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Abstract

In this study, temperature controlled soil-water retention sesdsunsaturated hydraulic conductivity
tests for densely compacted Gaomiaozi bentonite - GMZ01 (dngitsieof 1.70 Mg/m) were
performed under confined conditions. Relevant soil-water retention c(BV¢RCs) and unsaturated
hydraulic conductivities of GMZ01 at temperatures of 40°C and 60°C el#agned. Based on these
results as well as the previously obtained results at 20°C, theencB of temperature on
water-retention properties and unsaturated hydraulic conductivity of ddresely compacted
Gaomiaozi bentonite were investigated. It was observed thatai@r wetention capacity decreases as
temperature increases, and the influence of temperature depends tiom; s@ig for all the
temperatures tested, the unsaturated hydraulic conductivity desrskghtly in the initial stage of
hydration; the value of the hydraulic conductivity becomes constahiydmstion progresses and
finally, the permeability increases rapidly with suction de@eass saturation is approached; (iii)
under confined conditions, the hydraulic conductivity increases apetatare increases, at a
decreasing rate with temperature rise. It was also obséhme¢dhe influence of temperature on the
hydraulic conductivity is quite suction-dependent. At high suctions (s MB4), the temperature
effect is mainly due to its influence on water viscositycbmtrast, in the range of low suctions (s <
60 MPa), the temperature effect is related to both the wateosity and the macro-pores closing
phenomenon that is supposed to be temperature dependent.

Key words : GMZ bentonite; nuclear waste repository; temperature; waemrien property;

unsaturated permeability
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1 Introduction

In a conceptual multi-barrier disposal radioactive waste repgsitéigure 1), significant
Temperature- Hydraulic-Mechanical (THM) phenomena take plackeiremgineered barrier and in
the near field due to the combined actions of heating and hydratiomh&aet al, 2004). The
hydraulic property of the compacted bentonite used as engineerest baaterial is one of the key
properties for the design of such a disposal system. This egplae large number of studies that
have been performed in this area: Dixon et al (1987), Nachabe (I#9%)uaand Wen (2003) tested
the permeability of saturated compacted bentonites and analyzeditieel influencing factors; Villar
(2000, 2002) and Komine (2004) reported different empirical relations betdige density and
saturated permeability of compacted benonite; Komine (2004) and H8ha{@007)predicted the
saturated permeability of bentonite based on the changes in porositheFunsaturated bentonite,
after an investigation to the unsaturated permeability of ikture of the Kunigel V1 bentonite and
Hostun sand under confined conditions, Loiseau (2001) found that for suction low@3ti&a, the
unsaturated permeability increases with suction decrease, whisudtion higher than 23MPa, the
unsaturated permeability decreases as suction decreases. hbibeconfined conditions and
unconfined conditions, Cui et al. (2008) tested the unsaturated permeabilihe mixture of
Kunigel-V1 bentonite/Hostun sand based on the instantaneous profile metidoéhuad that as
suction decreases, the unsaturated permeability decreases to a caereaanudahen turns to increase.

Cho et al. (1999) reported that the influence of temperature on theagishty of bentonite is
mainly because the intrinsic permeability, viscosity and densftywater are influenced by
temperature. Changes in viscosity of water with temperature haea found to be the most
important mechanism (Towhata et al, 1993; Cho et al, 2000; and Villar and Lloret, 2004).

GMZ bentonite has been selected as the potential buffer/backtidrial for the construction of
the engineered barrier in the Chinese deep geological disposalmprégrdiigh level radioactive
nuclear waste, thanks to its high montmorillonite content, high catidmage capacity (CEC), large
specific surface and other desirable properties (Liu and Wen, 2a08)esSon the mineralogy and
chemical composition, mechanical properties, hydraulic behavior, isgvebehavior, thermal
conductivity, microstructure and volume change behavior of the GMZ migsttave been conducted
over years (Ye et al., 2010b). The investigation of the hydraulicepiep of the GMZ bentonite has
been the gravity center of the recent studies. Liu and Wen (23@8) the saturated permeability and
analyzed the related influencing factors of the compacted G&tiZonite. Using the instantaneous
profile method, Ye et al. (2010a) tested the unsaturated permeaijilthe densely compacted
specimen, with a dry density of 1.7Mg/nunder confined (constant-volume) conditions. Results
show that the unsaturated hydraulic conductivity of the compacted bentbaitges from 1.13x16
m/s to 8.41x10° m/s (gravimetric water content from 12% to 28%) and it is nofys@iaction of
suction. While under unconfined (free-swelling) conditions, the unsatiuingtiraulic conductivity of
the Gaomiaozi bentonite is in a larger range of 1.0%10 1.0x10™ m/s. Based on the
Kozeny—Carmen semi-empirical function, Niu et al (2009) proposed iaesepirical equation for the
calculation of the unsaturated permeability of the GMZ bentonitd whe consideration of
micro-structural changes.

