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Abstract:

An analytical and numerical study of the dynamiciombf a conical frustum over a planar
surface is presented resulting to a non-lineaesysif ordinary differential equations.
Wobbling and rocking components of motion are disedsn detail concluding that, in
general, the former component dominates the |d&t@arsmall inclination angles an
asymptotic approximation of the angular velocitgepossible, revealing the main
characteristics of wobbling motion and its differemérom rocking. Connection is made of
the analysis with the behavior of the ancient at@s€olumns, whose three dimensional
dynamic response challenges the accuracy of th&itwensional models, usually applied in
practice. The consideration of such discrete-blagkstems can benefit from the present
study, through qualitative results and benchmasksrfore complicated numerical methods,
like the Distinct Element Method.
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1.INTRODUCTION

The non-holonomic problem of a symmetric body bxotetion, rolling on a planar surface,
was first formulated by Routh in 1868 [1]. Sincertha significant number of papers
appeared on this subject, focusing mostly on theéysof the motion of a thin disk on a
horizontal plane. The elaboration of the problenthefthin disk is presented in most classical
textbooks of Dynamics [2, 3, 4, 5] providing to tieaders a typical example of non-
holonomic motion. Noticing the early works of Appj] in 1900 (cf. also Korteweg [7],
1900) and Gallop [8] in 1904, where analytic san$ are given in terms of Gauss
hypergeometric and Legendre functions, we padset@arps of papers of the current decade.
The papers of O'Reilly [9] (1996), Kuleshov [10D(®), Paris and Zhang [11] (2002),
Kessler and O’Reilly [12] (2002), Borisov et al3]1(2003), Le Saux et al. [14] (2005)
provide a deep insight to the dynamic behaviohefthin disc. Equally important for the
present study are also the papers of Koh and Maugtal (1990) and Batista [16] (2006),
which discuss the motion of a disc of finite thieks on a planar surface. In the latter papers
the equations of motion of a cylindrical drum aegided and numerical simulations are
performed.

In the present paper we deal with the case of a&abiustum, rolling on a rough horizontal
surface. Using for the description of motion thegtaamge formulation, we distinguish
between the wobbling and the rocking of the frusamd comment extensively on these
components of motion. Stability analysis revealspiiee three dimensional character of the
motion, while further approximations of the angutalocities under small inclination angles
are elaborated to examine the main characteristit® motion of the frustum. Finally, an
attempt is made to interpret the dynamical behasi@ncient classical columns considering
them as conical frustums with slightly differentliia

2. EQUATIONS OF MOTION OF A CONICAL FRUSTUM ON A
ROUGH HORIZONTAL PLANE

Figure 1. The conical frustum: 3D and 2D view.



The formulation of the problem is based on theofelhg assumptions:

a. The body is a homogeneous, rigid conical frustum.

b. The contact with the horizontal plane is assumettiual. Notice that Kessler and
O'Reilly [12] introduced a contact moment for siatilg a ‘flat’ contact. This
additional complication is not considered here dose rolling friction is disregarded.

c. Atany given time the body is in contact with iwrizontal planar base and only
smooth transitions in time are considered.

2.1 Formulation of the system

The position of the body in the inertial frar¥ XY2) is determined by the coordinates of the
contact pointP( X, Y,) and by the Euler angld®, 8,y ), whereg is the precession angle,

@ the inclination (nutation) angle and the rotation aboufaxis (Figure 2). Fof =0 the
frustum comes into contact with the horizontal plé#y whole base. Hence, the motion is
restricted in the interva € [0,7/2].

Figure 2. Coordinate systems and Euler angles. O(X,Y e snertial frame, P(XYp) the
contact point with the horizontal plangthe inclination anglep the precession angle and
the rotation about-axis

If the frustum rolls without sliding then the veitycof the contact poinP(X,,Y,) is:
V, =Ry 1)

whereR is the radius of the base of the drum. Applying Bnobenius criterion, it may be
easily proven that constraint (1) is non-holonomic.

Ground accelerations can also be considered bydinting the additional inertia terms:

X, +Rycosp=alty, (1) , L+ Ry sip=a¥ y (¢ ?)



whereeay', o) are two scalar quantities, constant in time, #xgiress the direction of the
ground acceleratio,, (t) .

