity equations (either barotropic,
Eqs. 35–37) or baroclinic (Eqs. 48–50) were derived from
the usual vorticity equations with the assumption of a given

anisotropic scaling behaviour (Eqs. 24–26) of particular so-
lutions. An inspection of these derived equations shows
that conversely their solutions should statistically respect this
type of anisotropy, however there is no hint that the theoret-
ical valueHz = 5/9 plays a special role. Indeed, this theo-
retical value was obtained in fact with the help of thermo-
dynamic considerations, whereas we explained that we post-
pone to future works the treatment of the energy evolution
equation in a similar manner to the way we treated the vor-
ticity equations. On the other hand, it is worthwhile noting
that the obtained fractional vorticity equations already corre-
spond to an achievement that goes well beyond the question
of the atmospheric dynamics scaling. Indeed, a precise def-
inition of d-dimensional turbulence for non integerd ’s has
only been addressed in an isotropic and statistical framework
(Fournier and Frisch, 1978) for the (average) energy spec-
trum and with the help of a second-order closure, whereas
we obtained (apparently) deterministic, dynamical equations
for the field itself of the vorticity, and therefore of the veloc-
ity. Furthermore, the fractional partHz of this non integer
dimension is physically meaningful:Hz measures the extent
of the vertical motions, in fact the fractional depth of the cor-
responding pancake turbulence, from 0 (flat 2-D turbulence)
to 1 (3-D turbulence).

5 Conclusions

We believe that the critical analyses of the scale analysis
leading to the QG approximation (Sect. 2) and of the scal-
ing analysis of the resulting QGT (Sect. 3) first rule out LT-
NCG’s claim that the significance of the spectrum power law
E(k)≈ k−3 on scales≥ 600 km obtained from the GASP
and Mozaic databases could not be brought into question be-
cause it corresponds to a QGT prediction. Beyond this neces-
sary clarification, we furthermore put forward an alternative
(Sect. 4) to the QG approximation that reconciles the facts
that Earth’s rotation dominates vorticity at large scales and
that the vorticity stretching nonlinearly transfers this large
scale input over a wide range of scales in a scaling man-
ner. Indeed, by introducing a statistical anisotropic break of
the statistical isotropic scaling of the vorticity equations, we
obtain fractional vorticity equations, whose solutions should
statistically satisfy this anisotropic scaling over a wide range
of scales and therefore define a turbulence of (fractal) dimen-
sionD= 2+Hz (0≤Hz ≤ 1). This corresponds to the dy-
namical step towards this alternative to QG, which should be
completed by a similar treatment of the thermodynamic en-
ergy evolution equation. Overall, our claim that atmospheric
turbulence has a dimensionD= 2+Hz, presumably with the
theoretical valueHz = 5/9, and is therefore so much distinct
from quasi-2-D and quasi-3-D turbulences, seems to result
from the application of “Occam’s Razor” in the framework
of a fruitful dialogue between theories and data, as defined by
Medawar (1969): “scientific reasoning is a kind of dialogue
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between the possible and the actual, between what might be
and what is in fact the case”.
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