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Abstract 

A passenger traffic assignment model dealing with capacity constraints for transit networks is provided. The CapTA 
model constitutes a framework for introducing capacity effects, in addition to those included: in-vehicle capacity in terms 
of seated and standing passengers, the exchange capacity of vehicles at stations and the line capacity on vehicle flows. 
Traffic equilibrium is intrinsically dual, or bi-layered: the upper layer pertains to passenger route choice at the network 
level, while the lower layer pertains to vehicle traffic along service routes and their lines of operations. The mathematical 
formulation is bi-layered, too, with conventional optimal strategies for passenger trip-making and innovative “line 
models” for the lower layer. 
 
 
Keywords: Transit network; Traffic assignment; Capacity constraints; 

1. Introduction 

In large urban areas, the transit network is frequently submitted to heavy congestion, especially at the 
peak hours on working days. Under these conditions, not only may the passengers face uncomfortable 
conditions, due to crowding, delay and unreliability, but also the transit operation may be disrupted as a 
result of increased dwell time, bunching and delays, leading to the reduction of the service frequency. 

Although these issues are known to the scientific community and discussed in the Transport Capacity and 
Quality of Service Manual (TRB, 2003), not enough attention has been given by the transportation modelers 
to the interplay of passenger and vehicle traffic. On the one hand, passenger traffic is addressed by models of 
traffic assignment to a transit network, typically in planning studies where the operating conditions are 
described by service routes and operation frequencies, section run time, station dwelling time and vehicle 
capacity (Thomas, 1991; Ortuzar and Willumsen, 2004); in some models, one or several of these features are 
flow-responsive. Route frequency has been associated by Lam et al (1999) to the fleet size and cycle time, 
considering both station and dwelling time as flow dependent. On the other hand, service operations are 
planned at the line on the basis of a model of vehicle running along the service trajectory, taking into account 
the local conditions such as line geometry and station dwelling time. The passenger traffic is considered only 
through its influence on the dwelling times and the vehicle load (Vuchic, 2006; Lai et al, 2011).  

This paper presents an innovative traffic assignment model for a public transportation network along with 
a classroom application. The CapTA model (for Capacitated Transit Assignment) takes account of the 
configuration of transport modes, their respective nominal and effective performance, the structure of origin-
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destination flows and the route choice behaviour. In addition to these classical factors it considers a number 
of traffic-related phenomena. Various phenomena have been treated, such as passengers waiting on a 
platform to board a vehicle, the vehicle capacity, the capacity of each route as a function of the service 
frequency, and the modulation of this frequency due boarding and alighting passenger flows. The paper 
provides a description and a mathematical definition of the network elements, such as the travel cost of the 
line legs. In addition, it is focused on the mathematic formulation of the traffic equilibrium at the network 
level.  

The rest of this paper is in six parts. We begin by setting the principles of the CapTA model along with 
the bi-layer network representation. Then, at the service layer, the line sub-model and its treatment are 
described and the travel cost function is defined. At the passenger layer, the hyperpath is defined along with 
the route attractiveness conditions, before formulating the mathematical conditions for traffic equilibrium. 
An application instance is used to illustrate the various capacity effects and the conclusion focuses on on-
going developments of the model. 

 

2. The CapTA model 

2.1. Principles of the CapTA model 

The assignment model takes account of various types of capacity. As public transport involves two types 
of traffic, passengers and service vehicles, the model distinguishes between two layers: the service layer and 
the passenger layer. 

For the service layer, each line is treated separately and the following interactions between transit routes 
and passengers are considered: 
• for each transit route, the passenger load per vehicle varies along the journey with passenger flow.  
• for each transit route and station, the boarding and alighting passenger flows affect vehicle dwell times. 
• for each line and station, the vehicle dwell time and passage constraints on the track affect the service 

frequencies during a given period.  
The passenger layer relates to trips between origins and destinations through passenger’s choice of a route 

on the service network. Each passenger selects the path or combination of paths that minimizes a generalized 
time criterion where each travel component is multiplied by discomfort coefficients, specific to the status of 
the individual passengers (who may be in a vehicle or not, standing or seated etc.).  Thus, each passenger is 
modeled as a rational microeconomic agent who selects the route with the minimum cost and perceives local 
conditions in terms of time spent and discomfort. He is therefore sensitive to the quality of service.  

The traffic equilibrium is determined by the interaction between the two layers: route choices determine 
the flows on the access-egress journeys; thus, the passenger layer influences the service layer. Vice-versa, 
the volumes on the access-egress journeys for each transit route determine the local loads on each network 
element, and by extension the quality of service. In this way the service layer influences the passenger layer. 

2.2. A bi-layered network representation 

We provide distinct network topologies for each model layer. At the passenger layer, we interest in the 
origin destination trips and the route choices of the passengers at the network level. The network (Fig.1b) is a 
directed graph ),( ANG = composed of a set N  of nodes n  together with a set SA  of arcs a  with 

endpoints in N . These arcs represent the state transition for a trip-maker: the set consists of a subset of 
private links MA  (considering among others the passenger access to a platform PA ) and the subset of the 

transit links composed of the line legs LA . 

