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Abstract

Boom clay formation, a deposit of slightly over-sohdated marine clay that belongs to the
Oligocene series in the north east of Belgium, been selected as a possible host material of
nuclear waste disposal. In this context, the |largatdeformation behaviour of Boom clay is
of crucial importance in the performance assessroéithe whole storage system. In this
study, low and high pressure oedometer tests amgeedaout; the e-log’, (void ratio —
logarithm of vertical effective stress) and e-lbgvoid ratio — logarithm of time) curves
obtained are used to determine the compressiowx iGgte swelling indexCs* and secondary
deformation coefficienC, during both loading and unloading. The relatiopsbetweenC,
and the effective stress ratio’ {c’¢, vertical effective stress to pre-consolidation stjeis
analysed, and it is observed tl@at increases linearly with log’\/ ¢’c. Examination of the
ratio of C,/C:* for various soils shows that the secondary deftanaehaviour of Boom
clay is similar to that of shake and mudstone. figlation betweerC, andC.* is linear; but
the relation betweerl€, and C* is bi-linear. The bi-linearity observed is relate two
different mechanisms: the mechanically dominatdgsbwaeding and the physico-chemically
dominated swelling.

Keywords. Boom clay; oedometer test; secondary deformationawier; mechanically
dominated rebounding; physico-chemically dominaedlling.
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1. Introduction

Boom clay formation, a thick deposit of slightly eswconsolidated marine clay has been
selected as a possible host material of nucleatewdisposal in Belgium. In this context, its
volume change behaviour, especially its secondafgrohation behaviour is essential for the
safety of the whole storage system, and therefeeels1to be investigated in depth.

The consolidation of fine-grained soils has beemmonly described by the primary
consolidation and the secondary consolidation. fOneer refers to the soil volume change
due to water pressure dissipation whereas the lafiers to the soil volume change due to the
evolution of soil fabric and soil-water interactioim the past decades, many studies were
conducted to correlate the secondary deformati@fficeent (C,) during loading with other
soil characteristics. Walker (1969) showed tGatvaried with the ratio of vertical effective
stress €'\) to the pre-consolidation pressurgg), with the largestC, at a stress slightly
higher thary’.. This was confirmed by other studies on varioutsq@rook and Mark, 2000;
Yilmaz and Saglamer, 2004; You, 1999; Zétual, 2005; Shiraket al, 2006; Suneekt al,
2008; Costa and loannis, 2009). Walker and Raymd®8) found that the secondary
deformation coefficient@,) during loading has a linear relationship with tt@mpression
index C) over the full range of stress applied. TGisC; relation was further investigated by
many other researchers (Mesri and Castro, 1987riMesl, 1997; Abdullahet al, 1997,
Al-Shamrani, 1998; Brook and Mark, 2000; You, 19B88nget al, 2001; Tan, 2002; Mesri,
2004; Zhanget al, 2005; Zhuet al, 2005; Costa and loannis, 2009; Feng and Zhu, ;2009
Mesri and Vardhanabhuti, 2009) on various soilgafinclays, remoulded clays, clays treated
with lime or cement, and sands); the results covdd the observation by Walker and
Raymond (1968). Mesat al. (1994) defined four groups of soils accordinghe value of the
ratio C,/C; (Table 1). Some other correlations were also gitechbetweelC,/C. (or C,) and
soil physical properties such as the liquid limit, plastic limitwp and plasticity index,
(You, 1999; Suneedt al, 2008).

Although the secondary consolidation behaviour mfsshas been widely investigated,
there have been few studies on the stiff Boom dtepecially on the unloading path that
represents the situation of the soil in vicinity ecavated galleries. In the present work,
consolidation tests are performed in both low amgh Ipressure oedometers on Boom clay
taken from the sites of Essen and Mol, Belgium.diog and unloading are run in steps and
the secondary deformation coefficie@l, is determined for each step. Furthermore, the
relations betweelC,, the effective stress ratiar'(/o'c), compression and swelling indexes
(C* and C¢*) are analyzed. The main objective is to study whaations of C, during
unloading and the mechanisms involved in thesetrans. Note that the use of high pressure
oedometer in this study allows studying the vaoiatof C, at large stress ratio’/d'c,
indispensable for deeply located soil as Boom ¢Z38 m deep in Mol and about 240 m in
Essen). Moreover, the introduction of parameigt and C* allows analysing the soil
compression behaviour with a non-linear loadingeading curve. Note also that, to the
authors’ knowledge, there have been no studieséé&bousing on the variations 6f, during
unloading.
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2. Soil studied

