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Abstract: This paper focuses on an extension of the Limit Order Book (LOB) model with general shape
introduced by Alfonsi, Fruth and Schied [2]. Here, the additional feature allows a time-varying LOB depth.
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Introduction

It is a rather standard assumption in finance to consider an infinite liquidity. By infinite liquidity, we mean
here that the asset price is given by a a single value, and that one can buy or sell any quantity at this price
without changing the asset price. This assumption is in particular made in the Black and Scholes model [7],
and is often made as far as derivative pricing is concerned. When considering portfolio over a large time
horizon, this approximation is relevant since one may split orders in small ones along the time and reduces
one’s own impact on the price. At most, the lack of liquidity can be seen as an additional transaction cost.
This issue has been broadly investigated in the literature, see Cetin, Jarrow and Protter [8] and references
within.

If we consider instead brokers that have to trade huge volumes over a short time period (some hours
or some days), we can no longer neglect the price impact of trading strategies. We have to focus on the
market microstructure and model how prices are modified when buy and sell orders are executed. Generally
speaking, the quotation of an asset is made through a Limit Order Book (LOB) that lists all the waiting
buy and sell orders on this asset. The order prices have to be a multiple of the tick size, and orders at the
same price are arranged in a First-In-First-Out stack. The bid (resp. ask) price is the price of the highest
waiting buy (resp. lowest selling buy) order. Then, it is possible to buy or sell the asset in two different
ways: one can either put a limit order and wait that this order matches another one or put a market order
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that consumes the cheapest limit orders in the book. In the first way, the transaction cost is known but the
execution time is uncertain. In the second way, the execution is immediate (provided that the book contains
enough orders). The price per share instead depends on the order size. For a buy (resp. sell) order, the first
share will be traded at the ask (resp. bid) price while the last one will be traded some ticks upper (resp.
lower) in order to fill the order size. The ask (resp. bid) price is then modified accordingly.

The typical issue on a short time scale is the optimal execution problem: on given a time horizon, how to
buy or sell optimally a given amount of assets? As pointed in Gatheral [10] and Alfonsi, Schied and Slynko [4],
this problem is closely related to the market viability and to the existence of price manipulations. Modelling
the full LOB dynamics is not a trivial issue, especially if one wants to keep tractability to solve then the
optimal execution problem. Instead, simpler models called market impact models have been proposed. These
models only describe the dynamics of one asset price and model how the asset price is modified by a trading
strategy. Thus, Bertsimas and Lo [6], Almgren and Chriss [5], Obizhaeva and Wang [13] have proposed
different models where the price impact is proportional to the trading size, in which they solve the optimal
execution problem. However, some empirical evidence on the markets show that the price impact of a trade
is not proportional to its size, but is rather proportional to a power of its size (see for example Potters and
Bouchaud [14], and references within). With this motivation in mind, Gatheral [10] has suggested a nonlinear
price impact model. In the same direction, Alfonsi, Fruth and Schied [2] have derived a price impact model
from a simple LOB modelling. Basically, the LOB is modelled by a shape function that describes the density
of limit orders at a given price. This model has then been studied further by Alfonsi and Schied [3] and
Predoiu, Shaikhet and Shreve [15].

The present paper extends this model by letting the LOB shape function vary along the time. Beyond
solving the optimal execution problem in a more general context, our goal is to understand how the dynamics
of the LOB may create or not price manipulations. Indeed, a striking result in [2, 3] is that the optimal
execution strategy is made with trades of same sign, which excludes any price manipulation. This result
holds under rather general assumptions on the LOB shape function, when the LOB shape does not change
along the time. Instead, we will see in this paper that a time-varying LOB may induce price manipulations
and we will derive sufficient conditions to exclude them. These conditions are not only interesting from
a theoretical point of view. They give a qualitative understanding on how price manipulations may occur
when posting or cancelling limit orders. While preparing this work, Fruth, Schöneborn and Urusov [9] have
presented a paper where this issue is addressed for a block-shaped LOB, which amounts to a proportional
price impact. Here, we get back their result and extend them to general LOB shapes and thus nonlinear
price impact. The other contribution of this paper is that we solve the optimal execution in a continuous
time setting while [2, 3] mainly focus on discrete time strategies. This is in particular much more suitable
to state the conditions that exclude price manipulations.

1 Market model and the optimal execution problem

1.1 The model description

The problem that we study in this paper is the classical optimal execution problem. To deal with this
problem, we consider in this paper a framework which is a natural extension of the model proposed in
Alfonsi, Fruth and Schied [2] and developed by Alfonsi and Schied [3] and Predoiu, Shaikhet and Shreve [15].
The additional feature that we introduce here is to allow a time varying depth of the order book. We consider
a large trader who wants to liquidate a portfolio of x shares in a time period of [0, T ]. In order liquidate
these x shares, the large trader uses only market orders, that is buy or sell orders that are immediately
executed at the best available current price. Thus, our large trader cannot put limit orders. A long positionx > 0 will correspond to a sell program while a short position x < 0 will stand for a a buy strategy. The
optimal execution problem consists in finding the optimal trading strategy that minimizes the expected cost
of the large trader.

We assume that the price process without the large trader would be given by a rightcontinuous martingale
(S0

t , t ≥ 0) on a given filtered probability space (Ω, (Ft),F ,P). The actual price process (St, t ≥ 0) that
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takes into account the trades of the large trader is defined by:

St = S0
t +Dt, t ≥ 0. (1)

Thus, the process (Dt, t ≥ 0) describes the price impact of the large trader. We also introduce the process
(Et, t ≥ 0) that describes the volume impact of the large trader. If the large trader puts a market order of
size ξt (ξt > 0 is a buy order and ξt < 0 a sell order), the volume impact process changes from Et to:

Et+ := Et + ξt. (2)

When the large trader is not active, its volume impact Et goes back to 0. We assume that it decays
exponentially with a deterministic time-dependent rate ρt > 0 called resilience, so that we have:

dEt = −ρtEtdt. (3)

We now have to specify how the processes D and E are related. To do so, we suppose a continuous
distribution buy and sell limit orders around the unaffected price S0

t : for x ∈ R, we assume that the number
of limit orders available between prices S0

t + x and S0
t + x + dx is given by λ(t)f(x)dx. These orders are

sell orders if x ≥ Dt and buy orders otherwise. The functions f : R 7→ (0,∞) and λ : [0, T ] 7→ (0,∞) are
assumed to be continuous, and represent respectively the LOB shape and the depth of the order book. We
define the antiderivative of the function f , F (y) :=

∫ y

0
f(x)dx, y ∈ R, and assume that

lim
x→−∞

F (x) = −∞ and lim
x→∞

F (x) = ∞, (4)

which means that the book contains an infinite number of limit buy and sell orders. Thus, we set the
following relationship between the volume impact Et and the price impact Dt:

∫ Dt

0

λ(t)f(x)dx = Et,

or equivalently,

Et = λ(t)F (Dt) and Dt = F−1

(

Et

λ(t)

)

. (5)

Within this framework, a large trade ξt changes Dt to Dt+ = F−1
(

Et+ξt
λ(t)

)

and has the cost

∫ Dt+

Dt

(S0
t + x)λ(t)f(x)dx = ξtS

0
t +

∫ Dt+

Dt

λ(t)xf(x)dx := πt(ξt). (6)

Throughout the paper, we assume that λ is C2 and set ηt =
λ′(t)
λ(t) . Thus, we have

λ(t) = λ(0) exp

(∫ t

0

ηudu

)

,

and t 7→ ηt is C1. Similarly, we assume that t 7→ ρt is C1.
Now, let us observe that we have assumed that the volume impact decays exponentially when the large

trader is inactive. Other choices are of course possible, and a natural one would be to assume that the price
impact decays exponentially

dDt = −ρtDtdt, (7)

which amounts to assume that dEt = ηtEtdt− ρtλ(t)f(F
−1(Et/λ(t)))F

−1(Et/λ(t))dt by (5).

Definition 1.1. The dynamics of “model V ” with volume impact reversion is the one given by (1), (2), (3)
and (5). The dynamics of “model P ” with price impact reversion is the one given by (1), (2), (7) and (5).
In both models, we assume that the market is at equilibrium at time 0, i.e. E0 = D0 = 0.

3



Remark 1.1. Though being simplistic, this model describes through ρt and λ(t) the two different ways that
market makers have to put (or cancel) limit orders: it is either possible to pile orders at an existing price or
to put orders at a better price than the existing ones. Thus, λ(t) describes how market makers pile orders
while ρt describes the rate at which new orders appear at a better price. Basically, one may think these
functions one-day periodic, with relative high values at the opening and the closing of the market and low
values around noon. The particular case λ ≡ 1 corresponds to the model introduced by Alfonsi, Fruth and
Schied [2] for which new orders can only appear at a better price.

1.2 The optimal execution problem, and price manipulation strategies

We focus on the optimal liquidation of a portfolio with x shares by a large trader who can place market
orders over a period of time [0, T ]. Thus, x > 0 (resp. x < 0) corresponds to a selling (resp. buying)
strategy.

We first consider discrete strategies and assume that at most N + 1 trades can occur. An admissible
strategy will be then described by an increasing sequence τ0 = 0 ≤ · · · ≤ τN = T of stopping times and
random variables ξ0, . . . , ξN (ξi stands for the trading size at time τi) such that

• x+∑N
i=0 ξi = 0, i.e. the trader liquidates indeed x shares,

• ξi is Fτi-measurable,

• ∃M ∈ R, ∀0 ≤ i ≤ N, ξi ≥M , a.s.

The expected cost of an admissible strategy (ξ, T ) with ξ = (ξ0, . . . , ξN ) and T = (τ0, . . . , τN ) is given by

C(ξ, T ) = E

[

N
∑

i=0

πτi(ξi)

]

, (8)

where πτi(ξi) stands for the cost of the i-th trade, and is defined by (6) in models V or P . The goal of the
large trader is then to minimize this expected cost among the admissible strategies.

We also consider continuous time trading strategy and make the same assumptions as Gatheral et al. [11].
An admissible strategy (Xt)t≥0 is a stochastic process such that

• X0 = x and XT+ = 0,

• X is (Ft)-adapted and leftcontinuous,

• the function t ∈ [0, T+] 7→ Xt has finite and a.s. bounded total variation.