At the service layer we are based on the access-egress journeys within a transit line to define the effect of 

the capacity constrains. Let us define the concept of a line l  as a subset of transit routes lZ , serving a set of 
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destinations lJ , that share the same infrastructure (track and station platforms) and cannot overtake one 

another. The network consists of bipartite graphs ll JZ ×  (Fig.1a) that link the routes to the stations by a set 

LA  of arcs. It consists for each transit service of the subsets of boarding, BA , alighting, AA , and sojourn, 

sA , links at each station platform and the interstation arcs, IA . The line leg arc set consists of the set  

IsABL AAAAA ∪∪∪=  with the associated nodes. 

 

Fig. 1. A representation of the network at (a) the service layer and (b) the passenger layer 

2.3. Definition of the model variables 

Let us define the network flow state and the line attributes. The node set N  contains origin and 
destination nodes, NOo ⊂∈  and NSs ⊂∈  respectively. An origin – destination pair ),( sow = - having 

an origin – destination flow of osq  - is associated with each destination node s  through a set sW  of origin 

– destination (OD) pairs. If U Ss
sWW ∈=  is the set of all the origin destination pairs, then the OD trip 

matrix is the vector of OD flow Wwwq ∈= ][q . The arcs Aa∈  are characterized by asx , the transit flow per 

destination s . The network flow state is defined as a vector of arc destination flows, 
],:[ SsAaxasAS ∈∈=x . 

A transit line L∈l  is composed of a group of directed transit services lZz∈ . A transit service has 
certain attributes; )( ASzf x , the frequency of the service, dependent on the network flow state, zk  the 

vehicle total capacity and szk  the seat capacity per vehicle, if a transit service is composed of homogenous 

vehicles. The total capacity of a transit service is flow-dependent, since )()( ASzzASz fk xx ⋅=κ  and 

)()( ASz
s
zAS

s
z fk xx ⋅=κ  for total and seat capacity respectively. Therefore, the attributes ),,( sf lll κκ  of a 

transit line  l  depend on the transit services connecting each station pair ),( ji . Considering a function, 
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The arcs on the service network, SAa∈ , are defined by an average traversal cost aĉ  and a frequency 

af . Depending on the arc type, their average traversal cost aĉ  may include the average travel time in the 

vehicle, as well as the cost of waiting, depending to the waiting conditions. The frequency of the arcs is 

given through the flow dependent revised frequency )(ˆ
ASaf x (see section 4.2).   
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3. The line sub-model 

The line sub-model deals with a single traffic direction on a line of operation. Its inputs consist of the 
passenger flows for the journeys between the access and egress stations. It acts as an elaborate arc travel – 
cost function of the line legs by estimating the generalized time between access and egress stations of the 
line through a flow loading – ZIP – algorithm and a leg costing – UNZIP – algorithm.  

In the following section we provide a description of the capacity effects included in the line sub-model: 
the platform waiting sub-model, the in-vehicle comfort sub-model and the frequency modulation sub-model. 
That leads to the arc-travel cost function and an assessment of the efficiency of the algorithm.  

3.1. The platform waiting time sub-model 

Each vehicle that stops at a given station on a given line has a residual capacity once the passengers 
wishing to alight have done so. There are stocks of passengers on the platform: these are differentiated 
according to egress station jv , serving as the model’s principal endogenous variable. 

For each transit route z , the total stock of waiting passengers zin  at a station i  is compared to the 

residual capacity zk ′  of each vehicle. This determines the probability of immediate boarding, ziπ . That 

probability defines the flow that can be handled by a line during the reference period and gives the waiting 

time by passenger. The vehicle flows between the line stations are defined as: jzi
z
ij vy π≡ . 

The transit bottleneck model, developed by Leurent (2011b) is formulated as a fixed point problem. The 
existence and uniqueness of a solution was demonstrated. It is solved with a Newton-Raphson algorithm. 

3.2. The in-vehicle comfort sub-model 

Each transit user considers two distinct categories of in-vehicle comfort; sitting – with a unit cost c  - and 

standing – with a cost c  -, while cc ≤ . The rider seeks to minimize travel cost, by trying to sit, since it is a 

less inconvenient situation. The in-vehicle comfort sub-model transposes the Seat Capacity Model developed 
in Leurent (2010) to the line approach of the CapTA model.  

We consider two behavioural rules to all passengers. First, the standing riders have the same motivation to 
sit, whatever their egress station. The passengers of the same class (boarding or on-board) have equal 
probability to sit. Secondly, the on-board passengers at a station have a priority to occupy an available seat 
over the boarding passengers. As a result, the in-vehicle perceived cost is a random variable related to the 

sitting probabilities at each station – subject to the in-vehicle flow vector ],),(,:[ jiAjilzyy l
z
ijz <∈∈= . 