The soil studied was taken by coring at the sifeésssen and Mol, Belgium. The location of
the two sites is shown in Figure 1 (De Cragral, 2006) The Essen site is situated in the
north east of Belgium, about 60 km far from the engdound research laboratory (URL) at
the Mol site. After being taken from the borehdiee cores were sealed in plastic tubes
having ends closed and transported to the labgrateve soil cores of 1-m length and
100-mm in diameter from Essen and one soil cor@.®fm length and 100-mm in diameter
from Mol were studied. The details of these cores shown in Table 2, with the
corresponding depth, member, unit mass of sopgs lfquid limit (w.), plastic limit (vp),
plasticity index [), water contentwj) and void ratio ). There are three cores taken from
the Putte member (Mol, Ess75 and Ess83) and tlomes ¢rom the Terhagen members (Ess96,
Ess104 and Ess112). The geotechnical identificgiemameters of the cores from Essen are
similar: ps = 2.64 — 2.68w_. = 62 — 78%wp = 25 — 33%;lp = 36 — 45. The values are also
close for both water content and void ratig:= 27.2 — 29.7¢, = 0.700 — 0.785. For the core
from Mol, the values ops w, wp andlp are similar to that of the cores from Essen, hat t
water content and void ratio are lower than theesdrom Essen, showing that Boom clay
from Mol is denser.

3. Experimental techniques

Both low pressure (0.05 - 3.2 MPa) and high pres¢dnrl25 - 32MPa) oedometer tests were
carried out following the French standards (AFNCIR3, 2005) on the six Boom clay cores.
The tests in low pressure oedometer aim at studiyingoading-unloading behavior of the
soil near the excavation gallery, whereas the faestsgh pressure oedometer aim at studying
the compression behavior in large stress level ffflan the excavation gallery). The soil
samples were prepared by trimming and had 50-mdiameter and 20-mm in height. In the
following, high pressure oedometer test is namedo®@ewhile low pressure test is named
Oedo2. Note that the high pressure oedometer leasdaime principle as the standard low
pressure oedometer; the main difference is thaitgh pressure oedometer two amplification
levels were used with a ratio of 1:10 for the flestel and 1:5 for the second level (see Figure
2). In other words, the frame of high pressure asster allows multiplying the applied
weight by 50, which leads to a maximum force oftd@s. In the experiments, the minimum
and maximum applied weights are 5 N and 1280 Njihgato a minimum and maximum
vertical pressure of 0.125 MPa and 32 MPa respagtior a sample of 50 mm diameter.

The soil specimen was installed in the cell witla dorous stones. Prior to circulation of
the synthetic water which has the same chemistthe-situ pore water (Cwt al, 2009)
in the drainage system, a confining pressure eguile estimated in situ stress was applied.
This prevents the soil swelling during re-satumatrehich may modify the soil microstructure
and as a result the soil mechanical propertiesadmst al, 2007).

The in situ stress of the soil was estimated uBiqgl:

0-\‘/0 = )h-u, (1)

whered' o is the in situ effective vertical stregsis the mean unit weight of the soil above the
depth considered, taken equal to 20 kRifollowing the data of De Craeet al. (2006);h is

4
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the depth of the soil core (see Table &);is the in situ pore pressure estimated from the
ground water level that is assumed to be at thargtsurface. Theo,, values determined

for Ess75, Ess83, Ess96, Ess104, Essl112 and MoR.afe 2.27, 2.40, 2.48, 2.56 and
2.23 MPa, respectively. For a reason of convenientg in both low pressure and high
pressure oedometers was set at 2.40 MPa for tdl tes

4. Experimental results

4.1. Compressibility behavior

Figure 3 presents the loading-unloading-reloadiagess and the corresponding changes in
vertical displacement in test Ess750edol. Befoee rédisaturation phase, a loading from
0.125 to 2.4 MPa was applied to reach the in ditess state. The soil sample was then
re-saturated using synthetic water. The subseaudoading-reloading stages were as follows:
unloading from point A (2.4 MPa) to B (0.125 MPkading to C (16 MPa); unloading to D
(0.125 MPa); loading to E (32 MPa) and unloadindrt().125 MPa). Common results were
obtained in terms of vertical displacemernts, compression upon loading and rebounding
upon unloading. Note that the French standards N@® (1995, 2005) were applied as
regards the deformation stabilization for all odtendests: stabilization is achieved when the
displacement rate is lower than 0.01mm/h.