Given the frictional law of the materials in contact (eg. Couldmehbion), the estimation of
the sliding velocity is feasible by combining the velocityhe# pointP, regarded as a point of
the frustum, with the frictional forces developed at the contact.ederythis formulation
extends the limits and the scope of the present paper andnbivile pursued further
hereafter. Numerical and parametric studies that include sliding areyrse¢camportant for
practical applications, as they supply quantitative informatidretased for design purposes,
but add little to the qualitative understanding of the basiawshycs of the system.

The angular velocity components of the body relativ€{6, <) are:

o, =0
w, = ¢sing 3)
@, = @CoSH +y

whilst the components relative to the central principal axes sy8{eny 2) are:

w, = 0cosy + ¢ Sird siny

o, =—0siny + ¢ sind coy (4)
@, = COSH +

z

Notice the coincidence ab, and o, , becausez = ¢ .

The coordinates of the center mass of the conigatdm inO(X 'Y 2 are given in terms of
the contact point coordinatd¥ X, Y,), by the following relations:
X, = X, —(cog a+0) sinp
Y, =Y, + (coy a+0) cop (5)
Z, =!sin(a+0)

= 2
where / = R2+lkfhz, tana=m, k1=zﬁ, Zmzsﬁf—zﬁﬂh, B=1
V" T 2R h B+p+l 4 R

r andR are respectively the radii of the upper and losrarof the conical frustum antl is
its height (Figure 1).

The velocity V.. of the center of the mass of the frustum yields:
Xc = X + £8sin(a+ 0) sing — (¢ cog a+0) cop
Y. =Y, — (0sin( a+ 0) cosp— (¢ cob a+0) sip (6)
Z.=(0coqa+0)

2.2 Dynamic equations of motion

The kinetic and the potential energy of the drusm ar



T= % mvZ + %(DTIC(D
(7)

V = mgz

wherel,. is the inertia tensor relative ©(XY2):

1klmhz+ mR 0 0
4 . 1> 0 0
I.=1,- 0 Zkimh?+mR3 0 |,I,={0 Ij 0],
P
0 0 mR? 0 0L
1
17 = 2(k +2)mR, IS =17 = Z(k +4)mR2+—(kZ+3I{)mﬁ

9,6’+4ﬂ +1Q6’ + 46+ 1 andk, = 3ﬁ +ﬁ +ﬁ +ﬁ+l
2720 (ﬁ+ﬁ+1) 5  pP+p+1

The inertia tensol, expresses the inertia moments of the body atdghtact pointP. For
cylindrical drums it holdk, = k, = k;= 5 =1.

Introducing the generalized coordinatgs=¢, ¢, =6, 0,=y, q, = X,and g, = Y, the
general form of the Lagrange equations for non+hahoic systems are:

dio(T-Vv)| o(T
dt{ % } ZAJBJ,_O (8)

With 4 we denote the Lagrange multipliers, while:

oJ4{non-holonomic constraint equatig
B, = { Y d (m, resulting to:{Bji}z(

1 0 0 0 Rcow
01 0 0 Rsip)

For convenience we introduce the following dimenkss quantities:

-2, r:tP, SRR B oS
R R R R d

~ I - R - T - \Y ~ E
I :—k, = —, T = V:— E:—
TR wk\/:] mgR mgR mgF

where g is the acceleration of gravity aril the total energy of the system.

(9)

According to Eq.(8), the equations of motion ar&tem in matrix notation:
A-U=B (10)
whereU = {¢",0".y",4,,4,,X",¥"} andA, B are matrices given in Appendix A.

The determinant of matri& is:



det(A):%I§[4(ly— Y17 -h |sire

(3 ko) 3k + 4 [[ 3K+ K( ke 3] i+ § kr 3] sifo>
for 6>0.

(11)

For =0, det(A) = Oand the system of Egs.(10) is singular. In thetlwhie — 0", a smooth

full contact of the drum with the horizontal plaseeached. This collision is not trivial in the
sense that the impact is taking place betweenesfm the three dimensional space.
Consequently, the impact involves impulse reacttwoes and torques, including torsion. The
hypotheses usually made for the dynamics and th&cbopoint just after the impact [9, 17,
18] permit the application of the angular momenfuimciple and the calculation of a unique
restitution coefficient. However, these hypothem@snot straightforward, because of the spin
of the body at the instant of the impact, which nrdlpence the dynamics of the collision
even in the frictionless limit. Besides, as it ifl Wwe shown in the next sections, impact
happens only when a special initial condition igséad.