The average cost per service leg is calculated through a recursive leg-based algorithm. 

3.3. The frequency modulation sub-model 

Each vehicle occupies an operation block for a certain time plus the safety headways. The time set aside 
limits the route frequencies on the line. The constraint is greatest at the stations, where vehicles stop. Their 
occupancy time depends on the dwell time and the operational time. If the doors stay open for as long as it 
takes for all the passengers wishing to do so to board or alight, the dwell time will depend on the volume of 
boarding and alighting passengers.  

The frequency modulation model, given in Leurent et al (2011) computes the station platform occupation 

time H ′ , related to the dwell time per vehicle and the service frequency of upstream arrivals, +zf . If that 

time is longer than the reference period, H , the service frequency is reduced, by a modulation factor, 
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};1min{ HH ′≡η . That factor is applied to the frequency of all transit routes using the station infrastructure, 

whether it stops or not. The modulated frequencies zif ′  are propagated downstream along each transit route. 

3.4. The arc travel-cost function 

The arc travel cost is calculated according to the line leg flows and depends on the network flow state 

ASx  according to the cost-flow function: ]:)([)( Aacc ASaASAAS ∈= xxx a  

That cost reflects the impact of various capacity effects, both at a node and on a transit line, at the line leg 
arc. The former is induced by the local arc flow ∑ ∈= Ss asa xx , by restricting the function, 

)()( aaASa xcc =x . The latter concerns the line legs, lAa∈ , by restricting to the flow of the legs, 

]:[ La Aax ∈=lx . Thus,  )()( lxx aASa cc = .  

The cost flow function on the CapTA model consists of executing for each transit line two algorithms in 
sequence. First, the ZIP – flow loading – algorithm starts at the origin and moves forward, dealing with every 
station in the topological order of the line. At each station it assembles the vehicle flows and applies the 
capacity constraints. The bottleneck sub-model yields the probability to board )( lxPp =z  and consequently 

the vector of in-vehicle flows ],),(,:[ jiAjizy L
z
ijz <∈∈= ly  for the services of the transit line. The 

function can be made continuous by enforcing on each route, for each station a strictly positive through 
arbitrarily small minimal residual capacity. The in-vehicle comfort calculates the probabilities of a passenger 

to occupy a seat at the station, differentiating the on-board, )(00
zz yPp = , and the boarding, )( zz yPp ++ = , 

passengers, according to the in-vehicle flow vector zy . The continuous approximation also applies for the 

in-vehicle comfort function. Finally, the frequency modulation adjusts the frequency downstream according 
to the in-vehicle flows )]([ l∈= zzl yff . 

Then, the UNZIP – leg costing – algorithm moves backwards, treating each station at a reverse 
topological order. Initially, it evaluates the in-vehicle comfort by leg recursively as described in Leurent 

(2010), yielding a continuous approximation )( z
z
ijG yε . Combining the other effects, the cost of the line leg 

),( jia ≈  along a line l , will be then characterized by the function 

))]([,)]([,)](([, lllll
l

∈∈∈= zz
z
ijzzjia GCc yxfxP εε , or: 

∑∑ ∈∈ ′′+= ),(),( /][ jiz zizijiz zizi
z
ijij ffGc εεεε ππαl  if 0≥+

ijq  (1) 

Since LAa∈  is a line leg arc, it is noted that )( ASaa cc xεε = .  

The evaluation of the arc cost through the ZIP and UNZIP algorithms is efficient with minimal 
complexity. If a line consists of lS  stations and lZ  transit services, the complexity of the ZIP algorithm is 

)( ll ZSO ×  and of the UNZIP algorithm )( 2
lSO . The complexity of the line sub-model is not greater than 

)( 2
lSO . 

 

4. The passenger route choice at the network level 

4.1. The attributes of the arcs and the hyperpath description 

The arcs of the service network, ),( SANG = , have an average traversal cost aĉ  with an arc split defined 

by an flow dependent revised frequency )(ˆ
ASa xf  (see section 4.2). The average arc traversal cost of the set 

of line legs LAa∈  includes the weighted average in-vehicle journey cost and the cost of traversing a 
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passenger stock for a saturated flow. Additional waiting due to the discontinuity of the transit services is 
considered among the platform access arcs pAa∈ . 

The route choice to a destination is described by a hyperpath. A hyperpath )ˆ,( hh h=  with a destination 

node s  is defined through a pair, the arc set h  and the routing field ĥ . The routing field is a mapping of the 

set SA  onto ]1,0[ , where for an arc a  of the hyperpath it will stand 0ˆ >ah . The routing proportions of the 

outgoing arcs +∈ mAa  at a node m  are 1ˆ =ah  for the arcs pS AAa \∈ . The routing proportions of the 

platform access arcs pAa∈  depend on the revised frequency of the line legs served at the platform.  