The process Xt describes the number of shares that remains to liquidate at time t. Thus, the discrete time
strategy above corresponds to Xt = x+∑N

i=0 ξi1τi<t, and the three assumptions on (ξ, T ) precisely give the
ones on X . Let us observe that processes E and D are also leftcontinuous since we have in model V (resp.
model P ):

dEt = dXt − ρtEtdt, (resp. dEt = dXt + ηtEtdt− ρtλ(t)f(F
−1(Et/λ(t)))F

−1(Et/λ(t))dt). (9)

We want now to write the cost associated to the strategy X . To do so, we introduce the following notations

x ∈ R, F̃ (x) =

∫ x

0

yf(y)dy, G(x) = F̃
(

F−1(x)
)

, (10)

so that πt(dXt) = S0
t dXt+λ(t)[G

(

Et+dXt

λ(t)

)

−G
(

Et

λ(t)

)

]. Since G′ = F−1, the cost of an admissible strategy

is given by:

C(X) = E





∫ T

0

[

S0
t + F−1

(

Et

λ(t)

)]

dXt +
∑

t≤T

λ(t)

[

G

(

Et +∆Xt

λ(t)

)

−G

(

Et

λ(t)

)

− F−1

(

Et

λ(t)

)

∆Xt

]



 ,

(11)
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which coincides with (8) for discrete strategies. Here, ∆Xt = Xt+ − Xt denotes the jump of X at time t
(jumps are countable), and dXt stands for the signed measure on [0, T ] associated to (Xt, 0 ≤ t ≤ T+) (a
jump ∆XT induces a Dirac mass in T ). If we introduce the continuous part of X , Xc

t := Xt−
∑

0≤s<t ∆Xs,
we can rewrite the cost as follows:

C(X) = E





∫ T

0

[

S0
t + F−1

(

Et

λ(t)

)]

dXc
t +

∑

t≤T

S0
t∆Xt + λ(t)

[

G

(

Et +∆Xt

λ(t)

)

−G

(

Et

λ(t)

)]



 . (12)

The optimal execution problem is in fact closely related to questions around market viability and arbi-
trage. We recall the definition of price manipulation strategies introduced by Huberman and Stanzl [12].

Definition 1.2. A round trip is an admissible strategy X for x = 0. A Price Manipulation Strategy (PMS)
in the sense of Huberman and Stanzl is a round trip whose expected cost is negative, i.e. C(X) < 0.

Heuristically, if a PMS exists, it could be repeated indefinitely and would lead to a classical arbitrage
(i.e. an almost sure profit) by a law of large numbers. However, it has been pointed in Alfonsi et al. [4] the
absence of PMS does not ensure the market stability. In fact, in some PMS free models, the optimal strategy
to sell x shares consists in buying and selling successively a much higher amount of shares. To correct this,
they introduce the following definition.

Definition 1.3. A model admits transaction-triggered price manipulations (TTPM) if the expected cost of
a sell (buy) program can be decreased by intermediate buy (sell) trades, i.e.

∃X admissible, C(X) < inf
{

C(X̃), X̃ is admissible and nonincreasing or nondecreasing
}

.

It is rather natural choice to exclude TTPM: in presence of TTPM a large trader would increase the
traded volume to minimize its cost, which produce noise and may yield to instability. Besides, the absence
of TTPM implies the absence of PMS. The optimal strategy for buying ε > 0 shares is made only with
intermediate buy trades and has thus a positive cost. Thus, by some cost continuity that usually holds (this
is the case for models V and P ), any round trip has a nonnegative cost.

Remark 1.2. It is possible to define a two-sided limit order book model like in Alfonsi, Fruth and Schied [2]
or Alfonsi and Schied ([3], Section 2.6). In such a model, bid and ask prices evolve as follows. A buy (resp.
sell) order of the large trader shifts the ask (resp. bid) price and leaves the bid (resp. ask) price unchanged.
When the large trader is idle, the shifts on the ask and bid prices goes back exponentially to zero, like in
models V or P . As in [2, 3], the two-sided model coincides with the model presented here when the large
trader puts only buy orders or only sell orders. In particular, the optimal strategies are the same in both
models in absence of TTPM.

2 Main results

The first focus of this paper is to extend the results obtained in Alfonsi et al. [2, 3] and obtain the optimal
execution strategies for LOB with a time varying depth λ. Doing so, our goal is also to better understand
how this time varying depth may create manipulation strategies. In fact, it was shown in [2] and [3] for λ ≡ 1
that under some general assumptions on the shape function f , there is an optimal liquidation strategy which
is made only with sell (resp. buy) orders when x > 0 (resp. x < 0). Thus, there is no PMS nor TTPM when
the LOB shape is constant. This is a striking result, and one may wonder how this is modified by changing
slightly the assumptions. In Alfonsi, Schied and Slynko [4] is studied the case of a block-shaped LOB, where
the resilience is not exponential so that the market has some memory of the past trades. Conditions on the
market resilience are given to exclude PMS and TTPM. Analogously, we want to obtain here conditions on λ
and ρ that rules out such strategies. This is not only interesting from a theoretical point of view. This will
give also some noticeable qualitative insights for market makers. In fact, for a market maker who places and
cancels significant limit orders, these conditions will indicate if he may or not create manipulation strategies.
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Before showing the results, it is worth to make further derivations on the expected cost. Let us start with
discrete strategies. By using the martingale property on S0 and the assumptions on ξ made in Section 1.2,
we can show easily like in [3] that

C(ξ, T ) = −S0
0x+ E

[

N
∑

i=0

∫ Dτi+

Dτi

λ(τi)xf(x)dx

]

.

Then, it is easy to check that
∑N

i=0

∫Dτi+

Dτi

λ(τi)xf(x)dx is a deterministic function of (ξ, T ) in both volume

impact reversion and price impact reversion models. We respectively denote by CV (ξ, T ) and CP (ξ, T ) this
function and get:

C(ξ, T ) = −S0
0x+ E

[

CM (ξ, T )
]

, (13)

where M ∈ {V, P} indicates the model chosen. Thus, if the function (x, t) 7→ CM (x, t) has a unique

minimizer on {(x, t) ∈ R
N × R

N+1,
∑N

i=1 xi = −x, 0 = t0 ≤ · · · ≤ tN = T }, the optimal strategy is
deterministic and given by this minimizer. When λ is constant, it is shown in [3] that under some assumptions
on f depending on the model chosen, the optimal time grid t⋆ is homogeneous with respect to ρ, i.e.
∫ t⋆i+1

t⋆i
ρsds = 1

N

∫ T

0 ρsds. Instead, there is no such a simple characterization for general λ, even in the

block-shaped case. Thus, we will focus on optimizing the trading strategy ξ on a fixed time grid t:

t = (t0, . . . , tN ), such that 0 = t0 < · · · < tN = T . (14)

Last, we introduce the following notations that will be used throughout the paper:

ai = e
−

∫ ti
ti−1

ρudu, ãi =
aiλ(ti−1)

λ(ti)
= e

−
∫ ti
ti−1

(ρu+ηu)du, âi = ai
λ(ti)

λ(ti−1)
= e

−
∫ ti
ti−1

(ρu−ηu)du, 1 ≤ i ≤ N. (15)

Similarly in the continuous case, we get by using the martingale assumption (see Lemma 2.3 in Gatheral,

Schied and Slynko [11]) that E[
∫ T

0
S0
t dXt] = −xS0

0 . From (11) and (12), we get C(X) = −xS0
0 +E[CM (X)],

where

CM (X) =

∫ T

0

F−1

(

Et

λ(t)

)

dXc
t +

∑

t≤T

λ(t)

[

G

(

Et +∆Xt

λ(t)

)

−G

(

Et

λ(t)

)]

.

Once again, CM is a deterministic function of the strategy X in both models M ∈ {V, P}, and it is sufficient
to focus on its minimization.

2.1 The block-shaped LOB case (f ≡ 1)

In this section, we consider a shape function of the limit order book that has the form λ(t). This time-
dependent framework generalizes the block-shaped limit order book case studied by Obizhaeva and Wang [13]
that consists in considering a uniform distribution of shares with respect to the price. We will get an explicit
solution for the optimal execution problem, which extends the results given by Alfonsi, Fruth and Schied [1].

2.1.1 Volume impact reversion model

When f ≡ 1, the deterministic cost function is simply given by

CV (ξ, t) =

N
∑

n=0

λ(tn)

∫ Dtn+

Dtn

xf(x)dx =

N
∑

i=0

ξi
2





ξi
λ (ti)

+ 2

∑

j<i e
−

∫ ti
tj

ρsdsξj

λ(ti)



 , (16)

which is a quadratic form: CV (ξ, t) = 1
2ξ

TMV ξ, with MV
i,j =

exp
(

−
∣

∣

∣

∫ tj
ti

ρsds
∣

∣

∣

)

λ(ti∨tj)
, 0 ≤ i, j ≤ N .
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Theorem 2.1. The quadratic form (16) is positive definite if and only if

aiãi < 1, ∀i ∈ {1, . . . , N} . (17)

In this case, the optimal execution problem to liquidate x shares on the time-grid (14) admits a unique
optimal strategy ξ⋆ which is deterministic and explicitly given by:















ξ⋆0 = − x
KV

λ(t0)
1−a1

1−a1ã1

ξ⋆i = − x
KV

λ(ti)
[

ai+1

1−ai+1ãi+1
(ãi+1 − 1) + 1−ãi

1−aiãi

]

, 1 ≤ i ≤ N − 1

ξ⋆N = − x
KV

λ(tN ) 1−ãN

1−aN ãN
,

(18)

where

KV =
λ (t0) (1− 2a1) + λ (t1)

1− a1ã1
+

N
∑

i=2

λ(ti)
(1 − ãi)

2

1− aiãi
.

Its cost is given by CV (ξ⋆, t) = x2/(2KV ).