Equations (10) describe the three dimensional mati@frustum over a shaking rough
horizontal plane. These equations are non-linearf@anéd = 0 they become:

0" =[0.(0)¢' + 9Oy + 9.(0) U,
0" = [921(9) Q'+ 923(9)W’]€9' + 922(9) + 924(9) ALS;
=[9:(0) ¢’ + 9:4(O)y']0' + 9:,0) U, (12)
)2 =@'y'sing—y" cop + a0,
Y =—¢'y' cosp —y" sinp+a' {{,

where:

2(I7 - 1)( 2c001F -k, peots acsw (7 - 317
co

g = — = — , g = ~ = =

Ty -7 -n%e R (R TN N

. _(f;’ I7-1)sin®-hk, cos? hksing-2co® . 2(IF +1)sing +hk, cog
21— ’ 22 — I} 3= = ,

20 2" v
[4hk1cos9 4i; -7 - 1)sin9}(|l§—1)+ 2(4A;1AP PP BS-hk ) s
———

9a1 =

2hk (17 - 1) cs@ .

7P
_4(f§—1) 2(17 - 1) coty ~h?k?
T

2sind + ﬁkl co¥
217

Ou (~a sinp+af cop) ;

a cosp+ad $n (o)

o

NI



We observe that theotd andcsdd terms of Eq.(12) result into a singularity fof andy”
that is carried ovef” . The unphysical unlimited angular acceleratioresifmted by this

model for&® — 0" imply that the assumption we made here of fricésalcontact is too
strong for this limit, since “large” angular acaglgons would lead to strong tangential
reaction forces. These forces would in turn viotaeimposed non-sliding constraint. In
Figure 3 we plot: a) the normalized inclination anghd b) the mobilized friction coefficient
as functions of time. The mobilized friction coefént is defined here as the ratio of the
magnitude of the total tangential force over thgni@de of the normal force developed at
the contact point. From this figure follows thatertain occasions a short duration slip would
occur leading to energy losses, because of theased mobilized friction coefficient. The
energy dissipated in these short time intervaliding should lead to a high-frequency stick
and slip mechanishdepending on the assumed friction law [19], thi#itresult eventually to
a practically smooth collisionless contact. TlEsark enforces the conclusion that in the
problem at hand, and in general, impact is unattde
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Figure 3. Mobilized friction coefficient and nornmdd inclination angle of the column
presented in Figure 4. The energy dissipated dutfiregshort time intervals of sliding (peaks
of the mobilized friction coefficient) generallystdts to a practically smooth collisionless
contact.

For zero ground accelerations the system is autonsrand the Jacobi’s integral exists and
reduces to the total energy of the system [20]:

A_l P 17 ep 1 0o
E=—i7o+ 2[| cos' 0+ sing (7 - 3 sim—fik, coeﬂgo %
+(ff cos¢9—%ﬁk1 sirﬁj(p’yx#%e (13)
_1“P 2 Lire 2, 1
_§|7w§+—2(lv—1) ; 2 ]hkla)a) + 2e

In the general case of non-autonomous systembgame described above, the equations of
motion can only be numerically integrated. The nuocaé scheme that was applied here was

2 In the experiment of a “wobbling” coin on a takfiés is sensed by a high frequency noise thatddymed
towards the last phase of the motion.



compared and validated by extending the analysickition proposed for cylindrical drums in
[17] to conical frustums. The validation is presehin Appendix B.

3. THREE DIMENSIONAL CHARACTER OF THE MOTION

The initial conditions define the trajectory of thastum on the horizontal plane. For certain
conditions this trajectory may be a circle, a lameeven a point. In the particular case, where
the trace of the contact point is stationary ajd- ¢, = 0, the motion degenerates into a two-

dimensional rocking in the vertical plane. In tbé&se the behavior of the system is described
by the following equation only:

_ hk sing - 2co®

0" - (14)
21F

Rocking is described by Eq.(14) with the additioasgumption that when the block turns
back to the vertical positiord(= 0) it collides with the horizontal plane (i.e. itenot cross-
over). Then, the contact point changes abruptthéoother side of the circular base, the
angular momentum is preserved and the rotationrooed about the new contact point until a
maximum inclination angle is reached. Thereforekimng could be seen as a particular case
of the general three dimensional motion (Eqs.18)éen the time interval of two full
contacts with the horizontal plane. This considerainakes the stability analysis of rocking
meaningful for our study.

