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Abstract: Masonry is a two-phase composite matdoiahed by regularly distributed bricks and
mortar. The homogenization procedure followed hextends the 2D approach of Sulem and
Muhlhaus [4] and leads to an anisotropic 3D Cossmatinuum. The enriched kinematics of the
Cosserat continuum allow to model microelementesyst undergoing in-plane and out-of-plane
rotations. The domain of validity of the derivedsSerat continuum is discussed by comparing the
dispersion function of the discrete system of b#oakth the continuous one and is found to be in
good agreement.

Key words: masonry, 3D Cosserat, out of plane, lan@, homogenization,

differential expansions.

Introduction

Masonry as a whole is more than the sum of itsdingl blocks. Masonry is an
anisotropic, composite material of bricks and momich ideally can be seen as
a periodic medium. Its mechanical behavior has [stadied experimentally and
analytically. Many models have been proposed fae tlescription of the
mechanical behavior of masonry walls based eitheexgerimental results and
empirical statements or on sophisticated continunodels that consider the
micro-structure of the medium (see Besdo [1], Maiset al. [2], Masiani &
Trovalusci [3], Sulem & Mihlhaus [4], Pradel & S&j,[Cecchi & Sab [6] for 2D
masonry and Cecchi & Sab [7]-[8], Trovalusci & Masi[9] for 3D masonry).



The latter continuum models are derived by homaggiun of the

micro-structure.

The homogenization techniques are based on differapthods for the
representation of a periodically heterogeneous mmedivith a macroscopically
equivalent homogeneous one. The most popular metfeydeomogenizing a

medium are the following:

a) Asymptotic averaging methodsThese methods are based on the
asymptotic expansion of the state fields (displaa@sy forces, moments, etc.) in
terms of a small quantity, which is the characteristic size of the elemegntar
volume. The main advantage of these methods is tigorous mathematical
formulation and their ability to determine the eradrthe approximation of the
discrete medium by the homogenized one. These metad very popular for
periodic composite materials and many applicaticanrs be found at Bensoussan
et al.[10], Sanchez-Palencia [11], Sanchez-Pale&cizaoui [12], Bakhalov &
Panasenko [13], Kalamkarov [14], Tollenaere & @aié [15].

b) Direct averaging methodsThese methods are based on the direct
averaging of strains and stresses over the repetsen volume element.
Historically, these methods have been developetieedhan the asymptotic
averaging methods and are discussed in details ashid [16], Hashin &
Shtrikman [17], Hill [18]-[19], Christensen [20],bdudi [21].

C) Homogenization by integral transformationghis method was originally
proposed by Kunin [22], [23] and is based on thbsstution of the periodic
heterogeneous medium with a continuous one, whekkMariables coincide with
the discrete ones at its nodes. Between the ndtlesyalues are given by

trigonometrical interpolation.

d) Homogenization by differential expansioi$is method [4], [24]-[28] is
based on the derivation of a continuous model Iplaoing the difference
quotients of the equations that describe the pieribeterogeneous medium with
corresponding differential ones. This replacementperformed using Taylor

expansions of desired order. According to Paster®@akiihlhaus [29], this



method offers a robust balance between accuraciamalicity and it is a long-
wave asymptotic approximation of the discrete, eramdel.

The latter of the aforementioned, briefly describemogenization techniques,
has been successfully applied in rock mechanicssaih mechanics and in

structural engineering. More specifically, continumodels have been derived in
rock mechanics for the modeling of blocky rock negsky Muhlhaus [30]; in soil

mechanics for the modeling of granular materialsviijhihaus & Oka [24] and

Suiker et al. [26]-[28]; and in structural enginagr for the two-dimensional

modeling of classical ancient columns and masoraiswMuhlhaus et al. [31],

Sulem & Muhlhaus [4] , Cerrolaza et al. [32].

Here, we extend the continuum model for masonrylsmal three-dimensions
[33]. The interest of 3D extension is not only tesdribe in-plane deformations
but also to account for out-of-plane deformation e®dut-of plane deformation
has often been observed to be of great importaocearicient masonry walls,
which, among others, are the Parthenon structurall \&nhd the Acropolis

retaining Wall. This study is devoted to the detima and the validation of the
model, whereas in a future work the derived comstié law will be introduced

into a finite element code in order to analyse aal complex structures.