This theorem provides an explicit optimal strategy for the large trader. It also gives explicit conditions
that exclude or create PMS. First, let us assume that

∀t ≥ 0, 2ρt + ηt ≥ 0. (19)

Then, for any time grid (14), aiãi ≤ 1 and the quadratic form (16) is positive semidefinite since it is a limit of
positive definite quadratic forms. Thus, the model is PMS free. Conversely let us assume that 2ρt1 + ηt1 < 0
for some t1 ≥ 0. Let us consider the following round trip on the time grid t = (0, t1, t2) with t2 > t1, where
the large trader buys x > 0 at time t1 and sells x at time t2. The cost of such a strategy is given by

CV ((0, x,−x), t) = x2

2λ(t2)

(

e
∫ t2
t1

ηudu + 1− 2e−
∫ t2
t1

ρudu
)

=
t2→t1

x2

2λ(t1)
((2ρt1 + ηt1)(t2 − t1) + o(t2 − t1))

(20)
and is negative when t2 is close enough to t1.

Corollary 2.1. In a block-shaped LOB, model V does not admit price manipulation in the sense of Huberman
and Stanzl if and only if (19) holds.

Let us now discuss this result from the point of view of market makers. A market maker that puts a
significant orders may have an influence on ρt and ηt and can increase (resp. decrease) them by respectively
adding (resp. canceling) an order at a better price or at an existing limit order price. What comes out
from (19) is that no PMS may arise if one adds limit orders, whatever the way of adding new orders.
Instead, PMS can occurs when canceling orders. A different conclusion will hold in the price reversion
model.

An analogous result to Corollary 2.1 is stated in a recent paper by Fruth, Schöneborn and Urusov [9] that
has been published while we were preparing this work. To be precise, results in [9] are given for model P
with a block-shaped LOB, and the optimal execution strategy is obtained in a continuous time setting. As
we will see in the next paragraph, models V and P are mathematically equivalent when the LOB shape
is constant, even though they are different from a financial point of view. By taking a regular time-grid
ti =

iT
N , i = 0 . . . , N , and letting N → +∞, we get back the optimal strategy in continuous time (that we

still denote by ξ⋆, by a slight abuse of notations):


























ξ⋆0 −→
N→+∞

ξ⋆0 := − x
λ(T )+

∫

T

0

ρ2sλ(s)

ηs+2ρs
ds

λ(0)ρ0

2ρ0+η0

ξ⋆iN
T/N −→

N→+∞
ξ⋆t := − x

λ(T )+
∫

T

0

ρ2sλ(s)

ηs+2ρs
ds
λ(t)

[

(

ρt

2ρt+ηt

)′

+ ρt

(

ρt+ηt

2ρt+ηt

)

]

, for iN such that
tiN
N −→

∆t→0
t

ξ⋆N −→
N→+∞

ξ⋆T := − x
λ(T )+

∫

T

0

ρ2sλ(s)

ηs+2ρs
ds

λ(T )(ηT+ρT )
ηT+2ρT

.

(21)

7



The strategy dX⋆
t = ξ⋆0δ0(dt) + ξ⋆t dt + ξ⋆T δT (dt) with initial trade ξ⋆0 , continuous trading ξ⋆t on [t, t + dt]

for t ∈ (0, T ) and last trade ξ⋆T is indeed shown to be optimal in Fruth, Schöneborn and Urusov [9] among
the continuous time strategies with bounded variation. We will show here again this result for more general
LOB shape. The optimal strategy has the following cost:x2

2
[

λ (T ) +
∫ T

0
ρ2
sλ(s)

2ρs+ηs
ds
] .

Besides, this provides a necessary and sufficient condition to exclude transaction-triggered price manipulation.

Corollary 2.2. In a block-shaped LOB, model V does not admit transaction-triggered price manipulation if
and only if

∀t ≥ 0, ηt + ρt ≥ 0, and

(

ρt
2ρt + ηt

)′

+ ρt

(

ρt + ηt
2ρt + ηt

)

≥ 0. (22)

The first condition comes from the last trade and implies (19) since ρt ≥ 0. It can be interpreted
similarly as condition (19) from market makers’ point of view. The second condition in (22) comes from
the intermediate trades and brings on the derivatives of ρ and η. It is harder to get an intuitive idea of
its meaning from a market maker’s point of view. Last, let us mention that we can show that the optimal
strategy on the discrete time-grid (14) is made with nonnegative trades if one has (17) and

1− ãi
1− aiãi

≥ ai+1
1− ãi+1

1− ai+1ãi+1
, ∀i ∈ {1, . . . , N − 1} and ãN ≤ 1. (23)

Condition (22) can be seen as the continuous time limit of condition (23).
Let us give now an illustration of the optimal strategy with a time-varying depth. We consider the case

of a time-varying depth
λ(t) = λ0 + cos(2πt), with λ0 > 1,

which corresponds to a one-day periodic function with high values at the beginning and at the end of the day.
We can show that ηt ≥ − 2π√

λ2
0−1

and with a constant resilience ρ, there is no PMS as soon as 2ρ− 2π√
λ2
0−1

≥ 0.

Figure 1 shows the optimal execution strategy (18) with a value λ0 that exclude PMS but allows TTPM. The
optimal strategy to buy 50 shares consists in buying almost 95 shares and selling 45 shares, which roughly
treble the traded volume.

2.1.2 Price impact reversion model

When f ≡ 1, the deterministic cost function
∑N

i=0

∫Dti+

Dti

λ(ti)xf(x)dx is given by

CP (ξ, t) =

N
∑

n=0

λ(tn)

∫ Dtn+

Dtn

xf(x)dx =

N
∑

i=0

ξi
2





ξi
λ(ti)

+ 2
∑

j<i

e
−

∫ ti
tj

ρsds ξj
λ(tj)



 . (24)

This is a quadratic form: CP (ξ, t) = 1
2ξ

TMP ξ, with MP
i,j =

exp
(

−
∣

∣

∣

∫ ti
tj

ρsds
∣

∣

∣

)

λ(ti∧tj)
for 0 ≤ i, j ≤ N . When f ≡ 1,

we get from (9) that model P is equivalent to model V with a resilience ρ̃t = ρt − ηt. Another way to see
that both models are mathematically the same in the block-shape case is to reverse the time and consider:

∀t ∈ [0, T ], ρ̂t = ρT−t, λ̂(t) = λ(T − t) and t̂N−i = T − ti, for 0 ≤ i ≤ N.

Then, we have

MP
i,j =

e
−|

∫ ti
tj

ρsds|

λ(ti ∧ tj)
=

e
−|

∫ t̂N−j

t̂N−i
ρ̂sds|

λ̂(t̂N−i ∨ t̂N−j)
, (25)

8
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Figure 1: Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, ρ = 1,

λ(t) = 4+cos(2πt) (plotted in dashed line). In solid line is plotted the function t 7→
(

ρt

2ρt+ηt

)′

+ρt

(

ρt+ηt

2ρt+ηt

)

.

and the optimal execution problem in Model P with resilience ρ, LOB depth λ(t) and time-grid t is the

same as the optimal execution problem in Model V with resilience ρ̂, LOB depth λ̂(t) and time-grid t̂. We
immediately get the following results.

Theorem 2.2. The quadratic form (24) is positive definite if and only if

aiâi < 1, ∀i ∈ {1, . . . , N} (26)

In this case, the optimal execution problem to liquidate x shares on the time-grid (14) admits a unique
optimal strategy ξ⋆ which is deterministic and explicitly given by:















ξ⋆0 = − x
KP

λ(t0)
1−â1

1−a1â1
.

ξ⋆i = − x
KP

λ(ti)
[

ai

1−aiâi
(âi − 1) + 1−âi+1

1−ai+1âi+1

]

, 1 ≤ i ≤ N − 1

ξ⋆N = − x
KP

λ(tN ) 1−aN

1−aN âN

(27)

where

KP =
λ(tN )(1 − 2aN) + λ(tN−1)

1− aN âN
+

N−2
∑

i=0

λ(ti)
(1− âi+1)

2

1− ai+1âi+1
.

Its cost is given by CP (ξ⋆, t) = x2/(2KP ).

By taking a regular time-grid ti =
iT
N , i = 0 . . . , N , and letting N → +∞, we get the optimal strategy in

9



continuous time:


























ξ⋆0 −→
N→∞

ξ⋆0 := − x
λ(0)+

∫

T

0

ρ2sλ(s)

2ρs−ηs
ds
λ(0) ρ0−η0

2ρ0−η0

ξ⋆iN
T/N −→

N→∞
ξ⋆t := − x

λ(0)+
∫

T

0

ρ2sλ(s)

2ρs−ηs
ds
λ(t)

[

(

ρt−ηt

2ρt−ηt

)′

+ ρt

(

ρt−ηt

2ρt−ηt

)

]

, for iN such that TiN
N −→

∆t→0
t

ξ⋆N −→
N→∞

ξ⋆T := − x
λ(0)+

∫

T

0

ρ2sλ(s)

2ρs−ηs
ds
λ(T ) ρT

2ρT−ηT
.

(28)

The strategy with initial trade ξ⋆0 , continuous trading ξ⋆t on [t, t+dt] for t ∈ (0, T ) and last trade ξ⋆T is shown
to be optimal in Fruth, Schöneborn and Urusov [9] among the continuous time strategies with bounded
variation, and has the following cost: x2

2
[

λ (0) +
∫ T

0
ρ2
sλ(s)

2ρs−ηs
ds
] .

Corollary 2.3. In a block-shaped LOB, model P does not admit price manipulation in the sense of Huberman
and Stanzl if and only if

∀t ≥ 0, 2ρt − ηt ≥ 0. (29)

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt − ηt ≥ 0, and

(

ρt − ηt
2ρt − ηt

)′

+ ρt

(

ρt − ηt
2ρt − ηt

)

≥ 0. (30)

The first condition in (30) comes from the initial trade while the second comes from intermediate trades.
From market makers’ point of view, (29) and the first condition in (30) give different conclusions from
model V . A significant market maker will not create manipulation strategy if he puts orders at a better
price (which increases ρ) or cancels orders at existing prices (which decreases η). Instead, he may create
manipulation strategies if he piles orders at existing prices, or if he cancels orders that are among the best
offers. The second condition of (30) brings on the dynamics of η and ρ and it is more difficult to give its
heuristic meaning in terms of trading. Last, let us mention that the optimal strategy in discrete time given
by Theorem 2.2 is made only with trades of same sign if, and only if, one has (26) and

1− âi+1

1− ai+1âi+1
≥ ai

1− âi
1− aiâi

, ∀i ∈ {1, . . . , N − 1} and â1 < 1. (31)

2.2 Results for general LOB shape

We extend in this section the results obtained on the optimal execution for block-shaped LOB to more
general shapes. In particular, the necessary and sufficient conditions that we have obtained to exclude
TTPM (namely (22) for model V and (30) for model P ) are still sufficient conditions to exclude TTPM for
a wider class of shape functions. From a mathematical point of view, the approach is the same. We first
characterize the optimal strategy on a discrete time grid, by using Lagrange multipliers. Then, one can guess
the optimal continuous time strategy, and we prove its optimality by a verification argument.