3.1 Linear stability analysis of rocking
Introducing the following small perturbations oétlependent variables,

P> 9+9(r) , 050@)+0() , ¥y, +y(r) (15)
and by linearizing Egs.(12), we obtain:

q’bﬂ — [911(5! + glslﬁr]er
0"=q,,0 (16)
l/;ﬂ — [931(5’ + 9331/7']9’

Settinge' = x, andy’ = x, equations (16)a and (16)c become in matrix form:

[X]’.j — H!{ gll gl3j . [ )(lj (17)
X3 gSl g33 X3
Let p, , be the eigenvalues of system (17). Then:

4(f§—1)(ﬁklcot9+f§+]) 6%( ik cop+ k+ ‘)‘ 2
B

(A e [Bekrk(ked]Frak(kig D

Therefore, the system has two real distinct eiglem@gawith one of those positive, which
means that in any interval between two collisiohhe drum with the horizontal plane, small
out-of-plane perturbations of the motion grow exgarally in time (saddle point).
Consequently, rocking is an unconditionally unstahbtion, independently of the

slendernessh, and the conicity 5, of the frustum. As a result, the three dimendiona

P1Pr =



character of the problem prevails. This is not storishing result because rocking could be
seen as an inverted pendulum motion. Pendulum netce also extremely sensitive to
out-of-plane perturbations as this is well-knowmumerical example confirms the above
result from linear stability analysis; Consider tttdumn depicted at Figure 4. The column is
a conical frustum witth=4m, r =0.4m, R=0.5m, #=0.8 andh=38. The equations of
motion are integrated numerically for the followitihgee cases of initial conditions:

IC1l: 9,=0, 6,=1, wy,=0, ¢,=0, 6,=0, y,= ( (19)
IC2: p,=0, 6,=1, y,=0, ¢p,=0.01, 6,= 0, y\y= | (20)
IC3: ¢,=0, 6,=1, y,=0, ¢,=0.1, 6,= 0, y,= ( (21)

Initial condition IC1 refers to rocking. Notice that even for $malues ofp, (IC2 and IC3)
the contact point changes position (Figure 5) and it is mateld in the plane of the two
dimensional rocking motion, wher¥(t) =0 (IC1).

0.4

0.5

Figure 4. Geometry of the column considered for the nurakexamples.
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Figure 5. Coordinate X , of the contact point for initial conditions ICIG2 and IC3. Notice
that for rocking (IC1) the Xcoordinate of the drum remains constant (zero)leafor IC2
and IC3 is not. This means that the contact pa@imiat limited in the plane of the two
dimensional rocking motion.

3.2 Wobbling motion

An animation of the above three dimensional motereals an interesting kind of motion

that it is evolving for small inclination anglestbie drum. In this paragraph, we distinguish
this special kind of motion, which is not limited the vertical plane of rocking, but it is rather
evolving out-of-plane, in the three dimensionalcgyand is observed when the drum rolls on
its edge under small inclination anglés<{d << 1).We call this three dimensional motion for
small inclination angles/obbling Another example of this particular motion coulsioebe a
coin wobbling on a desk. The main difference okmg from wobbling is that the pole of
rotation of the body is not kept constant in tinne #hat the motion of the frustum needs three
angles to be described, i.e. the Euler anglegansbf one. Assuming small inclination
angles,f <<1 Egs. (12) are linearized as follows:

@' = [ f.(0) o + f13(6’)'7”,] 0"+ £,(0) Ogr +0(0)

0" =[1,,0) 9"+ T,5(0)y'] ¢ + ,40)+ f,{0)(;, +O(6?)