As far as the influence of temperature effect is concerecet al. (2009b) reported that the
water retention capacity of the highly-compacted GMZ bentonite adonite-based mixtures
decreases as the temperature increases, regardless of the confinitigrsondi

In this paper, the soil-water retention curves (SWRCs) ofdéresely compacted Gaomiaozi
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bentonite (GMZ01) under confined conditions and at various temperatures 4208Cand 60°C) are
presented. Based on the results obtained, the unsaturated permebthigyGd1Z01 is investigated
by performing infiltration tests under controlled temperature.

2. Materials

The Gaomiaozi deposit is located in the northern Chinese Inner Maraggbnomous region,
300 km northwest from Beijing (Ye et al., 2009a, 2010b). Some basic pespeftthe GMZ01
bentonite tested in this paper are listed in Table 1, which inditaae the GMZ01 bentonite has high
cation exchange capacity and high adsorption ability.

3 Experimental Methods

The instantaneous profile method has been adopted in this study. Theslmeits successfully
used by many researchers to determine the unsaturated hydomdigctivity of geomaterials (Daniel,

1982 ; Richards and Weeks, 1953; Hamilton et al., 1981; Watson, K.K., 1966; Meerdihk¥396;

Fujimaki and Inoue, 2003; Cui et al., 2008; Ye et al., 2010a). As an unsteselyrethod, it can be
used either in the laboratory or in situ (Benson and Gribb 1997).

In order to apply this method to determine the unsaturated perrmeabilhe GMZ01 bentonite
at different temperatures, on the one hand, the SWRCs of thishsoild be determined at relevant
temperatures, and on the other hand, the corresponding suction profiles shaoktigtrbgned by
performing infiltration test at different temperatures vatittion monitoring. For a given temperature,
the hydraulic gradient was determined using the suction profileydber flux was determined using
the water content profile; the hydraulic conductivity was thalcutated based on the generalized
Darcy’s law. The detailed calculation procedure can be found in Ye et al. {2009a

3.1 Determination of SWRCs
3.1.1 Suction control

The vapour equilibrium technique (for high suctions) and osmotic technigué suctions)
were employed for suction control in this study. At high suctionse#perimental setup used was
described by Ye et al (2005), as shown in Fig.2. Note that the vapoibegmil technique was
employed by number of researchers for controlling total suction in unsaturdtebtsofBernier et al,
1997; Blatz and Graham, 2000; Lloret et al, 2003; Chen et al, 2006).

In this study, the confined GMZ01 specimen was placed in a desiaad the water vapour
above a saturated salt solution was circulated to provide the desired suctiosptecingen. Saturated
salt solutions and their corresponding suctions imposed at 20, 40 and 60Skoare in Table 3
(Tang and Cui, 2005).

For low suctions, the osmotic technique was used and the correspondmg s#town in Fig 3
(Delage et al., 1992; 1998). Note that Tang et al. (2010) studiedetmeetature effect on the
calibration curve of PEG solutions and found that this effect isniigignt. Thus, in this study, the
osmotic technique was employed without temperature correction.

3.1.2 Apparatus
Custom-designed stainless steel cells with small holes inetvds (Fig.2, Ye, 2009a) were
employed for water retention test under confined conditions. The Wwelesdesigned as channels for

4
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moisture exchange between the specimen in the cell and the circulating &(soRition) around it.
For the temperature control, the setups were placed in ovens (Bigd 3ig 4), which have
temperature controlled to an accuracy of £0.1°C. Note that tempeyatfir20, 40 and 60°C were
selected as the testing temperatures in this study.
3.1.3 Specimen preparation

The GMZO01 bentonite powder was compacted into a thin cylindpesisien, which has a final
dimension of 20 mm in diameter and 6 mm in height. For the compactmess was used and the
compaction was carried out at a velocity of 0.1 mm/min. The finatdnsity and water content of
the compacted specimen were 1.70¢/amd 10.65%, respectively.