Figure 4 presents the compression curve (void ragisus log',) of test Ess750edol,
together with the compression curve of test Essdb@an low pressure odometer. In test
Ess750edo2, after the re-saturation using synthvediter under 2.4 MPa stress, unloading
was performed from point | (2.4 MPa) to point I.@B MPa), then loading to point 1l
(3.2 MPa) and finally unloading to point IV (0.05Rd).

The low pressure oedometer tBss750edo2 shows a quasi elastic behavior witlowarr
unloading-loading loops. A deeper examination shdwsvever, that the reloading curve from
Il to Il is not linear in the plane e-log’,. This non-linearity can be also observed on the
curve of test Ess750edol on the reloading patm Bao C and from D to E. Note that the
results from the tests on other cores are simdathat shown in Figure 4. Obviously, it is
difficult to determine the pre-yield stregs, using the Casagrande method on these curves. In
addition, this pre-yield stress, if any, does rwtespond to the pre-consolidation pressuire
(a'y is much lower thaw'): o' is equal to 2.4 MPa at point A, but when reloadnogn B to
C, ¢y seems to be much lower, about 1 MPa. For thisoreas the following analysis only
O'¢ is used and its determination is based on thesstestory:o’; is the maximum stress
applied in the oedometer tests. For instaater= 16 MPa for the paths C->D and D->&;
= 32 MPa for the path E->kj . = 3.2 MPa for the path IlI->1V is 3.2 MPa.

Since the e-logr', curves of Boom clay are not linear during unlogdamd unloading,
especially for the low pressure oedometer tests, difficult to use an unique compression
index C.) and swell index@s) to describe the compression and swelling behaMience the
above two indexes are determined stage by stageremamedC:* and Cs*, respectively. It
should be pointed out that if the e-lot, curves for the three stages(before pre-yielding,
after pre-yielding and unloading) are linear, @& becomes the same @sandCs* becomes
the same a€..

For the determination of secondary deformation feweht C,, standard method is used

5
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based on the eAlogt plot. The determination a@.*, C* and G is illustrated in Figure 5.
Note thatC, =Ae/Alog t is negative when loading and positive when unlogdin

4.2. Relation between Cy and ¢'\/0' ¢

Figure 6 shows the variation &f, versus the stress ratw,/c' for all the six cores,
identified by both low pressure and high pressuedometer tests. It appears that during
loading stageC, ranges mostly from O to 0.01 especially when tbdical effective stress is
lower than the pre-consolidation stress. Some pdisyyond 0.01 can be observed when the
stress ratio is greater than 2. For core EssC}ds very small and close to zero when the
stress ratio is less than 1. For the unloadingestdi), ranges mostly from 0 to -0.01 for all
tests when the stress ratio is greater than 0.Xh®nontrary, when the stress ratio is less than
0.1,C,is less than -0.01. These observations lead tdwd@that more significant secondary
consolidation takes place at higher stress ratwg/d. > 1) upon loading and more
significant secondary swelling takes place at lostezss ratiosd /o' < 0.1).

Except the results of core Ess112 during loaditightaer results show th&t, increases
almost linearly with the stress ratio in the seagdrithmic plane, for both loading and
unloading stages. This is different from the reswodéiported by other authors (Walker, 1969;
Brook and Mark, 2000; Yilmaz and Saglamer, 2007y,Y1099; Zhwet al, 2005; Shriakaet
al., 2006; Suneekt al, 2008; Costa and loannis, 2009) who observed ttatrelation
betweerC, and logc' /o' . during loading is rather convex.

4.3. Relation between C.* or Cs* and Cqy

Figure 7 shows the variations Gf, with C.;* and Cs* for all the cores. It appears th@t
increases linearly witlC.*, with a slope ranging from 0.019 to 0.029. Moreopteis linear
relation is independent of the state of consolatatior a given core, all the points below and
beyondc'; are on the same line.

Mesri et al. (1994) analyzed the secondary consolidation bebawf many soils, and
gave the correlation between the secondary corsmid coefficient C;) and the
compression indexC; as shown in Table 1. From the results obtainedBoam clay, it
appears that the rati©,/C:* falls in a narrow range from 0.019 to 0.029. Idesrto have a
mean value, all the results during loading are eyaith in Figure 8, in terms of variations of
CyversusCg*. A value of 0.024 is identified for the rati©,/C.*. Based on the classification
criterion in Table 1, one can conclude that Booay ¢&lls in the zone of shake and mudstone
whoseC,/C.* value ranges from 0.02 to 0.04.