It should be mentioned that the applications of deeived model and of the

method presented here are not limited to masomugtsres only. Applications

may also be found to some geo-structures encouhtergeotechnical and rock

engineering, i.e. retaining walls, tunneling in ddg rocks, rock slopes (cf. e.g.
Adhikary [34]) etc.. An additional example wherésttheory might be of interest

is the modelling of periodic structures in natunalestone deposits that resemble
to masonry structures and are of interest to strattgeology. Generally, one

could maintain that this theory might be usefulti® modelling of soils that

exhibit microstructures that can be representdatiak assemblages.

In section 1 we start from the micro-scale of thesomry wall and formulate the
lattice model of the structure. In the next sectitim discrete medium is
homogenized using the differential expansions tegleand the elastic potentials
of the models. The constitutive law of the contiasionodel is then derived. In



section 3 the derived Cosserat continuum is condprehe lattice one, in terms
of the dispersion function, and it is found to appmate well the lattice model.
All the analytical calculations in the present papave been performéavith the
symbolic language mathematical package MATHEMATICFSG].

The lattice model

Lattice models originally appeared in the contektondensed matter physics,
where the atoms of a crystal directly form a lattitattice models are quite
popular in physics and mechanics as they haverggpnany applications and
approaches. The well-known Discrete Element Methvaldich is derived from
molecular dynamics algorithms, could also be seearaextended lattice model.
Generally lattice models are ideal in computatigrafsics and mechanics, as the
discretisation of any continuum model automatic#liyns into a lattice model. A
masonry wall can be regarded as a set of blockshwviare regularly and
periodically arranged in space. This regular pedairangement of the building

blocks is suitable for the description of the bvickk by lattice models.

Starting from the micro-scale, i.e. the arrangen@nthe building blocks, the
proposed model describes the macroscopic behavtbeavall by assuming rigid
building blocks with deformable interfaces (soffatacts). It should be mentioned
that this hypothesis implies that the deformat®mroncentrated on the interfaces
of the bricks and that it is small as comparedhirtdimensions (small strains
assumption), which is verified especially in higtal masonry structures. Raffard
[37] has experimentally shown that the rigidity tbe interface (brick-mortar-
brick) is smaller than the rigidity of the mortaself. According to Raffard this
may be attributed to an increased porosity at titerface mortar-brick. The
assumption of rigid building blocks with deformaloherfaces is also adopted by
many other researchers in similar consideratiores@B [1], Masiani et al. [2],
Masiani & Trovalusci [3], Sulem & Mduhlhaus [4], Gdt & Sab [6]-[8],

! The reader is invited to download the Mathematiddorking files from:

http://geolab.mechan.ntua.gr/people/stefanou




Trovalusci & Masiani [9] just to mention some). Qhe other hand, the
consideration of deformable blocks in the homogaion procedure would result
in a higher order equivalent continuum with defobfeadirectors. The scope of
the paper is, however, to restrict the obtained dgenized medium to a Cosserat
continuum. An additional assumption is that the bad the cross joints of the
brickwork (horizontal and vertical interfaces aatiogly) have the same

mechanical properties. Finally, the developed sags® at the interfaces of the
blocks are assumed to be linearly distributed akem, and the constitutive law
of the joints is assumed to be linear elastic (fégl). The assumption of linear
stress distribution is justified in the recent pedoion of Milani et al. [38], where
the authors show that linear stress distributidntb@interfaces give good results
as compared to constant and quadratic stressbdittms.

Figure 1. Stresses developed at the interfacedqefbtocks of the elementary cell and their

equivalent forces and moments.

The six degrees of freedom of each rigid buildifack can be separated into two
groups describing the in plane and the out of pkdefermation of the masonry
wall. Accordingly, the nodes of the lattice modehich are fixed at the center of
the masses of the building blocks, have six degoédseedom. Obviously, the

arrangement of the nodes of the lattice model i®ge in space (Figure 2) and
follows a given pattern. We call this pattern tleéetmentary cell” and we define it
as the minimum recurrent volume of the structuré toatains all the necessary

information for the constitutive description of timaterial.