3.2 Infiltration test

The schematic layout of the temperature controlled infiltratist & shown in Fig.5. A
custom-designed cylinder (Ye et al., 2009a, 2010a) is put in an ovetemipierature controlled to an
accuracy of £0.1°C. The resistive relative humidity (RH) sen§0ts et al, 2008) were used to
monitor the RH changes. Note that the same type of sensor adbyse et al. (2009a, 2010a). It
can be seen from Fig.5 that the sensors were installed evenyn3@long the length of the cell (4
sensors) with a fifth sensor in the upper base plate of the setheAsensors measure the air relative
humidity, no direct contact with soil specimen was allowed. Foréaison, a small cavity was bored
in the soil for each transducer. This cavity had a dimension allanirggiucing the transducer cap: a
porous stone of 2 mm thick and 5 mm in diameter. This porous stone sdphetransducer from
the soil sample and allowed the air humidity transfer fromspieximen to the transducer (Ye et al.,
2009a).

The distilled water was used in the infiltration test. The wabsorbed by the specimen can be
guantified by calculating the water volume change in the lefk@daglass pipe, which can be
compensated by water from the right tube, in the U-shaped sysitsie the oven. Two drops of
silicone oil were added into the left pipe to prevent water evaporaA soft tube was used for
connecting the U-shaped system to the inlet of the specinmden to warm up the water to current
testing temperature before absorption. The humidity and temperaiamges were recorded by the
data logging system.

A double-piston mould was used for the compaction of the specimen (CuiedageD1996).
The powder of the GMZ01 bentonite was compacted in 5 layers. éiefirst layer (30 mm) was
compacted and the surface of specimen was carefully sdafdt the integrity of the specimen, the
equal parts of the GMZ01 powder were added from two ends of the rnudilithen compacted to two
15 mm sub-layers. This procedure was repeated for the othen8.[alje compaction was conducted
at a speed of 0.1 mm/min. The specimen has a final height of 1@ miry density of 1.70 Mg/fina
suction about 90 MPa for 40°C temperature and 100MPa for 60°C tempesaidra, degree of
saturation around 0.49 for 40°C temperature and 0.41 for 60°C temperature.

The unsaturated permeability test on the GMZ01 bentonite at 20°@rexeusly measured and
reported by Ye et al. (2010) and thus only the infiltration tesisnaperatures of 40°C and 60°C were
performed in this study.

4. Results and discussion
4.1 SWRCs
The SWRCs of the highly-compacted GMZ01 specimen following wepitdp at different
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temperatures (20°C, 40°C and 60°C) under confined conditions are shown in Fgg8. @athese
results, an equation can be proposed to describe the water retentienafuhve densely compacted
GMZ01 bentonite (1.7 Mg/f:

W:”{ln[2.72\iv7;///a)b]}° (+)
with
I+ %)
n=1-— b, (2)
1+——

r

Where ¢ (MPa) is the suctiony, (MPa) is a reference suction (309 MPa in this study);is the
water content in the saturated state;, = 025+ 0.00014T —20-2734); T (K) is the absolute

temperaturea (MPa),b andc are soil parametersa = -4.1474L.n(T — 273 + 20.395 ; b=0.8086 ;

c=0.5864.

Fig.6 indicates that, the water retention capacity decreasdésngerature increases and the
degree of the temperature influence depends on suction. This phenomeberacatyzed separately
at low and high suctions. At high suctions (> 4 MPa), changes ayf f&bric and fluid in
intra-aggregate spaces play a significant role in wateentien capacity of GMZ bentonite.
Intra-aggregate water moves into macro-pores (inter-aggreuates) with temperature increase (Ye
et al, 2009a). This process decreases the suction in the macrovebré$ethe suction is controlled,
water flows out from the macro-pores, leading to a decrehseater retention capacity. At low
suctions, capillary effect plays a decisive role in the watiemtion capacity. Increase of temperature
causes changes in surface tension, which results in decreaséeofcontent under constant suction
conditions.

In order to quantitatively assess the influence of temperatutieeowater retention capacity of
the bentonite under different suctions, a r&tics defined as follows:

k, =1~ Wr2 » 009 )
WTl
wherewr; andwy, are water content at temperattifeandT2 respectively for the same suction.

The relationship between the rakpand suction for the GMZ01 bentonite at 40°C and 60°C are
given in Fig.7. It can be observed that the effect of temperamrthe water retention capacity is
closely related to suction, particularly in the range from 30 to 60 MPagefthid reaches a maximum
at a suction around 40 MPa.