2.2.1 Volume impact reversion model

We first introduce the following assumption that will be useful to study the optimal discrete strategy.

Assumption 2.1. 1. The shape function f satisfies the following condition:

f is nondecreasing on R− and nonincreasing on R+

2. ∀t ≥ 0, ρt + ηt ≥ 0.

10



We remark that when the LOB shape does not evolve in time (ηt = 0), the second condition is satisfied
and we get back the assumption made in Alfonsi, Fruth and Schied [2]. We define

x ∈ R, hV,i(x) =
F−1(x)− aiF

−1 (ãix)

1− ai
, 1 ≤ i ≤ N. (32)

Theorem 2.3. Under Assumption 2.1, the cost function CV (ξ, t) is nonnegative, and there is a unique

optimal execution strategy ξ⋆ that minimizes CV over {ξ ∈ R
N+1,

∑N
i=0 ξi = −x}. This strategy is given as

follows. The following equation

N
∑

i=1

λ(ti−1)(1 − ai)h
−1
V,i(ν) + λ(tN )F (ν) = −x

has a unique solution ν ∈ R, and

ξ⋆0 = λ(t0)h
−1
V,1 (ν) ,

ξ⋆i = λ(ti)(h
−1
V,i+1 (ν)− ãih

−1
V,i (ν)), 1 ≤ i ≤ N − 1,

ξ⋆N = λ(tN )F (ν)− λ(tN−1)aNh
−1
V,N (ν) .

The first and the last trade have the same sign as −x. Besides, if the following condition holds

1

ãi

1− ãi
1− ai

≥ 1− ãi+1

1− ai+1
, (33)

the intermediate trades ξ⋆i , 1 ≤ i ≤ N − 1, have also the same sign as −x.
This theorem extends the results of [2], where λ is assumed to be constant. In that case, (33) is satisfied

and all the trades have the same sign. Condition (33) is interesting since it does not depend on the shape
function, but it is more restrictive than the condition (23) for the block-shape case (see Lemma 3.4 for
(33) =⇒ (23)). In fact, the continuous time formulation is more convenient to analyze the sign of the
trades. Under Assumption 2.1, we will show that no transaction-triggered price manipulation can occur
with the same condition (22) as for the block-shape case.

When stating the optimal continuous-time strategy, we slightly relax Assumption 2.1. This is basically
due to the argument of the proof that relies on a verification argument. Instead, our proof in the discrete
case relies on Lagrange multipliers which requires to show first that the cost function has a minimum, and
we use ρt + ηt ≥ 0 for that. We introduce the following function

hV,t(x) = F−1(x) +
ηt + ρt
ρt

x

f(F−1(x))
. (34)

We will show that no PMS exists and that there is a unique optimal strategy if these functions for t ∈ [0, T ]
are bijective on R with a positive derivative. If Assumption 2.1 holds, this condition is automatically satisfied.

Theorem 2.4. Let f ∈ C1(R). We assume that for t ∈ [0, T ], hV,t is bijective on R, such that h′V,t > 0.

Then, the cost function CV (X) is nonnegative, and there is a unique optimal admissible strategy X⋆ that
minimizes CV . This strategy is given as follows. The equation

∫ T

0

λ(t)ρth
−1
V,t(ν)dt+ λ(T )F (ν) = −x (35)

has a unique solution ν ∈ R and we set ζt = h−1
V,t(ν). The strategy dX⋆

t = ξ⋆0δ0(dt) + ξ⋆t dt+ ξ⋆T δT (dt) with

ξ⋆0 = λ(0)ζ0,

ξ⋆t = λ(t)

[

dζt
dt

+ (ρt + ηt)ζt

]

,

ξ⋆T = λ(T )(F (ν)− ζT ),

is optimal. The initial trade ξ⋆0 has the same sign as −x.
11



Thus, a sufficient condition to exclude price manipulation strategies is to assume that hV,t is bijective
with h′V,t > 0. We have a partial reciprocal result: there are PMS as soon as h′V,t1(0) < 0 for some t1 ≥ 0.
Indeed, in this case we consider the following round trip on the time grid t = (0, t1, t2) with t2 > t1, where
the large trader buys x > 0 at time t1 and sells x at time t2. The cost of such a strategy is given by

CV ((0, x,−x), t) = λ(t1)G

(

x

λ(t1)

)

+ λ(t2)

(

G

(

x(e−
∫ t2
t1

ρsds − 1)

λ(t2)

)

−G

(

xe−
∫ t2
t1

ρsds

λ(t2)

))

= λ(t1)

(

−ηt1G
(

x

λ(t1)

)

+ (ρt1 + ηt1)
x

λ(t1)
F−1

(

x

λ(t1)

))

(t2 − t1) + o(t2 − t1).

The derivative of x 7→ −ηt1G(x) + (ρt1 + ηt1)xF
−1(x) is ρt1hV,t1(x), which has the opposite sign of x near 0

since hV,t1(0) = 0 and hV,t1(0) < 0 by assumption. Thus, we have CV ((0, x,−x), t) < 0 for x and t2 − t1
small enough.

Now, let us focus on the sign of the trades given by the optimal strategy. Without further hypothesis,
the condition ξ⋆t ≥ 0 typically involves the shape function f . However, under Assumption 2.1, we can show
that transaction-triggered strategy are excluded under the same assumption as for the block-shape case.

Corollary 2.4. Let f ∈ C1. Under Assumption 2.1, the function hV,t is C1(R), bijective on R, and such
that h′V,t > 0. Thus, the result of Theorem 2.4 holds and the last trade ξ⋆T has the same sign as −x.

Besides, if (22) also holds, ξ⋆t has the same sign as −x for any 0 < t < T , which excludes TTPM.

Let us now focus on the example of a power-law shape: we assume that

f(x) = |x|γ , γ > −1.

In this case, F (x) = sgn(x) |x|
γ+1

γ+1 is well-defined and satisfies (4). We have F−1(x) = sgn(x)(γ+1)
1

γ+1 |x| 1
γ+1

and hV,t(x) = sgn(x)(γ + 1)
1

γ+1 |x| 1
γ+1

(

ρt(2+γ)+ηt

ρt(1+γ)

)

. Thus, hV,t is bijective and increasing if, and only if:

ρt(2 + γ) + ηt > 0.

In this case, we have

h−1
V,t(x) =

1

γ + 1
Kt(γ)sgn(x)|x|γ+1 with Kt(γ) =

(

ρt(1 + γ)

ρt(2 + γ) + ηt

)1+γ

.

In this case, we have by Theorem 2.4 that


















ξ⋆0 = −x
∫

T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(0)K0(γ),

ξ⋆t = −x
∫

T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(t)
[

dKt(γ)
dt + (ρt + ηt)Kt(γ)

]

ξ⋆T = −x
∫

T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(T )(1 −KT (γ))

(36)

is the unique optimal strategy. For γ = 0, we get back (21). If we only assume that ρt(2 + γ) + ηt ≥ 0,
we still have CV (X) ≥ 0 for any admissible strategy X . The cost CV (X) is indeed continuous with respect
to the resilience, and is the limit of the cost associated to resilience ρt + ε, ε ↓ 0. On the contrary, if
ρt(2 + γ) + ηt < 0, we have h′V,t(0) < 0 and there is a PMS as explained above.

Corollary 2.5. When f(x) = |x|γ , model V does not admit PMS if, and only if

∀t ≥ 0, ρt(2 + γ) + ηt ≥ 0.

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt + ηt ≥ 0, and

(

ρt(1 + γ)

ρt(2 + γ) + ηt

)′

+ ρt

(

ρt + ηt
ρt(2 + γ) + ηt

)

≥ 0.
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These conditions comes respectively from the nonnegativity of the last and intermediate trades. For given
functions ρt and ηt, the no PMS condition will be satisfied for t ∈ [0, T ] when γ is large enough. This can
be explained heuristically. When γ increases, limit orders become rare close to S0

t and dense away from S0
t ,

which creates some bid-ask spread. One has then to pay to get liquidity, and round trips have a positive
cost. Instead, when γ is close to −1 it is rather cheap to consume limit orders, which may facilitate PMS.
In Figure 2, we have plotted the optimal strategy for γ = −0.3 and γ = 1 with the same parameters as in
Figure 1 for the Block shape case. We can check that the no PMS condition is satisfied in both cases.
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Figure 2: Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, ρ = 1,
λ(t) = 4 + cos(2πt) (plotted in dashed line) and γ = −0.3 (left) or γ = 1 (right). In solid line is plotted the

function t 7→
(

ρt(1+γ)
ρt(2+γ)+ηt

)′

+ρt

(

ρt+ηt

ρt(2+γ)+ηt

)

(this function is well-defined but out of the graph for γ = −0.3).

2.2.2 Price impact reversion model

The results that we present for model P are similar to the one obtained for model V . We first solve the
optimal execution problem in discrete time. From its explicit solution, we then calculate its continuous time
limit and check by a verification argument that it is indeed optimal. Doing so, we get sufficient conditions
to exclude PMS and TTPM. In particular, condition (30) that excludes PMS and TTPM for block-shape
LOB also excludes PMS and TTPM for a general LOB shape satisfying Assumption 2.2 below.

To study the optimal discrete strategy, we will work under the following assumption.

Assumption 2.2. 1. The shape function f is C1 and satisfies the following condition:

f is nonincreasing on R− and nondecreasing on R+

2. ∀t ≥ 0, ρt − ηt > 0.

3. x 7→ xf ′(x)
f(x) is nondecreasing on R−, nonincreasing on R+.

The monotonicity assumption made here is the opposite to the one made in Assumption 2.1 for model V .
This choice is different from the one made in Alfonsi et al. [2, 3]. It is in fact more tractable from a
mathematical point of view, especially here with a time-varying LOB.