It has to be mentioned though, that generally tmentary cell is not unique and
that its choice affects the obtained homogenizedtimamm. For this rather
well-known point we refer to the book of Novozhild961, [39]. In the particular
case of masonry walls one could alternatively choas an elementary cell an
individual block with six interfaces and would iredkresult in a constitutive law
with small differences in the coefficients of theuple stresses. However, these
differences are insignificant when these two apghea are compared with the

discrete model in terms of the dispersion function.

Lattice node

. . . >
Elementary Cell
. _::+::_ ¥ * v |7
# % *
. * *
+ ¥ *
" # #.

Figure 2. Chosen elementary cell for the periodésomry structure.

Internal forces

Each block(1,J) of the lattice has three translationaf,, and three rotational,
coﬁJ, degrees of freedom (Lagrange coordinateﬁ)y and coffJ represent the
displacement and the rotation of the center of maksshlock (I,J). For

infinitesimal rotations:

ult),J(r):uliJ+mllj,Jx(r_rl,J) 1)



where u‘,‘fJ(r) is the displacement vector of a point of blqko) with position
vector r and r, ;is the position vector of the center of mass of ek (1,J).

Both r andr,, are expressed in the global coordinate system.

The elementary cell contains five interfacgs (k =1,5), which are defined below

in reference to the center of mass of the elemgett (Figure 1, Figure 3):

03&3% —%sysD ‘0
o= Xzzg ! @) = XZ:% ! Z@ = —gﬁxzsg ,
_%leﬁo OSXlS%
2ay=| %= —g , Se=| %= _g
_%gxgﬁg _%S)%S%

The interface, defines the contact area of the two blolksb®. Assuming linear
stress distributions at the interfaEe of the elementary cell, we can substitute the
stresses with punctual forces and moments at thieecef area of each interface.

Let b*, b° be the two blocks interacting through interfate and F, (resp. Fl, )

and Mf’:) (resp. M‘(’E) the force and the moment exerted by bldfkover b*
(resp.b® overb®). This set of interaction forces and moments Isksganced and
is simply expressed as follows:

b b
Fio = Ky AU

b b
My =Gy Ao

)

where the superscript8 andb® have been simply replaced by

In equation (2), the expression ¢f ,, andC,,, is given by:
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where A, (A/) is the area of the horizontal (vertical) intedamside the
elementary cell,c,,,;, (c,) the bending stiffness of the horizontal (verfical

interface, ¢, the normal- and:, the shear- elastic stiffness of the interface with

. . [F] 1 1 5
dimensions and =—ad, =bd, =—c¢,d°,

1 a)’ 2
CMHz—l_Zcquzj +d:|.

1 (aY 1 1
CMH3:1_2CN(7J ' CMVlzl_ZCQ(b2+ dz)’ CMV2:1_2CNd

1
¥ CMV3:1_ZCNb2

Auf, and Aw;, express accordingly the relative displacement egldtive

rotation at the centre of the area of interfade For example,

AUP, =UP 5, (r o) —Ub, (1 ), Wherer, is the position vector of the center of
interfacek =2. If r_, is the position vector of the center of mass efelementary

b

,—2,0}.

cell thenr, —r., ={-

Nl
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Figure 3. Numbering of the interfaces and blocksda the elementary cell. The solid dot at the

center of the elementary cell denotes the centssmfthe elementary cell.

Energy of the elementary cell

For rigid blocks, the energy is only stored atititerfaces. Therefore the internal

elastic energy per unit volume is:
_ 1 > 1Fb b > 1 b b 3
(umt—v ZE <k)Au<k)+Z_2M(k)A‘”<k) 3)
k=1 k=1

The kinetic energy of the elementary cell is:

1
Tlnt:V(z\Nl,JTI,J) (4)

whereV is the volume of the elementary ceff, , the kinetic energy of block
(1,J) andw,, is the weight of contribution of bloci, J) to the kinetic energy of
the elementary cell7,,. The sum refers to the blocks that belong to the

elementary cell.