4.2 Unsaturated permeability
4.2.1 Test at 40°C

The relative humidity changes with hydration time in the iafiiom test at 40°C are shown in
Fig.8. Based on the SWRCs measured at 40°C (see Fig.6), the developswation with hydration
time can be obtained. Note that the conversion from relative huntodgyction was done using the



197 Kelvin’s law. Fig 8 indicates that, for the relative humiditysa located 3 cm from the hydration
198 water inlet at the bottom of the specimen, suction decreaseésyrapihe first 200 h of hydration and
199 then decreases much more slowly. For suction measured at 6 cging b decrease rapidly after
200 100 h hydration and gradually decreases after 800 h hydration. Aelatively far from the water
201 inlet, suctions measured at 12 cm and 15 cm from the bottom of the spetarte¢o decrease rapidly
202 after 200 and 300 h of hydration, respectively. The slope of the otistection versus time decreases
203 as the distance from the inlet increases. The test wasest@iter about 1670 h hydration, when the
204 sensor at 3 cm distance from the inlet indicated that zeroosu(lD0% relative humidity) was
205 achieved at this height.

206 The relationship between the unsaturated hydraulic conductivity andrsiscshown in Fig.9. It
207 can be observed that at 40°C temperature, the unsaturated hydoawlictivity of the GMZ01 with
208 a dry density of 1.7 Mg/this on the whole between 1.64%%f/s and 1.34xI¥m/s. During the
209 initial stages of hydration, the hydraulic conductivity gradudkgreases with suction decrease, and
210 the hydraulic conductivity reaches the minimum value of 1.34%m6 when the suction drops to
211 45 MPa; the hydraulic hydraulic conductivity keeps steady in dhge of suction from 20 MPa to
212 60MPa; but when suction drops to a level lower than 20 MPa, the unsatayatraulic conductivity
213 increases rapidly and reaches 1%t0/s.

214 4.2.2 Test at 60°C

215 The unsaturated hydraulic conductivity of the confined GMZ01 deternan6@°C is shown in
216 Fig.10. It can be seen that the values are generallyebatd.79x18*m/s and 1.19xI&m/s. As the
217 infiltration of water progresses, suction drops from 80 MPa to 55 Mde the unsaturated
218 hydraulic conductivity decreases slightly. With suction reductiamfr55 MPa to 20 MPa, the
219 hydraulic conductivity remains almost constant despite of theosuciianges. For suction lower than
220 20 MPa, the hydraulic conductivity rapidly increases with decreasing suotioreaches a final value
221 of 1x10%m/s.

222 When the soil suction is decreased from the initial value (about &) MFPzero, the hydraulic
223  conductivity first decreases from 2x1fin/s to 7x10"m/s and then increases to 1xffh/s, which is
224  close to the saturated hydraulic conductivity. As in the $it@ge, water transfer is primarily governed
225 by the network of large pores and these large pores are progheskagesasing in quantity and in
226  size, resulting in hydraulic conductivity decreases. After conmpletf this large-pore clogging by gel
227 creation, a normal conductivity increase with suction decrease is obseevetlaly, 2009a).

228 4.3 Influence of temperature on the unsaturated hydraulic conductivity

229 To further assess the influence of temperature on the unsatpetedability of the highly
230 compacted GMZ01 bentonite, the unsaturated hydraulic conductivity of thmexbrdpecimen at
231 20°C (Ye et al, 2009a) are compared to those measured at 40°C and 602C).(Rican be seen that
232 under confined conditions, the unsaturated hydraulic conductivity of the hightpacted GMZ01
233 bentonite increases with temperature rise. Moreover, the rateanfe also decreases as temperature
234 increases. The temperature effect becomes more significhigih@r suctions (above 20 MPa). In the
235 range of lower suctions (less than 20 MPa), it is observed thdowles the suction the less the
236 temperature effect. The possible explanation is that for low&iosadhe moisture absorbed by the
237 bentonite is mainly associated with microstructure changes andethperature effect on the
238 microstructure is not significant.