Theorem 2.5. Under Assumption 2.2, the cost function CP (ξ, t) is nonnegative, and there is a unique

optimal execution strategy ξ⋆ that minimizes CP over {ξ ∈ R
N+1,

∑N
i=0 ξi = −x}. This strategy is given as

13



follows. The following equation

N
∑

i=1

λ(ti−1)

[

F

(

h−1
P,i(ν)

ai

)

− λ(ti)

λ(ti−1)
F (h−1

P,i(ν))

]

+ λ(tN )F (ν) = −x
has a unique solution ν ∈ R, and

ξ⋆0 = λ(t0)F

(

h−1
P,1 (ν)

a1

)

,

ξ⋆i = λ(ti)

[

F

(

h−1
P,i+1 (ν)

ai+1

)

− F (h−1
P,i(ν))

]

, 1 ≤ i ≤ N − 1,

ξ⋆N = λ(tN )[F (ν)− F (h−1
P,N (ν))].

The first and the last trade have the same sign as −x.
We now state the corresponding result in continuous time and set:

x ∈ R, hP,t(x) = x



1 +
ρt

ρt

(

1 + xf ′(x)
f(x)

)

− ηt



 . (37)

Theorem 2.6. Let f ∈ C2(R). We assume that one of the two following conditions holds.

(i) For t ∈ [0, T ], ρt

(

1 + xf ′(x)
f(x)

)

− ηt > 0 for any x ∈ R and hP,t is bijective on R, such that h′P,t(x) > 0,

dx-a.e.

(ii) For t ∈ [0, T ], ρt

(

1 + xf ′(x)
f(x)

)

− ηt < 0 and ρt

(

2 + xf ′(x)
f(x)

)

− ηt > 0 for any x ∈ R, and hP,t is bijective

on R, such that h′P,t(x) < 0, dx-a.e.

Then, the cost function CP (X) is nonnegative, and there is a unique optimal admissible strategy X⋆ that
minimizes CP . This strategy is given as follows. The equation

∫ T

0

λ(t)[ρth
−1
P,t(ν)f(h

−1
P,t(ν))− ηtF (h

−1
P,t(ν))]dt + λ(T )F (ν) = −x (38)

has a unique solution ν ∈ R and we set ζt = h−1
P,t(ν). The strategy dX⋆

t = ξ⋆0δ0(dt) + ξ⋆t dt+ ξ⋆T δT (dt) with

ξ⋆0 = λ(0)F (ζ0),

ξ⋆t = λ(t)f(ζt)

[

dζt
dt

+ ρtζt

]

,

ξ⋆T = λ(T )(F (ν) − F (ζT )),

is optimal. The initial trade ξ⋆0 has the same sign as −x.
In particular, there is no PMS in model P as soon as Assumptions (i) or (ii) hold. Conversely, let us

assume that ρt1

(

2 + xf ′(x)
f(x)

)

− ηt1 < 0, when x belongs to a neighbourhood of 0 for some t1 ≥ 0. Then, we

set t = (0, t1, t2) with t2 > t1, and consider that the large trader buys x > 0 at time t1 and sells x at time t2.
The cost of such a round trip is

CP ((0, x,−x), t)

= λ(t1)G

(

x

λ(t1)

)

+ λ(t2)

[

G

(

F

(

e−
∫ t2
t1

ρsdsF−1

(

x

λ(t2)

))

− x

λ(t2)

)

− F̃

(

e−
∫ t2
t1

ρsdsF−1

(

x

λ(t2)

))]

= λ(t1)

[

−ηt1 F̃
(

F−1

(

x

λ(t1)

))

+ ρt1F
−1

(

x

λ(t1)

)2

f

(

F−1

(

x

λ(t1)

))

]

(t2 − t1) + o(t2 − t1).
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The derivative of x 7→ −ηt1 F̃ (x)+ρt1x2f(x) is xf(x)
(

ρt1

(

2 + xf ′(x)
f(x)

)

− ηt1

)

and has the opposite sign of x

near 0. Thus, CP ((0, x,−x), t) is negative when t2 is close to t1 and x is small enough, which gives a PMS.

Corollary 2.6. Let f ∈ C2(R). Under Assumption 2.2, the function hP,t is C1(R), bijective on R and such
that h′P,t > 0. Thus, the result of Theorem 2.6 holds and the last trade ξ⋆T has the same sign as −x.

Besides, if (30) also holds, ξ⋆t has the same sign as −x for any 0 < t < T , which rules out TTPM.

As for model V , we consider now the case of a power-law shape f(x) = |x|γ . We can apply the results of
Theorem 2.6 in this case. We can also notice from (9) that dEt = (ηt − ρt(1 + γ))Etdt. Therefore, model P
with resilience ρt is the same as model V with resilience ρ̃t = ρt(1 + γ)− ηt.

Corollary 2.7. When f(x) = |x|γ , model P does not admit PMS if, and only if

∀t ≥ 0, ρt(2 + γ)− ηt ≥ 0.

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt(1 + γ)− ηt ≥ 0, and

(

ρt(1 + γ)− ηt
ρt(2 + γ)− ηt

)′

+ ρt

(

ρt(1 + γ)− ηt
ρt(2 + γ) + ηt

)

≥ 0.

3 Proofs

3.1 The block shape case

Proof of Theorem 2.1: The quadratic form (16) is given by CV (ξ, t) = 1
2ξ

TMV ξ, withMV
i,j =

exp
(

−
∣

∣

∣

∫ tj
ti

ρsds
∣

∣

∣

)

λ(ti∨tj)
,

0 ≤ i, j ≤ N . Let us assume that aiãi < 1, ∀i ∈ {1, . . . , N}. Then, we can define the following vectors:

y0 =
e0

√

λ(t0)
, yi = ãiyi−1 +

ei
√

λ(ti)

√

1− aiãi, 1 ≤ i ≤ N

where e0 . . . eN denote the canonical basis of R
N+1. We have MV

ij = yT
i yj . We introduce Y the upper

triangular matrix with columns y0, . . . ,yN . By assumption, it is invertible and so is M = Y TY . Conversely,
if MV is positive definite, the minors

det((MV
i,j)0≤i,j≤n) =

1

λ(t0)

n
∏

i=1

1

λ(ti)
(1− aiãi), 1 ≤ n ≤ N

are positive, which gives (17).
Let us turn to the optimization problem. One has to minimize CV (ξ, t) under the linear constraint

∑N
i=0 ξi = −x, which gives

ξ⋆ = − x
1T (MV )

−1
1

(

MV
)−1

1, (39)

where 1 ∈ R
N+1 is a vector of ones. Since Y is upper triangular, it can be easily inverted and we can

calculate explicitly
(

MV
)−1

1 and get (18). �

3.2 General LOB shape with model V

Let us introduce some notations. For the time grid t given by (14), we introduce the next quantities:

αk :=

∫ tk

tk−1

ρsds, k = 1, . . . , N. (40)
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We can write the cost function (13) as follows

CV (ξ, t) =
N
∑

n=0

λ(tn)

[

G

(

En + ξn
λ(tn)

)

−G

(

En

λ(tn)

)]

, (41)

where we use the following notations (observe that En = an(En−1 + ξn−1))

E0 = 0, En =

n−1
∑

i=0

ξie
−

∑n
k=i+1 αk , 1 ≤ n ≤ N.

Lemma 3.1. We have ∂CV

∂ξN
= F−1

(

EN+ξN
λ(tN )

)

and, for i = 0, . . . , N − 1,

∂CV

∂ξi
− ai+1

∂CV

∂ξi+1
= F−1

(

Ei + ξi
λ(ti)

)

− ai+1F
−1

(

Ei+1

λ(ti+1)

)

. (42)

Proof. Let us first observe that ∂En

∂ξi
= 0, if i ≥ n, and ∂En

∂ξi
= e−

∑n
k=i+1 αk if i < n. Thus, we get by using

that G′ = F−1:

∂CV

∂ξi
= F−1

(

Ei + ξi
λ(ti)

)

+

N
∑

n=i+1

e−
∑n

k=i+1 αk

(

F−1

(

En + ξn
λ(tn)

)

− F−1

(

En

λ(tn)

))

= F−1

(

Ei + ξi
λ(ti)

)

− e−αi+1F−1

(

Ei+1

λ(ti+1)

)

+ e−αi+1

[

F−1

(

Ei+1 + ξi+1

λ(ti+1)

)

+
N
∑

n=i+2

e−
∑n

k=i+2 αk

(

F−1

(

En + ξn
λ(tn)

)

− F−1

(

En

λ(tn)

))

]

= F−1

(

Ei + ξi
λ(ti)

)

− ai+1F
−1

(

Ei+1

λ(ti+1)

)

+ ai+1
∂CV

∂ξi+1
.

Lemma 3.2. Under Assumption 2.1, we obtain the next conclusions.

1. For i ∈ {1, . . . , N}, the function hV,i defined in (32) is an increasing bijection on R that satisfies
sgn(x)hV,i(x) ≥ 1−aiãi

1−ai
F−1(x).

2. If (33) holds, then we have sgn(x)h−1
V,i+1 (x) ≥ sgn(x)ãih

−1
V,i (x) for i ∈ {1, . . . , N − 1}.

3. sgn(x)F (x) ≥ sgn(x)ãNh
−1
V,N (x).

Proof. 1. Since the resilience ρt is positive, we have 0 < ai < 1, and ãi ≤ 1 since ρt + ηt ≥ 0 by
Assumption 2.1. We then get

∂hV,i(x)

∂x
=

1

1− ai

[

1

f(F−1(x))
− aiãi
f(F−1(ãix))

]

≥ 1− aiãi
1− ai

1

f(F−1(x))
> 0

because f is nondecreasing on R− and nonincreasing on R+, and F−1 is increasing.