TI,J:%m(ulI),J)T u?,J—’__;((btl),J)T J(bt:,J (5)



where m is the mass of a block and is its inertia tensor expressed in its

principal axes:

imW+&) 0 0
J o o) |12
J=|0 J, 0]= 0 i%mé+&) 0
0 0 J, 1
0 0 —m(a& + If)
12

Equations of motion

Using D’Alembert’s principle we derive the equasomf motion for each

individual block of the masonry structure. Thesaatmpns involve the six degrees
of freedom of the nodes of the lattice model areltban be solved to give the
mechanical response of the masonry wall. In Appemdeé summarize these

equations.

The continuum

There is a long standing argument whether mattedissrete or continuous,
which, though, is not going to be resolved heretHa late & century BC,

Democritus and Leucippus supporting atomism arer lAtistotle to reject their

theory were perhaps the first philosophers to bfagg to face the two different
approaches. Obviously, masonry is a discrete medisirit is composed of basic
building blocks, its “atoms”, but integrating theuations of motion for each
building block of a real structure is a computatibn#aborious task. Starting
from the micro-scale of a masonry wall we will irythis section to bridge the
Democritian and Aristotelian approach and formulate equivalent Cosserat
continuum that will be able to describe the threeethsional mechanical behavior
of masonry walls. Averaging and homogenization laoéh techniques that are

used for this passage from the discrete to continuum

10



Homogenization based on the elastic energy

The additional rotational degrees of freedom of @usserat continuum make it
suitable for describing materials with internalusture. The homogenization
procedure of a masonry structure as a Cosserainaant is based on the
construction of a continuum, which, for any ‘virtumanslational- and rotational-

field, stores the same elastic energy as the quynebng lattice structure.

In the previous section, the elastic energy ofdlementary cell of the masonry

lattice model has been calculated. Accordingly, alierage elastic energy of the

Cosserat continuum over the voluMef this elementary cell is set equal to that
of the lattice cell (Askar 1968, [40]):

(U= [ UV U (1) =, (6)

where U is the elastic energy density of the Cosseratimonin and/(r, ) is

its value at the center masg, = {X. % Of the elementary cell?/,, is the

elastic energy density of the elementary cell ofiétiéece model.

Let u” =u“(x,%) and o =" (x,x) be C translational and rotational

fields, such that their values are identical tosthf the displacements and
rotations at the nodes of the lattice model (Figd)re

U?,J Equ(X:Lcm ’XZCm)

1
b _,cf
uI+1,J = (chm-i_Ea’ Xoem

(ot:,J = me ( X]:m ’ Xa:m )

()

On the other hand, each material point of a thigeedsional Cosserat continuum

has three translational degrees of freedomand three rotational degrees of

freedom®. The index t” is used to distinguish the Cosserat rotation fribm

local rigid-body rotation that derives from the Gerat displacement field:

11
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For the formulation of the constitutive relationshiwe need deformation

measures, that are invariant to rigid body motidres; the infinitesimal strain

tensor:
1
&j :E(q,j +Lh) ©)
and the curvature tensor:
ow’
<o = ! 10
] aX ( )

The equations (8), (9) and (10) are combined te ¢ie following components of

the so-called relative deformation tensor,

ou o oy o oY .
7/11:8—); hf@ﬂos 7132&—602 7/23:&”01
ou ou c ou c ou .
7/22:6_)(2 7/21:6_):_603 73126_)2""602 73226_)(2_601(11)
ou,
733_6)(3

Although in our case the wall spans only in diras x; and x, and the
derivatives overxs direction are zero, for completeness and for prtasg the
general method followed here we keep the full defdron tensor. Moreover, the
above general formulation of the deformation andvature tensors would be

necessary for the modelling of multi-layered magomalls.

The 18 deformation measures, Egs. (10) and (1&)c@njugate in energy [35] to

18 stress measures: the 9 components of the nomsyru stress tensar; that
are conjugate to the non-symmetric deformationdeng and the 9 couple

stressesm;, which are conjugate with the 9 components ofdhevature tensor

LY
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The following dimensionless quantities are intrashlic

a=3(, b=b{, a=9, 2= &=y =t

. . ~ . O ~ _Mm
U=". %=%, & =% L, Cﬁ—%gL’ m_%ng

where p is the density of the material of the blocks anthe size of the overall

(12)

structure (i.e. the maximum distance between twiatpp When the size of the

structure is big as compared to the size of thekhla, b and d are small

quantities.f,, = { X Xemf €[0,1%[0,.