The travel cost from a node n  to a destination s  along a hyperpath nsHh∈ , for a network flow state 

ASx , is the average travel cost along its paths. Let )(ˆ1/)( }{ ASaAa amAS
h
m xfxw

m
∑ +∈ ∈≡ hα  the waiting delay 

at a node m  for outgoing platform arcs, pAa∈ , or 0≡k
mw  otherwise. If )(hRns  is the set of the 

elementary paths r  along h  from n  to s , ∏ ∈= ra ar hh ˆˆ  the path flow proportion and )( ASa xc  the travel 

cost of an arc a  related to network flow state ASx , it will stand:  

∑ ∑∑∈ ∈∈ +⋅= )( ])()([ˆ),( hRr ra ASaASrm
h
mrASns ns

xcxwhxhC  (2) 

The waiting factor mα  depends on the arrival distribution of the vehicles and the passengers at node m . 

4.2. A bi-layer route choice and the bundle attractiveness 

The passenger route choice presented previously corresponds to a bi-layer route choice. At the lower 

layer, a passenger at a platform will choose the line leg with the shortest path. The arc travel cost, l
ijc , is 

composed of a waiting time – related to the discontinuity of the service and the presence of a saturated flow 
– and the weighted average of the perceived in-vehicle travel time of the transit services composing the line 

leg. Therefore, if we consider jsu  the perceived travel cost from node j  to the destination s , the cost from 

node i  to the destination, will be: jsijsi ucc += l
)( . At the platform level, if the demand exceeds capacity, the 

passengers wait in a stock that does not dissipate after the departure of a vehicle. The presence, of a non 
dissipating stock absorbs the discontinuous characteristic of the transit services. A transition phase exists 
between the two traffic states.  

At the upper level of the path choice, a passenger faces a choice among alternative lines to reach the 
destination s . A line combination may occur in order to minimize the travel time to the destination. Let us 
provide the appropriate definitions.  

 
Definition 1 - Discontinuity attenuator: If a′  is a line leg arc, LAa ∈′ , and a  is the platform arc 

leading to that, let us define the discontinuity attenuator as )1( aaa fw ′′ ′−≡ φβ  where φ  is a continuous 

function decreasing from 1)0( =φ  to 0)( =xφ  for all values ε≥x , a small argument. The discontinuity 

attenuator corresponds to the transition between a discontinuous uncongested service and a continuous 
congested one.  

For the line leg a transition phase is distinguished between uncongested and saturated flow states. Even 
though it stems from the line leg, it is applied to the platform access arc.  

 
Definition 2 - Revised Frequency: A transition phase exists between the uncongested discontinuous and 

the congested continuous service and the line combination at the station level may occur in a revised way. 

Each arc a  is then associated to a revised frequency aaa ff β≡ˆ  for 0>aβ ; otherwise ∞≡af̂ .  



 Chandakas et al. (2012) – A passenger traffic assignment model with capacity constraints for transit networks 7 

According to that definition, an arc ),( jia ≈ , delivers a minimum time of aaaaij fwuc βα ⋅−+=′ )(l  

and a mean time of aa wu + , or aij fc ˆα+′l . In addition, the combined frequency of an attractive bundle 

and the routing proportions of a path depend on the revised frequency. 
 
Definition 3 - Bundle Attractiveness: Assuming that the lines are not saturated, a line l  is attractive in 

respect to a bundle B  if, denoting l
ijc′  the minimum time of a line leg, it holds: Bm

B
sijsij fcuc ˆ
)( α+≤+′l  

Where B
sic )(  denotes the minimum time from node i  to the destination s  by the bundle B .  

 

5. The traffic equilibrium at the network level 

After the necessary mathematical formulations for the network elements and the arc travel cost function, 
we define the traffic equilibrium. We first establish the feasible flow states and their hyperpath 
representation. Then, we define the traffic equilibrium in the form of a Nonlineal Complemementarity 
Problem (NCP). The existence of an equilibrium state can be demonstrated through a Variational Inequality 
Problem (VIP). 

5.1. Feasible flow states and hyperpath representation 

Definition 4 – Feasible network flow state: A network flow state SsAaasAS x ∈∈= ,][X  is feasible if it is 
non-negative and the conservation of flow by destination Ss∈  is satisfied at every node. 

The second condition corresponds to the equation, ∑ ∑+ −∈ ∈+=
m mAa Aa asmsas xqx , smNmSs ≠∈∈∀ ,,  

illustrating the conservation of flow by destination Ss∈  for a node, other than the destination s . +
mA  

defines the set of outgoing arcs of node m  (respectively −
mA , for the set of ingoing arcs) and msq  the origin 

– destination flow from node  sm≠  to destination Ss∈ . 
Let the hyperpath set nsH  include the hyperpaths h  from n  to s . We define the hyperpath flow state 

NSX  as a linear combination of elementary flows along the hyperpaths h  with coefficients h
nsq : 

]},{\,:[ ns
h
nsNS HhsNnSsq ∈∈∈=X   (3) 