2. We set f̂(x) = (F−1)′(x) = 1/f(F−1(x)): this function is positive, nonincreasing on R− and nonde-
creasing on R+. Let ν ≥ 0 and y = h−1

V,i+1(ν). We note that y ≥ 0 because hV,i+1(0) = 0 and hV,i+1 is
increasing by the first point of this lemma. Thus, we have that

ν =
F−1(y)− ai+1F

−1(ãi+1y)

1− ai+1

= F−1(ãi+1y) +
F−1(y)− F−1(ãi+1y)

1− ai+1

= F−1(ãi+1y) +
1

1− ai+1

∫ y

ãi+1y

f̂(ξ)dξ ≤ F−1(y) +
1− ãi+1

1− ai+1
yf̂(y) =: gi+1(y)
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Hence, we obtain that gi+1 is increasing on R and then, y ≥ g−1
i+1(ν). Let z = ãih

−1
V,i (ν) ≥ 0. We have:

ν =
F−1

(

z
ãi

)

− aiF
−1(z)

1− ai

= F−1(z) +
F−1

(

z
ãi

)

− F−1(z)

1− ai

= F−1(z) +
1

1− ai

∫ z
ãi

z

f̂(ξ)dξ ≥ F−1(z) +

(

1
ãi

− 1
)

1− ai
zf̂(z) =: ḡi(z)

Therefore, if (33) holds, we get that gi+1(x) ≤ ḡi(x) for all x ≥ 0. Then, we have g−1
i+1(x) ≥ g−1

i (x),
and therefore

y ≥ g−1
i+1(ν) ≥ g−1

i (ν) ≥ z.

The same arguments for ν ≤ 0 give y ≤ g−1
i+1(ν) ≤ g−1

i (ν) ≤ z.

3. Using the above definition, we have sgn(x)ḡN (x) ≥ sgn(x)F−1(x), and therefore we get

sgn(ν)F (ν) ≥ sgn(ν)ḡ−1
N (ν) ≥ sgn(ν)z = sgn(ν)ãNh

−1
V,N (ν) .

Lemma 3.3. Let a ∈ (0, 1) and b > 0 such that ab ≤ 1. We have G(x) − 1
bG(abx) ≥ 0 for x ∈ R, and

G(x) − 1
bG(abx) →

|x|→+∞
+∞.

Proof. Since G is convex (G′ = F−1 is increasing) and G(0) = 0, G(abx) ≤ abG(x). If b > 1, we then have
G(x) − 1

bG(abx) ≥ G(x)(1 − a) which gives the result. If b ≤ 1, we have

G(x) − 1

b
G(abx) =

∫ x

0

F−1(u)du− 1

b

∫ abx

0

F−1(u)du =

∫ x

0

F−1(u)du −
∫ ax

0

F−1(bv)dv

=

∫ x

ax

F−1(u)du+

∫ ax

0

(

F−1(u)− F−1(bu)
)

du ≥ |x|(1 − a)F−1(|ax|) →
|x|→+∞

∞.

Proof of Theorem 2.3: We rewrite the cost function (41) to minimize as follows:

CV (ξ, t) =

N
∑

n=0

λ(tn)

[

G

(

En + ξn
λ(tn)

)

−G

(

En

λ(tn)

)]

= λ(tN )G

(

∑N
i=0 ξie

−
∑N

k=i+1 αk

λ(tN )

)

− λ(0)G(0)

+

N−1
∑

n=0

[

λ(tn)G

(

∑n
i=0 ξie

−
∑n

k=i+1 αk

λ(tn)

)

− λ(tn+1)G

(

e−αn+1
∑n

i=0 ξie
−

∑n
k=i+1 αk

λ(tn+1)

)]

We define the linear map T : RN+1 → R
N+1 by (Tξ)n =

∑n
i=0 ξie

−

∑n
k=i+1 αk

λ(tn)
, so that

CV (ξ, t) = λ(tN )G((Tξ)N ) +

N−1
∑

n=0

[λ(tn)G((Tξ)n)− λ(tn+1)G (ãn+1(Tξ)n)] . (43)
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Let us observe that T is a linear bijection. By Lemma 3.3 we get that CV (ξ, t) ≥ 0 and CV (ξ, t) →
|ξ|→+∞

+∞,

which gives the existence of a minimizer ξ⋆ over ξ, s.t.
∑N

i=0 ξi = −x. Thus, by using (42), there must be a
Lagrange multiplier ν such that

ν = hV,i+1

(

Ei + ξ⋆i
λ(ti)

)

, i = 0 . . .N − 1, and ν = F−1

(

EN + ξ⋆N
λ(tN )

)

. (44)

We have
Ei+ξ⋆i
λ(ti)

= h−1
V,i+1 (ν) and then Ei+1 = λ(ti)ai+1h

−1
V,i+1 (ν), for 0 ≤ i ≤ N − 1. Thus, we get

ξ⋆0 = λ(t0)h
−1
V,1 (ν) ,

ξ⋆i = λ(ti)h
−1
V,i+1 (ν)− λ(ti−1)aih

−1
V,i (ν) , 1 ≤ i ≤ N − 1,

ξ⋆N = F (ν)λ(tN )− λ(tN−1)aNh
−1
V,N (ν)

Furthermore, we note that

N
∑

i=0

ξ⋆i = −x = λ(t0)(1 − a1)h
−1
V,1(ν) + . . .+ λ(tN−1)(1 − aN)h−1

V,N (ν) + F (ν)λ(tN ).

By Lemma 3.2 The right side is an increasing bijection on R, and we deduce that there is only one ν ∈ R

which satisfies the above equation. This give the uniqueness of the minimizer ξ⋆. Moreover, the functions
F−1 and hV,i vanish in 0, and ν has the same sign as −x, which gives that ξ⋆0 and ξ⋆N have the same sign as
−x by Lemma 3.2. Besides, if (33) holds, the trades ξ⋆i have also the same sign as −x. �

Let us now prepare the proof of Theorem 2.4 and assume that hV,t is bijective increasing. We introduce
for 0 ≤ t ≤ T ,

CV (t, T, Et, Xt) = λ(t)

[

G(ζt)−G

(

Et

λ(t)

)]

+

∫ T

t

F−1(ζu)ξudu+ λ(T )[G(F (ν)) −G(ζT )], (45)

where

ν ∈ R, s.t.− Et +

∫ T

t

λ(u)ρuh
−1
V,u(ν)du + λ(T )F (ν) = −Xt, (46)

ζu = h−1
V,u(ν), ξu = λ(u)[

dζu
du

+ (ρu + ηu)ζu]. (47)

Let us observe that ν 7→
∫ T

t
λ(u)ρuh

−1
V,u(ν)du + λ(T )F (ν) is increasing an bijective on R, and (46) admits a

unique solution. The function CV (t, T, Et, Xt) denotes the minimal cost to liquidate Xt shares on the time
interval [t, T ] given the current state Et. In particular, we observe that

CV (T, T,ET , XT ) = λ(T )

[

G

(

ET −XT

λ(T )

)

−G

(

ET

λ(T )

)]

,

which is the cost of selling XT shares at time T . Besides, an integration by parts gives that

CV (t, T, Et, Xt) = −λ(t)G
(

Et

λ(t)

)

+

∫ T

t

λ(u)
[

(ρu + ηu)F
−1(ζu)ζu − ηuG(ζu)

]

du+ λ(T )G(F (ν)). (48)

The function ζ 7→ (ρu+ηu)F
−1(ζ)ζ−ηuG(ζ) is nonnegative since it vanishes at 0, and its derivative is equal

to ρuhV,u(ζ) that has the same sign as ζ. Since G ≥ 0, we get:

CV (0, T, 0, x) ≥ 0. (49)
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Formula (45) can be guessed by simple but tedious calculations: one has to consider the associated
discrete problem on a regular time-grid and then let the time-step going to zero. We do not present these
calculations here since we will prove directly by a verification argument that this is indeed the minimal cost.

Proof of Theorem 2.4: Let (Xt, 0 ≤ t ≤ T+) denote an admissible strategy that liquidates x. We
consider (Et, 0 ≤ t ≤ T+) the solution of dEt = dXt − ρtEtdt, νt the solution of (46) and ζt = h−1

V,t(νt). We
set

Ct =

∫ t

0

F−1

(

Es

λ(s)

)

dXc
s +

∑

0≤s<t

λ(s)

[

G

(

Es +∆Xs

λ(s)

)

−G

(

Es

λ(s)

)]

+ CV (t, T, Et, Xt).

Let us observe that CT = CV (X) and C0 = CV (0, T, 0, x). We are going to show that dCt ≥ 0, and that
dCt = 0 holds only for X⋆. This will in particular show that CV (X) ≥ 0 from (49).

Let us first consider the case of a jump ∆Xt > 0. Then, we have

∆Ct = λ(t)

[

G

(

Et +∆Xt

λ(t)

)

−G

(

Et

λ(t)

)]

+ CV (t+, T, Et+, Xt+)− CV (t, T, Et, Xt).

Since ∆Et = ∆Xt, the solution νt of (46) is also the solution of −Et++
∫ T

t
λ(u)ρuh

−1
V,u(νt)du+λ(T )F (νt) =

−Xt+, and then ∆Ct = 0. Now, let us calculate dCt. We set

C̃(t, T, Et, Xt, v) = λ(T )G(F (v)) − λ(t)G

(

Et

λ(t)

)

+

∫ T

t

λ(u)
[

(ρu + ηu)F
−1(h−1

V,u(v))h
−1
V,u(v)− ηuG(h

−1
V,u(v))

]

du.

Then, we have from (48):

dCt = F−1

(

Et

λ(t)

)

dXc
t − λ′(t)G

(

Et

λ(t)

)

dt− F−1

(

Et

λ(t)

)

(dXc
t − (ρt + ηt)Etdt)

−λ(t)(ρt + ηt)F
−1(ζt)ζtdt+ λ′(t)G(ζt)dt+

∂C̃

∂v
(t, T, Et, Xt, νt)dνt.

Since
[

λ(T )f(νt) +
∫ T

t
λ(u)ρu(h

−1
V,u)

′(νt)du
]

dνt − λ(t)ρth
−1
V,t(νt)dt = d(Et −Xt) = −ρtEtdt and

∂vC̃(t, T, Et, Xt, v) = λ(T )vf(v) +

∫ T

t

λ(u)ρu(h
−1
V,u)

′(v)

[

F−1(h−1
V,u(v)) +

ρu + ηu
ρu

h−1
V,u(v)

f(h−1
V,u(v))

]

du

= v

[

λ(T )f(v) +

∫ T

t

λ(u)ρu(h
−1
V,u)

′(v)du

]

,

we finally get

dCt = λ(t)

[

(ρt + ηt)

(

Et

λ(t)
F−1

(

Et

λ(t)

)

− ζtF
−1(ζt)

)

+ ηt

(

G(ζt)−G

(

Et

λ(t)

))

+ ρthV,t(ζt)

(

ζt −
Et

λ(t)

)]

dt

:= λ(t)ψt(ζt)dt. (50)

We have ψ′
t(ζ) = −(ρt+ηt)

(

F−1(ζ) + ζ
f(F−1(ζ))

)

+ηtF
−1(ζ)+ρthV,t(ζ)+ρth

′
V,t(ζ)(ζ− Et

λ(t) ) = ρth
′
V,t(ζ)(ζ−

Et

λ(t) ). Since h′V,t > 0, ψt vanishes at ζ = Et

λ(t) , and is positive for ζ 6= Et

λ(t) .