239 The influence of temperature on the hydraulic conductivityasiy related to the influence of
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temperature on the water viscosity and the pore structure of thenltenfo remove the influence of
temperature on water viscosity, the relative hydraulic conduciwiintroduced to allow for a better
analysis of the influence of temperature on hydraulic conductivitgtiBeships between the relative
permeability and degree of saturation (Sr) of the confined GMZADE and 60°C are given in
Fig.12. It can be observed that when Sr is higher than 0.57, the ydraoductivity at 60°C is
similar to that observed at 40°C. This means that in this rangeyadedef saturation the influence of
temperature on permeability is mainly due to the influence onr westensity. On the contrary, when
Sris lower than 0.57, the relative permeability at 40°C is found higher than that atr@érestingly,
this threshold corresponds to a suction of 60 MPa, and from Figs 9, 10 @nckn be observed that
when s > 60 MPa the hydraulic conductivity decreases with suctioeadec As mentioned above, in
this suction range hydration leads to progressive macro-pagsglthus to a decrease in hydraulic
conductivity. This macro-pore closing process can be assumed to besmoifecant at higher
temperature because of softer clay aggregates and lowerwgatasity, explaining a lower hydraulic
conductivity at 60°C than at 40°C. As the relative hydraulic condtctnas been found independent
of temperature when Sr > 0.57 (Fig. 12), it can be supposed that the-ctesming process ended
when Sr > 0.57; in other words, the influence of temperature on poceusérbecame insignificant in
this range.

It is also important to note that the obtained results could betedféy the possible density
gradient along the specimen as identified by Dixon et al. (28@2)Villar et al. (2008). This density
gradient can be formed owing to the expansion of the hydrated bentioaiitintrudes into the drier
area under the effect of swelling pressure. If it occurs,dhegatation of degree of saturation without
considering this gradient is not correct and the water retentime considered is also inappropriate.
In other words, the simultaneous profile method meets its limitation. Beiratlsg study, no specific
analyses were conducted after the infiltration tests, this phenonzamonot be verified. Further
studies will be performed tovestigate this aspect.

5 Conclusions

The SWRCs of the highly compacted GMZ01 confined specimens omgveitith and at
different temperatures (20°C, 40°C and 60°C) show that the watetioeteapacity decreases as
temperature increases; and the influence of temperature dependsgion. sThe raticks can be used
to quantitatively describe the influence of temperature on watention capacity of bentonite at
different suctions.

Under confined conditions and at 40°C temperature, the unsaturated hydmnductivity of
the GMZ01 bentonite at a dry density of 1.7Md/is between 1.64x18m/s and 1.34xI8m/s. At
60°C temperature, the value is slightly lower, between 1.18%1/8 and 1.79x18m/s.

For all the temperatures considered, the unsaturated hydraulic deitglaigicreases slightly in
the first stage of hydration. The value of the hydraulic conductbhétyomes constant as hydration
progresses. Finally, the hydraulic conductivity increases rapidtii suction decreases when
saturation is approached. This phenomenon may be explained by theexhanghe soll
microstructure.

Under confined conditions, the hydraulic conductivity increases agetamure increases, at a
rate that decreases with temperature rise. Also, the influehdemperature on the hydraulic
conductivity is quite suction-dependant. At high suctions (s > 60 MPla)wodegrees of saturation



283 (Sr < 0.57), the temperature effect is mainly due to its inflel@mcwater viscosity; on the contrary, in
284 the range of low suctions (s < 60 MPa) or high degrees of satui@r > 0.57), the temperature
285 effect is related to both the water viscosity and the macresprosing phenomenon that is supposed
286 to be temperature dependent. Note that further studies are neene@diigate the possible dry
287 density gradient effect on the hydraulic conductivity determimeskd on the simultaneous profile
288 method.
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390

391 Table 1 Basic Properties of GMZ01 bentonite
Property Description
Specific gravity of soi 2.66
pH 8.68-9.86
Liquid limit (%) 276
Plastic limit(%) 37
Total specific surface
area/ 570
(m*g™)
Cation exchange
capacity/ 0.7730
(mmokg™)
Main exchanged Na'(0.433 6), C&(0.291
cation/ 4), Mg?*(0.123 3),
(mmokg™) K*(0.025 1)

Montmorillonite(75.4%),
quartz (11.7%),
feldspar (4.3%),

cristobalite (7.3%)

Main minerals

392
393
394 Table 2 Salt solution and corresponding suction at different temperatures (MPad@by
Salt solution 20°C 40°C 60°C
LiCl, 309.0 - 340
MgCl, 150.0 162.4 187.7
K2COs 113.0 122.0 144.8
Mg(NOs), 82.0 103.1 139
NaNG, 57.0 -
NaNG; 39.0 49.5 61.6
NacCl 38.0 40.6 44.2
(NH.)>S0, 24.9 32.2
KCI 21.0 27.8 33.4
ZnSQ, 12.6 -
KNO3 9.0 -
K2SOy 4.2 51 55
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Fig. 1. Schematic view of a high level nuclear waste repository (Sanchez, 2004)
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Fig. 3 Setup for the water retention curve determination using the vapor equilibrioniciee
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Fig. 4. Setup for the water retention curve determination using the osmotic technique
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