 
Definition 5 – Feasible hyperpath flow state: Considering the origin – destination trip matrix 

SsNnnsNS q ∈∈= ,][q , the hyperpath flow state NSX  is feasible if it is non-negative and if the conservation of 

flow by origin destination pair nsq is satisfied:  

ns
h
ns HhsNnSsq ∈∈∈∀≥ },{\,0   (4a) 

snNnSsqq
nsHh ns

h
ns ≠∈∈∀=∑ ∈ ,,,   (4b) 

The set of feasible hyperpath flow states is noted XE . An elementary path r  is composed of a series of 

arcs from n  to the destination s . The proportion of the flow from n  to s  of the hyperpath h  at the 

elementary path r  is noted ∏ ∈= ra ar hh ˆˆ . The network flow state )( NSAS A Xx =  is linked to the 

hyperpath flow state via the arc flow state:  

∑ ∑∑∈ ∈ ∈∈= Nn hRr rarHh
h
nsas nsns

hqx )( }{1ˆ   (5) 
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5.2. Definition and characterization of the traffic equilibrium 

Definition 6 – Traffic Equilibrium: Given the OD trip matrix SsNnnsNS q ∈∈= ,][q  and the arc-cost 

function, a hyperpath flow state ]},{\,:[ ns
h
nsNS HhsNnSsq ∈∈∈=X  with )( NSAS A Xx =  is a traffic 

equilibrium if there exists a cost matrix }]{\,:[ sNnSsnsNS ∈∈= µµ , such that for all Ss∈  and 

}{\ sNn∈  the following conditions apply: 

0>h
nsq , nsHh∈∀   (6a) 

nsHh
h
ns qq

ns
=∑ ∈   (6b) 

0),( ≥− nsASns xhC µε , nsHh∈∀   (6c) 

0]),([ =−⋅ nsASns
h
ns xhCq µε , nsHh∈∀   (6d) 

The previous set of conditions can be defined as a non-linear complementarity problem (NCP) in the 
variable ),( NSµXNS . The associated cost function is:  

]},{\,:))(,([),( nsnsNSnsNSNS HhsNnSsAhC ∈∈∈− µε XµX a  

The characterization of traffic equilibrium is demonstrated through a Variational Inequality Problem 
(VIP).  

Assuming that the arc travel cost functions aC  are continuous, we can prove that there exists an 

equilibrium state for the capacitated transit assignment model. Nevertheless, it is not proven that there is a 
unique solution. 

5.3. Computation scheme 

The solution of the traffic equilibrium problem of network assignment is guaranteed by applying a 
Method of Successive Averages (MSA), using a decreasing sequence of positive numbers 0)( ≥kkλ  with 

10 =λ . An equilibrium state is reached with the following steps: 

• Initialization: set 0=Ax  and 0=k  

• Cost formation: execute the line sub-model by line, based on  Ax . The ZIP algorithm loads the leg flows 

and enforces the capacity constraints (platform flowing, in-vehicle comfort and frequency modulation) 
and the UNZIP algorithm estimates the costs of the line legs. 

• Auxiliary state: search of the shortest hyperpath for all origin – destination pairs and assign the OD flows 
to the network elements, yielding an auxiliary flow Ay . 

• Flow update: the previous and auxiliary state flows are combined, AkAkA y xx ⋅−+=′ )1( λλ  

• Convergence criterion: If the states Ax  and Ax′  are sufficiently close, break the loop with solution Ax′ . 

Else, increment k , set AA xx ′=  and go to Cost formation.  

The convergence is measured by the function:  )/( 1
)(,

1
)()(1,

−
∈∈

−
− ∑ −= k

soSsOo
k

so
k

sooskk cccqGAP  

 

6. An application instance 

A classroom instance is used to demonstrate the effects of the model. That example lies in a simplified 
representation of the busiest railway line in the Paris Metropolitan area, the RER A. At the morning peak 
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hour more than 50 000 passengers per hour pass through the busiest segment of the line. The nominal 
frequency of 30 trains/h is frequently decreases to 25 due to congestion at the central trunk stations.  

 

 

Figure 2. Abstraction of the selected network, emphasizing on line legs 

The simplified network consists of two transit routes connecting the Northern (resp. Southern) branches to 
the central trunk, running from East to West. Another line, the RER E, competes with the RER A between 
the North East and Centre (Fig 2). Table 1 resumes the characteristics of the transit routes. The service 
network contains 6 stations as origin and destination zones with 50 arcs and 35 nodes. We have produces a 
truncated OD trip matrix to come as close as possible to the actual conditions at the central trunk, but in the 
same time emphasize on the effects produces by the capacity constraints. 

 

Table 1. The characteristics of the transit routes 

Route Frequency (t/h) Seat Capacity (per veh.) Total Capacity (per veh.) 