The continuous field§i” and ®® can then be developed in Taylor series around

r., and up to the™ and ' order respectively:

A A Ancf 2 2~ cf
ch(&mig,g(zmjzacf(fcm)igau’\ liatj
2 20% | 24 0%\
A A cf
cf | & iE ) ~ cf f,‘ i—aa(’)
® (er 2”‘2”’) 0 (fy) 2 2%, |
aacf C 1 aZGCf (13)
0% Ry St D) 207 (F ) £ b=—| +2 B
(Rems St ) = 0 (P ) % *20 )
n "a(DCf

Notice that the rotational field is developed toeoorder lower than the
translational field. Keeping the second order teofnthe Taylor expansion for the
rotations would introduce additional terms in thengtitutive equations of the
homogenised medium, which are two orders of madaismaller I(%) than the

ones kept to obtain the Cosserat continuum.

Substituting the discrete quantities with the amndus ones and setting
u® =u, o =w° one can derive the elastic energy density of teeentary

cell in terms of deformation measures:

13
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1 é ~ A -~ A A A ~ )
+E3ﬁ(64pvcMV3 + A (G2 + 646, + 165, 6))7(31
+3_2 Ba CNK13( 2721,1_4b2722 2)"'?2215 CQKlz(a731,1 4by 5, 2)
1A, ., 1A%... 1A%Z..
32 bd 07111 32 b NY 211 32 b G7 311 (14)
1AB . . 1AP. . AB. .,
+=—H +—H_¢ A
2 a4 /12,2 2 g NS 2227 g 32,2
1Aab, . . 1A4b,. . 1A%ab, . .
_Z a Co 12,27/11,1_2 a Cyn 22,27/21,1_2 a Co¥ 22.¥ 311

Here, we emphasize the homogenization of a masstnugture with a Cosserat
continuum. In a Cosserat continuum the kinemaugeintities, which appear in
the constitutive equations, are restricted to istraand curvatures. Therefore,

strain gradients (e.gy;, ) are neglected in the expression of the elastergsn

density. Notice, that this is not equivalent to leeting all second order

derivatives of the displacement field.

As it will be shown in the next section, the ob&nCosserat continuum gives a
good representation of the masonry structure.

Neglecting the strain gradientg, , , the elastic energy density of the elementary

cell yields:

14
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The constitutive relations can be obtained direbyyydifferentiating the elastic

energy density (Figure 4):

. } R u (F
Oj (rcm) = a7 and m ( 'Em) = B (16)

Figure 4.Stresses on elemenbq, dx, dx).
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Using equations (15) and (16), the constitutiveagigns of the equivalent elastic

Cosserat continuum are obtained as:

0, = DGy,

Oy53= 0

o= bGyy,

n Cy a ..
0, = 46 +Ca|Vn
o,= 0

) . a(é+ 4b)

03 = Cg 46 Va1
0= 0

O3 = bCQ732

(17)

m,= 483 nt 32bé'2€b’222
~ 1-~0n 4 ~f A “

o= DR i d+4d) gk,
@3: 0

(166&2q + ?a(%f + 4Adz)Ag) “a

- . s
rnZl 192) 21
my= 0
_ a((&+160) g + 1228, )

= = K
rnSl 192) 31
My= 0

1.+, ~
my, = 4—832bq\|’f32

In the obtained constitutive relationships (16§ fresses and the couple stresses

are uncoupled. As shown by Trovalusci & Masiani [8]s is a general result for

16



centro-symmetric materials (the central symmetmpésmaterial symmetry of any
periodic assemblages of elements).

These equations show the anisotropic charactdreoéquivalent continuum. This
anisotropy is explained by the fact that each bloak four neighbours in the
direction and only two neighbours in tlke direction. Notice that in a Cosserat

continuum the stress tensor is generally non-symenet; # o;; .