Thus, if X is an optimal strategy, we necessarily have ζt = Et

λ(t) , dt-a.e. Then, we get by differentiat-

ing
[

Xt − Et +
∫ T

t λ(u)ρuh
−1
V,u(νt)du + λ(T )F (νt)

]

= 0 that
[

∫ T

t λ(u)ρu(h
−1
V,u)

′(νt)du + λ(T )f(νt)
]

dνt = 0,

which gives dνt = 0 since (h−1
V,u)

′ > 0 and f > 0. Thus, we get that νt = ν where ν is the solution of (35). In
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particular, we get ∆X0 = E0+ = λ(0)h−1
V,0(0) = ∆X⋆

0 and then X = X⋆, which gives the uniqueness of the
optimal strategy. Last we observe that ν has the same sign as −x and thus ξ⋆0 has the same sign as −x. �

Proof of Corollary 2.4: Since ρt + ηt ≥ 0 and xf ′(F−1(x)) ≥ 0 by Assumption 2.1, we have

h′V,t(x) =
ηt + 2ρt
ρt

1

f(F−1(x))
− ηt + ρt

ρt

xf ′(F−1(x))

f(F−1(x))3
> 0.

Also, we have sgn(x)hV,t(x) ≥ sgn(x)F−1(x) and then sgn(x)h−1
V,t(x) ≤ sgn(x)F (x), which gives that the last

trade ξ⋆T has the same sign as −x. Then, we have dζt
dt = − 1

h′

V,t
(ζt)

dhV,t

dt (ζt) and thus

ξ⋆t =
λ(t)ζt
h′V,t(ζt)

[

−d (ηt/ρt)
dt

1

f(F−1(ζt))
+ (ρt + ηt)h

′
V,t(ζt)

]

=
λ(t)ζt
h′V,t(ζt)

[

1

ρtf(F−1(ζt))

(

ρ′tηt − ρtη
′
t

ρt
+ (ρt + ηt)(2ρt + ηt)

)

− (ηt + ρt)
2

ρt

ζtf
′(ζt)

f(F−1(ζt))3

]

is nonnegative if (22) holds since h′V,t > 0 and ζtf
′(ζt) ≥ 0. �

Lemma 3.4. We have (33) =⇒ (23) if ρt + ηt ≥ 0, t ≥ 0.

Proof. We have

(33) ⇔ 1

ãi

1− ãi
1− ai

≥ 1− ãi+1

1− ai+1
⇔ (1− ai+1)− ãi (1− ai+1) ≥ ãi (1− ai)− ãiãi+1 (1− ai)

⇔ ãi+1 (1− ai) +
1

ãi
(1− ai+1) ≥ 1− ai + 1− ai+1.

Since ãi+1 ≤ 1, we get 1−ai+1−ai+1 = 1−aiai+1+(1−ai)(1−ai+1) ≥ 1−aiai+1+ ãi+1(1−ai)(1−ai+1).
Thus, (33) implies that:

ãi+1 (1− ai) +
1

ãi
(1− ai+1) ≥ 1− aiai+1 + ãi+1(1− ai)(1− ai+1)

⇔ 1− ãi + aiai+1ãi − aiãi+1 ≥ ai+1 − ãiãi+1ai+1 + aiãiai+1ãi+1 − ãi+1ai+1

⇔ (1− ãi) (1− ai+1ãi+1) ≥ ai+1 (1− ãi+1) (1− aiãi) ⇔ (23).

3.3 General LOB shape with model P

We first focus on discrete strategies on the time grid t such as (14). We introduce the following shorthand
notation Dn = Dtn for 0 ≤ n ≤ N and have

D0 = 0, Dn = anF
−1

(

ξn−1

λ(tn−1)
+ F (Dn−1)

)

, 1 ≤ n ≤ N.

We can write the cost function (13) as follows:

CP (ξ, t) =

N
∑

n=0

λ(tn)

∫ Dtn+

Dtn

xf(x)dx =

N
∑

n=0

λ(tn)

[

G

(

λ(tn)F (Dn) + ξn
λ(tn)

)

−G(F (Dn))

]

. (51)

We begin with the following lemmas that we use to characterize the critical points of the optimization
problem.

20



Lemma 3.5. For i = 0, . . . , N − 1, we have the following equations:

∂CP

∂ξi
= F−1

(

ξi
λ(ti)

+ F (Di)

)

+ âi+1
f(Di+1)

f
(

F−1
(

ξi
λ(ti)

+ F (Di)
))

(

∂CP

∂ξi+1
−Di+1

)

.

Proof. First, we have ∂Dn

∂ξi
= 0 for i ≥ n, and the following recursive equations:

∂Dn

∂ξn−1
=

an

λ(tn−1)f
(

F−1( ξn−1

λ(tn−1)
+ F (Dn−1))

) ,
∂Dn

∂ξi
=

âi+1f(Di+1)

f
(

F−1( ξi
λ(ti)

+ F (Di))
)

∂Dn

∂ξi+1
for 1 ≤ i ≤ n− 2.

From (51), we get:

∂CP

∂ξi
= F−1

(

ξi
λ(ti)

+ F (Di)

)

+

N
∑

n=i+1

[

F−1

(

F (Dn) +
ξn
λ(tn)

)

−Dn

]

f(Dn)
∂Dn

∂ξi

= F−1

(

ξi
λ(ti)

+ F (Di)

)

+
âi+1f(Di+1)

f
(

F−1( ξi
λ(ti)

+ F (Di))
)

[

F−1(F (Di+1) +
ξi+1

λ(ti+1)
)−Di+1

]

+
âi+1f(Di+1)

f
(

F−1( ξi
λ(ti)

+ F (Di))
)

[

∂CP

∂ξi+1
− F−1

(

ξi+1

λ(ti+1)
+ F (Di+1)

)]

,

which gives the result.

Lemma 3.6. Under Assumption 2.2, we have that:

1. The function x 7→ xf(x) is increasing on R (or equivalently, F̃ is convex).

2. We have f
(

x
ai

)

− âif(x) > 0, i = 1, . . . , N.

3. The function

x ∈ R, hP,i(x) = x

[

1
ai
f( x

ai
)− âif(x)

]

f
(

x
ai

)

− âif(x)

is well-defined, bijective increasing and satisfies sgn(x)hP,i(x) ≥ |x|.
Proof. 1. We have (xf(x))

′
> 0 since xf ′(x) ≥ 0 by Assumption 2.2.

2. We have for x ∈ R,

λ(ti−1)f(
x

ai
)− λ(ti)aif(x) ≥ λ(ti−1)f(x)(1 − âi) > 0

because f
(

x
ai

)

≥ f(x) and âi < 1 by Assumption 2.2.

3. The function hP,i is well-defined thanks to the second point. We have sgn(x)hP,i(x) ≥ |x| since

hP,i(x) = x



1 +
a−1
i

1− âi
f(x)
f( x

ai
)



 ,

and it is sufficient to check that f(x)/f(x/ai) is nondecreasing on R+ and nonincreasing on R−. We calculate




f(x)

f
(

x
ai

)





′

=
f ′(x)f

(

x
ai

)

− 1
ai
f(x)f ′

(

x
ai

)

f
(

x
ai

)2 .

This is nonnegative on R+ and nonpositive on R− if and only if xf ′(x)
f(x) ≥ xf ′(x/ai)

aif(x/ai)
for x ∈ R, which holds by

Assumption 2.2 since |x| ≤ |x|/ai.
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Proof of Theorem 2.5: We remark that the cost (51) can be written as follows:

CP (ξ, t) = λ(tN )F̃

(

F−1

(

F (DN ) +
ξN
λ(tN )

))

+

N−1
∑

n=0

λ(tn)

[

F̃

(

F−1

(

F (Dn) +
ξn
λ(tn)

))

− λ(tn+1)

λ(tn)
F̃

(

an+1F
−1

(

F (Dn) +
ξn
λ(tn)

))]

.

Since F̃ is convex by Lemma 3.6 and F̃ (0) = 0, we have F̃ (an+1x) ≤ an+1F̃ (x), for x ∈ R and thus

CP (ξ, t) ≥ λ(tN )F̃

(

F−1

(

F (DN) +
ξN
λ(tN )

))

+

N−1
∑

n=0

λ(tn)F̃

(

F−1

(

F (Dn) +
ξn
λ(tn)

))

(1 − ân+1).

In particular CP (ξ, t) ≥ 0, since F̃ ≥ 0 and ân+1 < 1 by Assumption (2.2). Besides, by setting T (ξ) =
(

ξ0
λ(t0)

, D1 +
ξ1

λ(t1)
, . . . , DN + ξN

λ(tN )

)

, we can easily check that |T (ξ)| →
|ξ|→+∞

+∞, which gives immediately

that CP (ξ, t) →
|ξ|→+∞

+∞ since F̃ (x) →
|x|→+∞

+∞.

Thus, there must be at least one minimizer of CP (ξ, t) on {ξ ∈ R
N+1,

∑N
i=0 ξi = −x}, and we denote

by ν a Lagrange multiplier such that ∂CP

∂ξi
= ν. By Lemma 3.5 we obtain:

ν = hP,i+1(Di+1), i = 0, . . . , N − 1.

We also have ∂CP

∂ξN
= F−1

(

F (DN ) + xN

λ(tN )

)

= ν, and we get (i = 1, . . . , N − 1):

ξ⋆0 = λ(t0)F

(

h−1
P,1(ν)

a1

)

, ξ⋆i = λ(ti)

[

F

(

h−1
P,i+1(ν)

ai+1

)

− F
(

h−1
P,i(ν)

)

]

, ξ⋆N = λ(tN )
[

F (ν) − F (h−1
P,N(ν))

]

.