RER A north 18 432 1760 

RER A south 12 600 1888 

RER E 8 1100 2564 

 
Table 2 contains the results after 500 iterations for three model variables; first without any capacity 

constraints, then taking account of waiting in platform and frequency modulation and thirdly with the three 
capacity effects modeled. There is a significant increase in the Generalized Time between the three model 
variables, especially as waiting and in-vehicle cost is concerned. Indeed we observe that by including in-
vehicle sitting conditions, the in-vehicle cost explodes, but in the same time the waiting cost is reduced due 
to a larger number of passengers preferring the alternative RER E line from North East to Auber.  

 

Table 2. The Generalized Time (in minutes) for each model variable 

 
 
 
 
 
 
 

Model Variable Optimal GT Waiting cost In-vehicle cost Transfer cost Access – Egress cost 

Without Capacity 52,8 7,8 31 0 14 

Without Comfort 67 22 31 0 14 

With all capacity 
constraints 

82,8 19,7 48,5 0 14 

South West 

North West 

South East 

North East 

Auber Nation 

RER A 

RER E 
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That origin destination pair demonstrates the behavior of passenger when comfort is included. Without 
capacity constraints only 27% of the OD flow chooses to RER E. Instead, when waiting constraints and in-
vehicle comfort is considered, 86% of that OD flow prefer that route.  

If we look at the disaggregated origin-destination costs between the non-capacitated and the capacitated 
model variables, the increase in the optimal generalized time varies from 16%, between North East and 
Auber – where an alternative service exists – to 145% between Auber and South West, due to the conditions 
of accessing the vehicles and the absence of seating available. 

Let us focus on the results of CapTA model on the operation of the transit routes. The dwell time for both 
services increases at Nation due to the boarding and alighting passenger flows, as it is shown in table 3. 
Therefore a decrease in the vehicle frequency from 30 to 26,35 vehicles/h is observed at the downstream 
station of Auber. That contributes to a secondary effect of insufficient total capacity, causing a stock 
formation and an important increase in waiting time at Auber. 

 

 Table 3. Operation results of RER A under capacity constraints 

Transit Route Dwell Time 
at Nation (s) 

Dwell Time 
at Auber (s) 

Frequency at 
Auber 

Expected Waiting time 
at Auber (min) 

RER A north 61,6 40 15,80 60,3 

RER A south 48,9 40 10,55 59,9 

Conclusion 

This paper develops the CapTA model, introduced in Leurent et al (2011). It addresses route choice at a 
network level, while including the effects of a wide range of traffic phenomena: in-vehicle passenger and 
seat capacity, access – egress capacity, the platform track capacity on the vehicle side. The model is based on 
a dual network representation of the service and the passenger layers. A line sub-model is used to estimate 
the generalized time between access and egress station within a line, according to the usual flows on each 
network element. A mathematical formulation of the traffic equilibrium is provided at the network level. 

The CapTA model constitutes a framework for introducing capacity effects. In addition to the capacity 
effects already modeled, it would be straightforward to include corridor pedestrian capacity in a station, track 
capacity in vehicles. These features are expected to be useful in transit planning applications. On-going 
work, is focused on congestion assessment of the Paris metropolitan network. 
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Appendix A. Continuity of leg-cost flow relationship 

 
Theorem 1 – Continuity of leg cost-flow relationship 
Let the service leg costs zijG  of the transit services l∈z  be functions of the leg trip matrix, with 

0≥lx as well as the expected waiting time for a line leg. If the travel cost functions and the waiting cost 

function are continuous with respect to lx , so it is the approximate average leg cost function 
εl

jiC ,  defined 

previously, except at the points where 0=′zik  and 0=+
ijq .  

We develop 4 Lemmas for the demonstration of the Theorem. 
 
Lemma 1 – Regularity of probability to board 
The passenger stock for a transit service zn  is a function of the exogenous flow, the modulated frequency 

and the available capacity, ),,( ziziijzz kfqnn ′′= + , where 0=zn  for 0=+
ijq  and 0>zn  for 0>+

ijq . For 

0),( zi ≥′ +
ijqk  let }

),,(
;1min{),( zi

zi
ziziijz

ij
kfqn

k
qkp

′′

′
≡′

+
+  if 0>′zik  and 0>+

ijq , else 0),( zi ≡′ +
ijqkp  if 

0=′zik , else 1),( zi ≡′ +
ijqkp  if 0>′zik  and 0=+

ijq . Then the function p  is continuous with respect to 

),( zi
+′ ijqk , except at )0,0( . It is continuously differentiable except along )},,({ ziziijzzi kfqnk ′′=′ +  

Proof. Once we have defined the function of the passenger stock, the property is obvious for 0zi >′k , 

0>+
ijq  and ),,( ziziijzzi kfqnk ′′≠′ +  since the probability function will yield either 1=p  if 

),,( ziziijzzi kfqnk ′′>′ + , or ),,(/ ziziijzzi kfqnkp ′′′= +  if ),,( ziziijzzi kfqnk ′′<′ +  which is differentiable on each 

restricted domain. The two sub-domains of differentiability are separated by the line ),,( ziziijzzi kfqnk ′′=′ + . 