Inertia terms

In the previous section the constitutive law of esserat continuum has been
derived from the elastic energy of the elementaly af the lattice. Similarly, in
this section the inertia terms of the continuousdehcaare determined from the

kinetic energy of the elementary cell of the lagtic

The kinetic energy of the Cosserat continuum iswtated over the volume of
the elementary cell and is equated to the kinetezgy of the lattice cell:

(T,)= vl [T.AV T (1) =T, (18)
\%

where 7, is the kinetic energy of the Cosserat continudmr,,,) is the kinetic

Cc
energy of the Cosserat continuum calculated atctvger of mass,,, of the
elementary cell and™,, is the kinetic energy of the elementary cell a thttice

model.

Substituting the discrete quantities of Eq.(5) vtk continuous ones and setting
u’=u, o°=0n°the kinetic energy of the elementary cell becomes:

1 o 5 10, co Jp o0 J3 .
T = EP(U12+U22+U§)+_2(V16012+—26022+v3(032j+

\%
.2 .2 .2 .c2 .c .c2

}p 2 % +% +% +1'b2 i% +iaa)2 +iaa)3 + (19)

8 oX, 0%, 0% 8 V 0X% V 0% Vox

3 a{auﬂ%ﬁ@uﬁ} 3%&6@51@@21&6@51

2

327 o Tox Tox 7327 (Vax, TVax T Viay
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The inertia term§ can now be determined:

_ o[0T (rm)
Qi—at( 24 J (20)

whereq = {u,, U, 0,65 ,&5,@5}

These terms are introduced into the dynamic egustd the Cosserat continuum:

~ ~ ~ A"_
0111t 015,10 35~ U= 0
~ ~ ~ /i _
03111 0T 0 535~ U= 0
e/}
s U3 0

03111t 03,1t 0 33

A N A ~ ~ e 21
My + Myt Muat 0 550 o5 Jo7) = 0 (21)

~ ~ ~ ~ ~ -, o’
My g+ Myt Myt 0 150 5 J@,= 0
~ ~ ~ ~ ~ -~ o’
My + My o+ Myt 0 ,—0 - Jo; = 0

2 ~ ~ ~
,.where: (.)"E%—(') and from Egs. (12) and (20) we get thdgzzl—lz(b2+ d?),

2
~ 1

n ~ ~ 1 . ~
J=—(3+d%, J,.=—(&+b?).
2 12( )y Js 12( )

Dispersion function

The domain of validity of the previous descriptiof a masonry wall by a
Cosserat continuum is evaluated by comparing itsadyc response with the
dynamic response of the lattice model. The dynamsponse of a structure is
characterized by its dispersion function that edathe wave propagation
frequency to the wavelength. For linear elasticavadur it is possible to derive
analytically the dispersion function of the latti@nd of the continuous systems

by using discrete and continuous Fourier transfaespectively.

Fourier transform of the Cosserat equations

The Fourier transform of a function is defined as:

18
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Gk &, @)=F {96 % 1)} = J’ J‘ jg(x’ﬂxzx)é(@mz%m;r) dxdxd  (22)

—00 —00 —00

wherei =+-1, 121 and I22 the wave numbers a and X, direction, respectively,

and @ the frequency.

The inverse transform is:

400 +

j G(k k@ )d®x = dig dk d  (23)

—00 —

o % 0=F*{G(k.k,0) =

é'—~§

The Fourier transform will be denoted as:

9& %, 1) = G(k,k,.®) (24)

Introducing the constitutive relations (17) in thesserat dynamic equations (Egs.
(21)) and using Egs. (12) we obtain the followiregtial differential equations for
the displacement and Cosserat rotation fields:

. c " 2A é é_z 2" R
chaa)f‘+bQ2—a U;J{ + ¢, Ja - U=0
ox’