y'" = [ f21(0) @' + f33(0)l//]9l + T540) agf +0(0) (22)
X" =¢'y'sing —y" cosp+a i,

arnr

Y" =—¢'y' cosp —y" sinp + "G,




20(15 -17 -
for = 2iF R R Y
y y y y
f 212(—2@’+IA2P+1)IAZP+hA2kl2 4§k1(f,f—])
S S T T P T T
c 1 4i7(7-1)  ;k(iT-1
P oon-a(iy-1)i7 hAE-a(iy -1)i]
2hk (17 -1 -
-1 ki(A — (¥ cosp+af sinp) ; f24:(0fip+:|ﬁJ(—afrimo+a%’cos(p)
y y

AP —fAZ-a 1 2hk(i7 -1 |
f = ~ : ~ = — — - gr gr
3 4(|; _1)|—;—h2k12 + 2] 4(“;— ])|f—h2k12](al Cosp + «, Sln(p)

It is worth mentioning that in the above lineariaatthe approximation is not uniform,
because if we truncate tt@(ﬁ) terms in Eq.(22)b an equilibrium point is lost.

4 FREE WOBBLING
For zero ground accelerations we derive the ratatigelocities of wobbling as functions of
the inclination angle? (see Appendix C). These velocities are expresséddllaws:

vealdflsl]
p Lo 20 0 23)

ohk A1y -1} -h%?
where p = o S= = ) andc, andc, are constants specified by the initial

conditions:
c=-e* (g +v5)
(24)

P
2| 260,-s, , , ,
szes{ op ((004‘5”0)_(9095}

Adding equations (23)a and (23)b yields to:

0-0,
o' +y' =(py+yy)e ® (25)



4.1 Approximations of rotational velocities
The behavior of the drum faf < g, <<1 is approximated by expanding Eqgs.(23) in power

3
series. Neglecting terms ﬁi(gj =0(¢"?) and O(%j = 0(&"?) that is forg, = O(£°?),

0

0= 0(52) and0< ¢ << 1, we obtain:

!

2 ! [
@'~ _?s(% + /)

, (ps+2) + (gj _ oY

ps 0 (26)
, s+2, , , st 2%+ 2 (6, B
~ P (@o"“/’o)_(p 1% 2/10(—0) =0(¢e l)
ps ps 0

In equations (26) the second term on the right sl is dominant and @(s ') whereas

the first term is a constant independent.diquations (26) can be reduced to the
approximation suggested by Srinivasan and Ruinpif2he neglects the constant term and

assumes thap, andy, are quite small. This approximation is indeeds$atitory in the near

collision state, but fails to reproduce the glafgsponse of the wobbling motion. The
numerical integration of the equations of motiorraborates the current asymptotic

approximations fowp,,w, # 0and the comparison of the asymptotic with the fallynerical

solution is presented in Figure 6 to Figure 8. thernumerical comparison, the same
geometrical parameters were used with section &.ifitial values werey, =0,

6, =%z 0.17, y, =0, ¢, =0.1, 6§, =0, w, =-0.2; notice that the range @f is within the

limits of the above approximation.

Figure 6. Precession velocity,, and inclinationd versusc. The precession velocity obtains
large values for small inclination angles.
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Figure 7. On the lefty’ versusé is plotted for a) the numerical solution (solidd) and b)

the approximation of Eqs.(26) (dashed line). Onrtpkt the relative error of the
approximation is presented, which is less than 6%o.
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Figure 8. On the lefty’ versusé is plotted for a) the numerical solution (solidd) and b)
the approximation of Eqs.(26) (dashed line). Onrtpkt the relative error of the

approximation is presented, which is less than 6%eo.

Both angular velocitie®’ andy’ depend on the slenderndisand the conicityg of the
frustum because of the terps™ in Egs.(26). In Figure 9 we present the contoat pf
ps(ﬁ/}). From the contours we observe tha", and consequently’ andy’, increase for
decreasind% and increasing? with £ <0.5. For §>0.5, the termps* is practically not
affected byg . This observation would support the approximation of glpitassical column

drums (8 = 0.8) by cylinders. However, this statement must be checked with neaheri
analysis of the multi-drum system response, which is outeod¢bpe of the present paper.