If 0zi >′k  then the function p is right continuous at 0=+
ijq , since ∞→′′′ + ),,(/ ziziijzzi kfqnk  as ++ → 0ijq  

and 1=p . On the other hand, if 0=′zik  and 0>+
ijq , then it holds for the function 0),0( →+

ijqp  as 

++ → 0ijq  and therefore the function p  is continuous at )0,0( . 
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Lemma 2 – Regularity of modulation factor 
The platform temporal occupancy is a function of the in-vehicle flow vector zy  and the transit service 

frequencies zf  for all the services in the set liZ , )][,]([ ,ll ∈∈=′ zzzzi fHH y . The platform temporal 

occupancy function has a lower bound of min
ii HH ≥′  and it is strictly increasing. Let the modulation factor 

be  }'/;1min{ HHi =η . Therefore, it is continuous with respect to ),( fy  and continuously differentiable 

except along }'{ HH = . 

Proof. The proof follows the guidelines of the previous lemma. The property is obvious for 'HH ≠ , 
since the function yields 1=iη  for HH ′>  or '/ HHi =η  for HH ′< , which is continuously 

differentiable on their restricted domain. The line }{ HH ′=  separates the two sub-domains of 

differentiability. The same applies for the modulated frequency.  
 
Lemma 3 – Continuity throughout line loading 
Along a transit service l∈z  of a transit line, at every station i , the functions zik′  and ziy  are 

continuous and sub-differentiable with respect to the vector lx . That also applies for the derived functions. 

The probability of the stock to board ziπ  is regular for the domain, except if 0=+
ijq . 

Proof. We use an inductive process for the proof of the Lemma property. From the origin station 1=i , we 
have zkk =′1  for a service and 0=ziy . Let an Induction Assumption that the Lemma property holds for a 

station i  and a transit service z . Let us consider the next station, 1+i . If −
zik  is the available capacity at the 

departure from station i , the number of passengers alighting at 1+i , ∑ +=+<
−

+ =
1,11 ikij

z
jkzi yy  and the 

available capacity −
+

−
+ −=′ 11 zizizi ykk  are regular. Furthermore, in Leurent (2011b) it is demonstrated that 

the passenger stock function ∑ >∈
=

ijjiz jzi vnv
),,(

a  is continuous. Therefore the probability of the stock to 

board },1min{
zi

zi
zi n

k′
=π  is continuous for 0≥zin . 

 
Lemma 4 – Continuity throughout line costing 
If the perceived travel time z

ijG  is continuous for each transit service l∈z  with respect to lx , then the 

approximate arc cost function εlijc  is also continuous for the line leg ),( ji .  

Proof. In Leurent (2010) the author demonstrated that for a transit service the arc-cost function )( lxz
ijG  

is continuous. In addition, we determined in Lemmas 1 and 2 that the approximated probability for the stock 
to board a vehicle and the modulated frequency respectively are continuous functions. Therefore the 
approximate arc cost function is also continuous since continuity is maintained through the operators of 
addition and multiplication. It is also maintained through division since according to Lemma 1 it holds for 

the approximate function of the probability of the stock to board that 0>e
ziπ  with respect to lx .  

Therefore the Lemmas 1, 2, 3 and 4 make Theorem 1 hold true.  
 

Appendix B. Bundle Optimality 

Theorem 2 - Optimal Bundle 
By optimal bundle we call the bundle that minimizes the expected total travel time, including the waiting 

time from a node i  to the destination s. Therefore, it is optimal when further combination of a line cannot 
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improve the expected travel time. The minimum expected travel time of the lines within the attractive set is 
inferior to the expected travel time.  

Proof. To prove the theorem, we first demonstrate that a bundle is optimal when it contains the lines 
whose minimum travel time is inferior to the expected travel time of the bundle. Conversely, we show that 
by withdrawing a line from that attractive set, the new bundle is not optimal.   

If B  is a bundle and for line l  holds B
B

sijsij fcuc ˆ
)( α+≤+l , then bundle }{' l+= BB  is also optimal. 

It suggests that if the minimum travel time of the line from the node to the destination is inferior to the 
expected travel time of the bundle, then the line is part of the attractive set. It is obvious that if we start from 

that inequality, and for 0ˆ,ˆ ≠aB ff , we get:  

B
B

siB
B

si fcfc ˆˆ
)()( αα +≤+ ′

′  

By induction it is obvious that a line bundle is not optimal, unless it contains all the lines whose minimum 
travel time is inferior to the bundle expected travel time. 

Conversely, if B  is an optimal bundle and for line l , it holds B
B

sijsij fcuc ˆ
)( α+≤+l , then bundle 

}{' l−= BB  is not an optimal one. 

We advance as previously, by showing that for 0ˆ,ˆ ≠aB ff , it holds:  

B
B

siB
B

si fcfc ˆˆ
)()( αα +≥+ ′

′  

Thus, we prove that the bundle is optimal if and only if it contains the lines where their minimum travel 
time to the destination is inferior to the expected travel time of the bundle. 