OX, 0%, 4b
e, azaz_é(é% +4b?b)aa> PG -0
OX,’ b c’ix1 b OX’ (25)
A A2 N N ~ N 2
CTE S PR L B 3
b ox, 48 ox,
A a2 & a(alt, +16b, + 12a87g) 2,c .
1| a2 +C,a b + ( il qj 8)6 a)23 - Jw5* =0
4b 0%, 192 OX
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OX, 0%, 4b 0x 4b OX
1 e O’wf 1. b 0%ws

x 12 "ax? 32 axax
i 46(62 + az) G+ %( o + 3A5A5) o2

+

+a J a)"C :O 26
48 ox> T (20)
a(a+4b)z ) o otee A B 4D 4G
——( ~ )%w§+ib(é2+4d2)?56w22—8( A988u3+
4b 48 X, 4b 0%
TN e A LA LT S
G + a o 5 @, =0
32 OX,0%, 192 0%

These equations are separated into two uncouptedEgs. (25) and (26), which
correspond to the in- and the out-of-plane defoionatespectively. Therefore, the
initial problem is finally separated in two indepentl problems, a “membrane’-
and a “plate” problem.

The Fourier transform of the above equations lgada homogeneous linear

system of equations. This system possesses naa-tsolutions when its
determinant vanishes. The triad%,lzz,é)) that make the determinant zero define

the six dispersion functions corresponding to thell@ation modes of the system.
These oscillation modes are grouped into two setsmode 2, 3 and 6 for in- and
mode 1, 4 and 5 for out-of-plane deformation. Fodes 1, 2 and 3 the amplitude
of the displacement field is bigger than the ampkt of the rotational field,
whereas the contrary is observed for modes 4, 56ar@ne could show that in
case of an isotropic Cosserat continuum, modesahd23 are purely translational,
whereas modes 4, 5 and 6 are purely rotational. dromnisotropic Cosserat
continuum the propagation of translational wavesuites small rotations while

the propagation of rotational waves includes sitnatislations.
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In the numerical examples the dimensions of theckdoare a=390mm,
b =190mm andd= 190mm and their specific weight 20 kNirnThe thickness of
the joints is 10mm. The Young’s Modulus of the maois 4GPa and its Poisson’s

ratio 0.2. Consequently, the elastic normal- anelasistiffness of the interfaces

are¢, =2-10,6,=0.810.

Fourier transform of the lattice equations

A similar procedure is followed in order to derithee dispersion function for the

lattice model. For the lattice system of equati(see Eqgs. (33) at the Appendix)

the functiong,,, ., (z) can be written as:

glm,hnz(r)=5(><ﬁ%maj5( %F B % %7) (27)

6 is the Dirac delta function. The discrete Fouriemsform of functiongu(r) is
denoted as:
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9., (r) = G(k, k,®) (28)
and consequently:
glinl’hnz (z‘) N e—i(:rnliakl:r nzbkz) G( k, k,aA)) (29)

Similarly to the continuous case, the dispersioncfion is determined by
applying the Fourier transform to the dynamic enumst of the lattice model.
Again, modes 2, 3 and 6 correspond to the in- anden 1, 4 and 5 to the
out-of-plane deformation of the structure. For n®wde 2 and 3 translational

waves dominate over rotational waves and for mades and 6 the opposite is

observed.
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Validation of the Cosserat model

The dimensionless wave or phase velocity, whiclthes velocity with which
planes of equal phase, crests or troughs, prodhesesgh the medium [41] is

defined as:
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B

(30)

>

where | .| is the Euclidean normk =k(cosd e, + sinde,), 6 the direction at

which the wave is propagating ared the unit vectors of the reference system

(Figure 4). Evidently, I21 =kcosd and IZZ =ksiné .

The wave length of the propagating wave normallzgthe block dimension is

equal to:

A=

ISP IS

2r
© (31)

The validation of the Cosserat model with the dattione is carried out for

propagating waves in directighand wave Iengthi. For large wave-lengths?:

the wave velocity modes 1, 2 and 3 (translationalesgis finite, while the wave
velocity of modes 4, 5 and 6 (rotational wavesyeto infinity. However, in this
case the amplitudes of the rotational waves vanisierefore, for large wave
lengths the Cosserat effects disappear and waveagation in classical
continuum is retrieved. On Figures 7 and 8 we (iet wave velocities for the

various oscillation modes both for the Cosseratthrdattice model.