Figure 7 also shows that during unloading, a @dimrelation betwee@, andCs* can be
observed: the turning point aiGg* value around 0.1. This turning point can be consides
an indicator of changes from mechanical dominaageghi/sical-chemical dominance in terms
of volume changes: whe@s* is less than the value at the turning point, tla shows a
mechanically dominated rebounding; by contrast, w@g¢ is larger than the value at the
turning point, the clay shows a physico-chemicallyminated swelling. This particular
behaviour during unloading was also observed irrottorks: Delagetal. (2007) and Leet
al. (2011) conducted compression tests on unsatuiaedh clay with suction monitoring,
and observed that during unloading the soil suctmmmeased slowly in the beginning and
then rapidly when the vertical stress decreasedhdova threshold value; Cet al. (2002)
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observed that the microstructure of a compactedobér/sand mixture started to change
much more drastically when the suction was lowanth MPa; Cuet al. (2008) and Yeet al.
(2009) observed that the unsaturated hydraulic \netia of compacted bentonite-based
materials under confined conditions changed drastiovhen the suction was lower than a
threshold value.

All the data ofC, versusC¢* are gathered in Figure 9. In spite of the sigaifiicscatter, a
bilinear relation can be still identified, with 624 and -0.26 as slopes. It is interesting to note
that the absolute value of the slope of the fiantt gwhere the volume change behavior is
supposed to be governed by the mechanical effeatgual to the value &&,/C* during
loading (0.024). This observation confirms that fingt part of unloading@s* < 0.1) gives
rise to a mechanically dominated rebounding, bexdhs volume change behavior during
loading can be regarded as governed by the mediafiects. The larger slope of the second
part (0.26, wherCs* > 0.1) indicates a significant secondary swelli@dpavior compared to
the mechanical secondary consolidation behavior.

5. Conclusion

Both low pressure and high pressure oedometer wste carried out with loading and
unloading on Boom clay samples taken by coring fEssen and Mol sites. Tledog o', and
e-logt curves were plotted to determine the compressidex C.*, swell indexCs* and
secondary deformation coefficie@t. Note thatC, was determined for either loading stages
(secondary consolidation) or unloading stages (s#ay swelling). Different relations such
asC, - oo, C, —C&*, andC, —Cs* were analyzed. The following conclusions can be
drawn:

(i) C4 increases almost linearly with the stress ratigo' . in the semi-logarithmic plane, for
both loading and unloading stages. This lineartijeladuring loading was different from
that observed by other researchers who concludkdrra convex relation for other soils.

(i) C, increases linearly witlC:*, with a slope of 0.024. In addition, this lineatation is
independent of the state of consolidation. Durinépading, a bi-linear relation between
C, andCs* was identified, with the turning point aiGg* value around 0.1 and the values
of slopes of -0.024 and -0.26, respectively.

(i) The two slopes of th&€, - Cs* curve relate to two different mechanisms: thet firart
(CsF < 0.1) relates to a mechanically dominated rebmgndhilst the second parC{ >
0.1) relates to a physico-chemically dominated bmgel This observation was confirmed
by the equality of the slopes for the first unloggdipart and the loading part (0.024),
because the volume change behavior during loadangbe regarded as governed by the
mechanical effects.

(iv) According to the classification criterion defineg Mesriet al. (1994), Boom clay falls in
the zone of shake or mudstone wh@géC* value ranges from 0.02 to 0.04.
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341 Table 1. Soil classification according to the valGg/C. (Mesriet al, 1994)

Material CdCc
Granular soils including rockfill CdC:.=0.02+ 0.01
Shake and mudstone CdC:.=0.03+ 0.01
Inorganic clays and silts C./C.=0.04%£ 0.01
Organic clays and silts C4C:.=0.05+ 0.01
Peat and muskeg C4C:.=0.06% 0.01

342
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343
344

Table 2. Geotechnical properties of the soil cetadied

Depth s wL | W I Wo

core (r?m) Member | o | o) | oy | %) | o%) | ©
Ess75 218.91-219.91 Putte 2.65 78 | 33 | 45 [ 29.7]10.785
Ess83 226.65-227.6bPutte 2.64 70 1 33 | 37 [ 27.2]10.730
Ess96 239.62-240.6RTerhagen 2.68 69 | 33 | 36 [26.5(0.715
Ess104 |247.90-248.91Terhagen 2.68 68 | 29 | 39 | 27.7 | 0.700
Ess112 255.92-256.9BTerhagen 2.67 62 | 25 | 37 | 27.3]0.755
Mol 223 Putte 2.67 68 | 26 | 42 | 23.6 ] 0.625
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