Figure 9. Contour plot qbs(ﬁﬂ) as function of the slendernebsand the conicityf of the
conical frustum.
Equations (26), show that' andy’, are quadratically dependent on the ra%io Yet, their

sum is practically constant (see Eq.(25)). Combining Egs.(3) &gt spin of the drum is
approximated by:

w, 2@ +y' =)+, (27)

From the above approximation we infer that for small inclinationeanile spin of the
frustum, e, , is defined by the initial conditions, it is independenthef geometrical

parameters and it is practically constant in time. In Figure 10otep(r) for:

7z. ! ! !
$,=0, O,=—, y,=0,¢,=01 6,=0, y,=0.E
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Figure 10. Spin¢;, of the body (solid line). It holds, = ¢, + .



4.2 Impact with the horizontal plane

In the following we derive the condition for impaottake place. As mentioned above, at
impact the drum is spinning, which shows that theaginics of the collision are complex
since they involve impulse reaction forces anduesy including torsion. This complication is
pursued further here. Equations (23) show thaptbeession velocity and the spin increase

and become infinite fo&# — 0" . Introducing Equations (23) into the total energyatgpn of
the system, Eq.(13), we obtain:

L (1P-1 _ e\ _
E:( - )(sq pgj +O£Mj (28)
2p 0 0

However, the total energy must be finite in theitigh— 0" . This implies that impact occurs
only when the following condition is met:

SG = PG (29)

Using EQgs.(24) the impact condition becomes:

v, B po; _ ps p P, 3
(_oj — 0 _1_7—1+§90+E90 +O(90) (30)
™o les —1|s+ 26,

First we note that impact is not affected by thgudar velocity ;. By the same token, we
note that the choice of the initial inclination &g7,, plays a subordinate role in the criterion

for impact and in view of Eq.(27), we get from Bf)) that impact takes place if the
(practically constant) spin of the frustum is:

ps

w, = 7(00

Equation (31) shows that the impact condition isaftected by the conicity of the frustum,
for £ > 0.5 (Figure 9). If the initial conditions satisfy exbcthe impact condition, Eq.(29),

the energy equation (13) can be solved for thenatibn velocity at the instant of the impact,
yielding to a non-zero value that is compatiblewvithpact:

—
” z_\/ZEO—Ich+hk1¢O 32

imp P
y

(31)

On the contrary, if for given initial conditionsetbody does not overturn and the
aforementioned impact condition is not met, theyboskillates between a maximu#,, and
a minimum inclination angl®_. . (Figure 11). The values @ ., and g, can be specified by
introducing Egs.(23) into the total energy of tlygstem, Eq.(13), leading to rather
complicated algebraic expressions &L, .-

The fact that in the general case of initial coedis the conical drum does not collide with
the horizontal plane is one more fundamental dé¢fiee of the dynamics of rocking (2D) from
wobbling (3D).



0.0 ; : : ‘ T
0

Figure 11. Oscillation of the conical frustum beéne), ., (6;=0).
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5. APPLICATION TO ANCIENT CLASSICAL COLUMNS

The last decades an increased interest arouse gytramic response of ancient classic and
Hellenistic temples. In certain cases this kingtofictures may undergo intense earthquake
actions without collapsing. A particular elementiiése monuments is the multi-drum
column. Each column is made by sometimes astoulydiitigd stone drums, which are
placed without mortar on top of each other on &goefit [22]. From the mechanics point of
view, the dynamic response of the classical colyre@sn as rigid-body assemblies, is
definitely non-linear and it involves rocking, shdi and wobbling of the drums (Figure 12).
This response has also little in common with theagiyic response of modern structures,
which exhibit ‘tensegrity’ (tension + integrity) the sense that they can bear tensile stresses.
The stability and resistance of modern columnsctal @nd lateral loads and moments is
owed to the development of internal tensile forgds)e the stability and resistance of
classical columns is owed only to their self-weif#f8] and geometric characteristics. This
fundamental difference makes inapplicable moshefavailable structural theories and
classical computational tools.

In the frame of a simplified mechanical model, bawtbnolithic classical columns and single
column drums can be seen as rigid conical frustwitisslightly different radii. The vertical
flutes that are often sculptured on the faces efcthlumns are of small extent and can be
ignored in a first approach. Under these assumpttbesesults that were exposed in the
previous paragraphs can be used for the qualitatiderstanding of the dynamic behavior of
a classical column.



Figure 12. Mechanical damage of a column of Partire(see also Bouras et al. [24]). The
relative displacements and rotations of the colwrums corroborate the wobbling motion
and the three dimensional dynamic response of thegeilated systems.