The comparison of the Cosserat model with theckatthodel is carried out further

in terms of the relative errag, :

e, = 10 |UCosA_ Ulat| (32)

UI at

On Figures 9 and 10 and 11 we plot the relativereat the Cosserat model.
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Figure 7. Lattice model: Distinction between ostibn modes 1, 2 and 3 (translational waves)

and modes 4, 5 and 6 (rotational waves) in terntb@fwvave velocitys for wave propagating at

J2 . V2

45° (121 = 7 K, ﬁz = ? Ak). 2 is the wave length normalized by the block dimensi.
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Figure 8. Cosserat model: Distinction between t&@ih modes 1, 2 and 3 (translational waves)

and modes 4, 5 and 6 (rotational waves) in terntb@fvave velocityo for wave propagating at

J2 . V2

45° (121 = 7 K, ﬁz = ? Ak).ﬂt is the wave length normalized by the block dimensi.
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Figure 11. Cosserat versus Lattice: Relative egprof the various oscillation modes for wave

propagating at 90°I«A§_ =0, 122 = IA<). A is the wave length normalized by the block dimensi.

Notice that for wavelengths seven times biggersize a of a block the error is
less than 10%. Consequently, we can say that tmandig behavior of the

obtained Cosserat model approximates well the btieedattice model.

Conclusions

When dealing with blocky or layered structures oorengenerally with any
structure where heterogeneities are present, oneaddress the question of
modeling the behavior of such a structure either donsidering each
heterogeneity individually and solving the proble® in the Discrete Element
Methods, or by considering the salient featureghef discontinuum within the
framework of generalized continuum theory. There aeveral techniques to
formulate a continuum model based on the microm@ckaf the structure. Here,
we made use of the homogenization by differentigda@sions technique. The
construction of the equivalent Cosserat continusilmaised on the identification of
the elastic energy stored in the lattice elementaty with the one stored in the

continuum. In that sense, the approach differs frieenone of Sulem & Muhlhaus
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[4], where the identification is performed directiy the dynamic equations. In
the latter case, as also mentioned by Mihlhaus & [2&], the higher order terms
may introduce destabilizing negative terms in théowheation energy of the

obtained continuum. This drawback is avoided in phesent approach. Special
attention has also been paid to the order of expans the translational field,

which have to be one order higher than of the ianat field.

The obtained three-dimensional Cosserat continusiwvelidated by juxtaposing
the dispersion functions of the lattice and the ioamius model. In the lattice
structure the block displacements and rotations earergy carriers in wave
propagation. This is also the case in a Cosseraincmm, as opposed to the
classical continuum, where only translational waaes considered. It is shown
that the Cosserat continuum approximates well #ttcé structure for wave-
lengths bigger than seven times the block size. é¥ew the Cosserat model
becomes increasingly inaccurate for smaller wayghlen Generally one could
assert that the Cosserat theory appears to beaiueah starting point for the

development of continuum models for blocky struesur

The derived constitutive law can be introduced efiinite element code in order
to analyse real and complex structures. This agipdic will be presented in a
future publication. Three-dimensional multi-yielthgticity criteria will also be
formulated in order to account for the limit strémgf the building blocks and of
the mortar and to describe the inter-block sliditiling and twisting failure

modes of the brickwork.
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APPENDIX

Lattice equations of motion

,4||| (I-1,J+1)

(I-1,J-1)

Figure 12. Geometrical configuration.

The equilibrium of forces and moments acting onchldl,J) yields to the
following six equations:

b

m(@)), = AG((W),,-2(9)],+( )] ,)+
+A&J<>4}+unL&;4an+anﬁﬁ<wim)+

+§AH Q?b(_(a)3)|l:,—l,J—l+(a)3)lirl (a)3)t:+1,3 1+(a)3)tit 14 )

b

m(@), = AG((W (W, 40+ (05, # (YL,
+&%«>MJ4wn+wﬁﬂ%§ae«%nm<%ﬁJ+
= A'|CNa( ERER (a)3)t|)—1,3+ 1_(603)1 1,3 1_(a)3)t:t 14 )
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b
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+%A4 CQb((a)l):)fl,kl_(a)l)bkl,Jr 1+(a)1)bl+ 13 1_((01)til 19 )+
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