Besides, we have

λ(tN )F (ν) +
N
∑

i=1

λ(ti−1)

[

F

(

h−1
P,i(ν)

ai

)

− λ(ti)

λ(ti−1)
F (h−1

P,i(ν))

]

= −x. (52)

Since F is increasing bijective on R and the function y 7→ F (y) − λ(ti)
λ(ti−1)

F (aiy) is increasing (its derivative

is positive by Lemma 3.6), there is a unique solution to (52), and ν has the same sign as −x. Thus ξ⋆

is the unique optimal strategy. Moreover, the initial and the last trade have the same sign as −x since
sgn(ν)hP,N (ν) ≥ |ν|. �

We now prepare the proof of Theorem 2.6. For sake of clearness, we will work under assumption (i) and

assume that ρt

(

1 + xf ′(x)
f(x)

)

− ηt > 0 for any x ∈ R and that hP,t is bijective and increasing. However, a

close look at the proof below is sufficient that the same arguments also work under assumption (ii).
Contrary to model V , it is more convenient to work with the process D rather than E (both are related

by Dt = F−1(Et/λ(t)). We introduce for 0 ≤ t ≤ T ,

CP (t, T,Dt, Xt) = λ(t)
[

G(ζt)− F̃ (Dt)
]

+

∫ T

t

ζuξudu+ λ(T )[F̃ (ν)−G(ζT )], (53)

where

ν ∈ R, s.t.− Et +

∫ T

t

λ(u)
[

ρuh
−1
P,u(ν)f(h

−1
P,u(ν))− ηuF

(

h−1
P,u(ν)

)]

du+ λ(T )F (ν) = −Xt, (54)

ζu = h−1
P,u(ν), ξu = λ(u)f(ζu)[

dζu
du

+ ρuζu]. (55)
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Let us observe that x 7→ ρuxf(x)−ηuF (x) is increasing: its derivative is equal to f(x)
(

ρu

(

1 + xf ′(x)
f(x)

)

− ηu

)

and is positive by assumption. Therefore, the left hand side of (54) is an increasing bijection on R and
there is a unique solution ν to (54). The function CP (t, T,Dt, Xt) represents the minimal cost to liq-
uidate Xt shares on [t, T ] given the current state Dt. We have in particular that CP (T, T,DT , XT ) =

λ(T )
[

G
(

ET−XT

λ(T )

)

−G
(

ET

λ(T )

)]

, which is the cost of selling XT shares at time T . Besides, an integration

by parts gives that

CP (t, T,Dt, Xt) = −λ(t)F̃ (Dt) +

∫ T

t

λ(u)
[

ρuf(ζu)ζ
2
u − ηuF̃ (ζu)

]

du+ λ(T )F̃ (ν). (56)

The function ζ 7→ ρuf(ζ)ζ
2 − ηuF̃ (ζ) is nonnegative: it vanishes for ζ = 0 and its derivative is equal to

ζf(ζ)
(

ρu

(

2 + ζf ′(ζ)
f(ζ)

)

− ηu

)

and has the same sign as ζ by assumption. Since F̃ ≥ 0, this gives

CP (0, T, 0, x) ≥ 0. (57)

Proof of Theorem 2.6: Let (Xt, 0 ≤ t ≤ T+) denote an admissible strategy that liquidates x. We
consider (Et, 0 ≤ t ≤ T+) the solution of dEt = dXt + ηtEtdt − ρtλ(t)f(F

−1(Et/λ(t)))F
−1(Et/λ(t))dt,

Dt = F−1(Et/λ(t)), νt the solution of (54) and ζt = h−1
P,t(νt). We set

Ct =

∫ t

0

DsdX
c
s +

∑

0≤s<t

λ(s)

[

G

(

Es +∆Xs

λ(s)

)

−G

(

Es

λ(s)

)]

+ CP (t, T,Dt, Xt).

Let us observe that CT = CP (X) and C0 = CP (0, T, 0, x). We will show that dCt ≥ 0, and that dCt = 0
holds only for X⋆. This will in particular prove that CP (X) ≥ 0 from (57).

Let us first consider the case of a jump ∆Xt > 0. Then, we have

∆Ct = λ(t)

[

G

(

Et +∆Xt

λ(t)

)

−G

(

Et

λ(t)

)]

+ CP (t+, T,Dt+, Xt+)− CP (t, T,Dt, Xt).

Since ∆Et = ∆Xt, we have νt = νt+ from (54) and then ∆Ct = 0 since F̃ (Dt) = G(Et/λ(t)). Now, let us
calculate dCt. We set

C̃(t, T,Dt, Xt, v) = λ(T )F̃ (v)− λ(t)F̃ (Dt) +

∫ T

t

λ(u)
[

ρuf(h
−1
P,u(v))h

−1
P,u(v)

2 − ηuF̃ (h
−1
P,u(v))

]

du.

Since dDc
t = −ρtDtdt+

dXc
t

λ(t)f(Dt)
, we have from (56):

dCt = DtdX
c
t − λ′(t)F̃ (Dt)dt+ λ(t)ρtf(Dt)D

2
t dt−DtdX

c
t − λ(t)[ρtf(ζt)ζ

2
t − ηtF̃ (ζt)]dt

+
∂C̃

∂v
(t, T,Dt, Xt, νt)dνt.

Since d(Et −Xt) = λ(t) [ηtF (Dt)− ρtDtf(Dt)] dt, we get from (54)
[

∫ T

t

λ(u)(h−1
P,u)

′(νt)
[

(ρu − ηu)f(h
−1
P,u(νt)) + ρuh

−1
P,u(νt)f

′(h−1
P,u(νt))

]

du+ λ(T )f(νt)

]

dνt (58)

−λ(t)
[

ρth
−1
P,t(νt)f(h

−1
P,t(νt))− ηtF

(

h−1
P,t(νt)

)]

dt = λ(t) [ηtF (Dt)− ρtDtf(Dt)] dt.

On the other hand, we have

∂vC̃(t, T, Et, Dt, v) = λ(T )vf(v) +

∫ T

t

λ(u)(h−1
P,u)

′(v)h−1
P,u(v)

[

(2ρu − ηu)f(h
−1
P,u(v)) + ρuh

−1
P,u(v)f

′(h−1
P,u(v))

]

du

= v

[

λ(T )f(v) +

∫ T

t

λ(u)(h−1
P,u)

′(v)
(

(ρu − ηu)f(h
−1
P,u(v)) + ρuh

−1
P,u(v)f

′(h−1
P,u(v))

)

du

]

,
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and we get ∂C̃
∂v (t, T,Dt, Xt, νt)dνt = λ(t)νt[ηt(F (Dt)− F (ζt)) + ρt(ζtf(ζt)−Dtf(Dt))]. We finally obtain:

dCt = λ(t)ψt(ζt)dt, with (59)

ψt(ζ) = ηt(F̃ (ζ)− F̃ (Dt)) + ρt(D
2
t f(Dt)− ζ2f(ζ)) + hP,t(ζ) (ηt(F (Dt)− F (ζ)) + ρt(ζf(ζ) −Dtf(Dt))) .

We have ψt(Dt) = 0 and get that ψ′
t(ζ) = h′P,t(ζ) [ηt(F (Dt)− F (ζ)) + ρt(ζf(ζ) −Dtf(Dt))] by simple

calculations. On the one hand, we have h′P,t(ζ) > 0. On the other hand, the bracket is positive on ζ > Dt

and negative on ζ < Dt since its derivative is equal to (ρt−ηt)f(ζ)+ρtζf(ζ), which is positive by assumption.
Thus, Dt is the unique minimum of ψt: ψt(Dt) = 0 and ψt(ζ) > 0 for ζ 6= Dt.

Thus, if X is an optimal strategy, we necessarily have ζt = Dt, dt-a.e. From (58), we get
[

∫ T

t

λ(u)(h−1
P,u)

′(νt)
[

(ρu − ηu)f(h
−1
P,u(νt)) + ρuh

−1
P,u(νt)f

′(h−1
P,u(νt))

]

du+ λ(T )f(νt)

]

dνt = 0,

and thus dνt = 0 since (h−1
P,u)

′ and x 7→ (ρu−ηu)f(x)+ρuxf ′(x) are positive functions by assumption. We get

that νt = ν, where ν is the solution of (38). In particular, we have ∆X0 = λ(0)F (D0+) = λ(0)F (h−1
P,0(ν)) =

∆X⋆
0 and then X = X⋆. This gives the uniqueness of the optimal strategy. Last, ξ⋆0 has the same sign as −x

since ν and −x have the same sign. �

Proof of Corollary 2.6: By Assumption 2.2 we have ρt − ηt > 0, xf ′(x) ≥ 0 and x∂x(
xf ′(x)
f(x) ) ≤ 0, which

gives:

h′P,t(x) =

(

ρt

(

2 + xf ′(x)
f(x)

)

− ηt

)(

ρt

(

1 + xf ′(x)
f(x)

)

− ηt

)

− ρ2tx∂x(
xf ′(x)
f(x) )

(

ρt

(

1 + xf ′(x)
f(x)

)

− ηt

)2 > 0.

Also, we have sgn(x)hP,t(x) ≥ |x|, and hP,t is thus bijective on R. We deduce that sgn(x)h−1
P,t(x) ≤ |x|,

which gives that the last trade ξ⋆T has the same sign as −x.
Let us assume moreover that (30) holds. Let γt =

λ(t)f(ζt)ζt

h′

P,t
(ζt)

(

1+
ζtf

′(ζt)
f(ζt)

−
ηt
ρt

)2 > 0. Then,

ξt = γt

[

ρ′tηt − ρtη
′
t

ρ2t
+ ρt

(

1 +
ζtf

′(ζt)

f(ζt)
− ηt
ρt

)(

2 +
ζtf

′(ζt)

f(ζt)
− ηt
ρt

)

− ζt∂x(
xf ′(x)

f(x)
)|x=ζt

]

≥ γt

[

ρ′tηt − ρtη
′
t

ρ2t
+ ρt

(

1− ηt
ρt

)(

2− ηt
ρt

)]

by Assumption 2.2.

= γt

(

2ρt − ηt
ρt

)2
[

(

ρt − ηt
2ρt − ηt

)′

+ ρt

(

ρt − ηt
2ρt − ηt

)

]

≥ 0 by (30).

�
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