According to Section 3, wobbling dominates rocking #sherefore the drums of classical
columns wobble under dynamic excitations. Conseityiehe two dimensional analyses
often performed [25, 26, 27, 28] should fail to wap the response of these articulated
systems, as the out-of-plane motion cannot be eghdn parallel, the mechanism of energy
dissipation at wobbling is different from rockirlg.particular, the dissipation of energy at
wobbling is attributed to the frictional forces tlzeie being developed at the joints during the
stick and slip motion of the drums, while at roakihe dissipation is attributed to the impact
with the horizontal plane. But even if impact ialieed at the last moments of the wobbling
motion, the spin of the drums involves frictionaigion at the collision, leading to an
additional factor of energy dissipation. Figure @@;roborates the above arguments, showing
the relative rotations of the drums of a columiPafthenon.

The presented dynamic model can be used direcHtutdy the dynamic behavior of classical
monolithic columnd However, for the study of multi-drum columns amonnades, more
sophisticated numerical tools have to be appliée Distinct Element Method (DEM) seems
to be a promising choice for the study of suchaystand it has already been used for the
modeling of multi-drum columns. The results weretgsatisfactory [29]. However, the
inherent theoretical assumptions of the above tiensional numerical method that
concern the contact laws, the contact detectiontlamihtegration of the equations of motion,
guestion its reliability and accuracy for the maaiglof such systems. The authors are not
aware of any comparison of the above mentioned naatenethod with the physical model
proposed here (Egs.12,19). However, this compaegcogeds the scope of the current paper
and it should be followed in a different work.

3 All the analytical calculations in the present @abave been performed with the symbolic language
mathematical package Mathematica. The Mathemateasdre available to the reader upon requesteo th

corresponding author.



6. COCLUSIONS

The objective of the present paper was the studlyeoivobbling motion of a conical frustum
on a rough horizontal plane. For the analysisgtipgations of motion were derived using
Lagrangian formulation. The system is finally dédsed by a set of non-linear equations that
cover both the in-plane (rocking) and out-of-pléwebbling) motion of the conical frustum.
Linear stability analysis shows that rocking is amditionally unstable and that wobbling is
the dominant motion for frustums. In the generalkecaf initial conditions, the frustum
oscillates between a maximuand a minimum inclination angle. Impact takes placder
certain initial conditions, while at the instanttbé impact the spin of the frustum is not zero
resulting to impact reaction forces and torqueduiing torsion. Practically, for small
inclination angles, the spin of the body remainsstant during the motion. On the contrary,
large angular velocities appear as the inclinatiogle takes small values. The energy
dissipation of the system is attributed to thigantaneous increase of the angular velocities,
leading to a stick-slip motion of the drum, dep&gdon the friction law. The aforementioned
fundamental characteristics of the dynamic respoh$eistums enable us to get an insight to
the dynamic behavior of classical multi-drum columnghe particular case of single
monolithic columns the proposed approach is diyeaypplicable and may be treated as
benchmark for other general purpose numerical teflen used in the study of blocky
systems.
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APPENDIX A

Matrices of the equations of motion A and B

o e . - . 1 1 .
IPcog o+ sm9(Ly sig — sid - coﬁ1kl) 0 ce?&(l2 - )1 0 0 Ef @S Ef @in
0 s 0 0 0o lesip -leco
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APPENDIX B

Validation of the numerical integration scheme

As was first proposed by Appel [6] and Korteweg E§s.(12) can be transformed as
follows:

dza) da) e 2( I;P 1)
5 * +cotd —~a, =0 (B.1)
do do  sing hzk1 4( = 1) P

h2k?—4( 17 -1)if g 2hk (1P -
w, = —= ({ ) a)4+A (A ])a)g (B.2)
h’kZ-417+4 d0  hkZ-417+ 4

In the case of an infinite thickness disfk:(o andk, =k, =k,=4=1) Eq. (B.1) reduces to
the one derived by Appell. Settirgg= cot@, Equation (B.1) yields:

d? d
(q2+1)2 d§§+q(l+ qz)%+4(b+ cqa, =0 (B.3)
IP-1 1P -1
hereb = Lk
Hhere 2k — 4(|F’—1)|P 2 klh2k1 —-4(iy-9)iy

Equation (B.3) is a special case of the Riemannp&dg equation with two singular points.
Its solution is given in terms of hypergeometrindtions below (Batista, [17]):

0 (0)=AT(0)+ A T,(9) (B.4)
where:
A, A, are complex constants that depend on the initiatlitions ofw, and its derivative at

1 A

_i)a2 * —

0-0, T,(0)=[ 91| Tp[LrArA A=A AT L s,
g+i 2 2 gq+i 4




A = %+4(b— ic)and F (a, b; ¢ 2) is the Gauss hypergeometric function (Abramowitd a

Stegun [30], 1970).

Combining Egs.(13), (B.2) and (B.4) the equatiohsiotion are integrated for given initial
conditions. The integration involves the calculatidrthe Gauss Hypergeometric function,
which finally is performed numerically. For thats®n, the result is obtained through a semi-
analytical approach.

The validity of the numerical integration scheme thias currently applied was juxtaposed
with the abovementioned semi-analytical solutiome Bolutions obtained were identical, with

an num

an average relative errm% of order of magnitude 10

APPENDIX C

Analytical solution of the wobbling ODEs
Equations (22)a and (22)c are linear in respeet’oind ' and are written in matrix form:

X' =L X (C.1)
where
X =(¢:] and
7%
_26f;2—(1z§’+ ?f?klﬁ—ﬁ ﬁffﬁkl( i+ ) 12(17 - )
10 A(iy -1} -h%; 417 -7 -h%?
30| 127 o147 - Bko+ §IT+ B+ 1Bke  PIT- ) Bko- §)
B 417 ~1)i7 -h? 4(i7 - 77 -n%;

The eigenvalues and eigenvectors dadre:

20k (1 -1)0 iz—(ﬁzzﬁK(A_]j))A _g]g

ji:4(|;’—1)|§’—h2kf' iy
(C.2)
) 217 (17 -1) .
S= 2(—2f§’ +17—6hk, + 1) g ﬁki( D+ Fl|<1)
1 1
with
X =SY (C.3)

Replacing (C.3) into (C.1) and after some algebsaoitain:
Y'=(D-S'S)Y (C.4)



WhereD:(/11 Oj.

0 A,

Equation (C.4) can be solved f¥rand the solution of (C.1) is obtained using Eq.JC.3
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LEGENDS

Figure 1.The conical frustum: 3D and 2D view.

Figure 2. Coordinate systems and Euler angles. Q&,i¥ the inertial frame, P@E{Yp) the
contact point with the horizontal plartethe inclination anglep the precession angle and
the rotation aboui-axis.

Figure 3. Mobilized friction coefficient and nornmdd inclination angle of the column
presented in Figure 4. The energy dissipated dutfiregshort time intervals of sliding (peaks
of the mobilized friction coefficient) generallystdts to a practically smooth collisionless
contact.

Figure 4. Geometry of the column considered formtimerical examples.

Figure 5. CoordinateX , of the contact point for initial conditions ICIC2 and IC3. Notice
that for rocking (IC1) the Xcoordinate of the drum remains constant (zerojlewbr IC2
and IC3 is not. This means that the contact pseinbt limited in the plane of the two
dimensional rocking motion.

Figure 6. Precession velocity,, and inclinatiord versust. The precession velocity obtains
large values for small inclination angles.

Figure 7. On the lefty’ versusé is plotted for a) the numerical solution (solitk]) and b)

the approximation of EQs.(26) (dashed line). Onritjlet the relative error of the
approximation is presented, which is less than 6%o.

Figure 8. On the lefty’ versusé is plotted for a) the numerical solution (solidd) and b)

the approximation of Eqs.(26) (dashed line). Onriplet the relative error of the
approximation is presented, which is less than 6%o.

Figure 9. Contour plot qiis(ﬁﬂ) as function of the slendernebsand the conicitys of the
conical frustum.

Figure 10. Spingy, of the body (solid line). It holda, ~ ¢ + v,

6,=0.

Figure 11. Oscillation of the conical frustum betwekp, = 00:1% andé,. .,
Figure 12. Mechanical damage of a column of Parthenon (see also Boalag®4]). The
relative displacements and rotations of the column drums corroboeatetibling motion
and the three dimensional dynamic response of these articulatedsystem