A special case to be considered is that of the congested line, where the bundle is reduced to the congested 
line. Since a congested line is considered to provide a continuous service, where the revised frequency 

∞→af̂ , the arc resembles a private arc like the pedestrian arcs. Therefore if a line is congested, it forms a 

bundle of a single line, whose expected travel time cannot be further reduced by combining with other 
bundles.  

 

Appendix C. Characterization of Traffic Equilibrium  

Theorem 3 – Characterization of Traffic Equilibrium  

Let us consider a hyperpath flow state ]},{\,:[ ns
h
nsNS HhsNnSsq ∈∈∈=X  which is feasible for the 

OD trip matrix SsNnnsNS q ∈∈= ,][q . If ]},{\,:))(,([)( nsNSnsNSNS HhsNnSsAhC ∈∈∈= XXχ
ε , then 

NSX  corresponds to a traffic equilibrium if and only if, for any other feasible hyperpath flow state 

]},{\,:[ ns
h
nsNS HhsNnSsY ∈∈∈= ξ , we have: 

0)()( ≥−⋅ NSNSNSNS XYXχ   (7) 

Proof. Firstly, while considering that NSX  is a traffic equilibrium state, we wish to prove that  expression 

(7) stands. Therefore, for any feasible hyperpath flow state, we have 0ξ ≥h
ns , for any 

nsHhsNnSs ∈∈∈ },{\, . According to the definition of the traffic equilibrium, it holds for (8c): 

nsnsASns
h
ns HhhC ∈∀≥−⋅ ,0]),([ µξ ε x  

Therefore, ns
h
nsASns

h
ns hC µξξ ε ⋅≥⋅ ),( x . 
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For all the hyperpaths, nsHh∈ , we have: ∑∑ ∈∈ ⋅≥⋅
nsns Hh ns

h
nsHh

h
ns

h
ns C µξξ ε . According to the 

feasible hyperpath flow state definition (6b) holds:  ∑ ∈ =
nsHh ns

h
ns qq . And: 

nsnsHh ns
h
nsHh

h
ns

h
ns qC

nsns
µµξξ ε ⋅=⋅≥⋅ ∑∑ ∈∈  (a) 

The sum over all the hyperpaths from equation (8d), gives respectively: 

nsnsHh ns
h
nsHh ASns

h
ns qqhCq

nsns
µµε ⋅=⋅=⋅ ∑∑ ∈∈ ),( x  

If we combine that expression with (a), we get: ∑ ∈ ≥−⋅
nsHh

h
ns

h
nsAS

h
ns qhC 0)(),( ξε x . 

By summing over all the nodes, }{\ sNn∈ , and the destinations, Ss∈ , we build (7). 

Secondly, while assuming that the expression holds for NSX , we prove that it is the hyperpath flow state 

corresponding to the traffic equilibrium. We assume a feasible hyperpath flow state, 

]},{\,:[ ns
h
nsNS HhsNnSs ∈∈∈= ξY  almost equal to NSX , with only a difference on a node-destination 

pair ),( sn . If the set of hyperpaths nsH  contains only one hyperpath, we can prove that by assuming 

),( ASnsns hC xεµ =  and by replacing it in (7), the expressions (6c) and (6d) hold. The flow state NSX  

corresponds to traffic equilibrium. If there are more than one hyperpaths, we assume that for a small positive 

number θ , while 0>h
nsq and 0ξ ≥h

ns , there is θξ −= h
ns

h
ns q  and θξ −= ′′ h

ns
h
ns q . Therefore, by applying to 

(7), we have: 

0)),(),(( ≥⋅−′′ θεε
AS

h
nsAS

h
ns hChC xx  

According to the inequality, any hyperpath nsHh∈  with a positive flow h
nsq  in the flow state NSX   has a 

minimum cost on nsH . We further demonstrate that if we define ),(min ASnsHhns hC
ns

xεµ ∈= , the (6c) and 

(6d) hold and the hyperpath flow state corresponds to a traffic equilibrium. 
 

Appendix D. Existence of traffic equilibrium 

Theorem 4 – Existence of traffic equilibrium 
Assuming that the arc travel cost functions aC  are continuous, there exists an equilibrium state for the 

user and service equilibrium model.  
Proof. The continuity of the travel cost functions guarantees that, according to the Theorems 1 and 3, the 

cost functions ),( ASnsAS hC xx ε
a  are continuous with respect to the network flow state. In addition, we 

have defined that there is a continuous function – corresponding to the combination of the hyperpath flows – 

such that )( NSAS A Xx = . Therefore, the composed functions, ))(,( NSnsNS AhC XX ε
a  and 

)( NSNSNS XχX a , are continuous. Since the set of feasible hyperpath flow states is convex and compact, 

there is at least one solution for the variational inequality, (7). Nevertheless, it is not proven that there is a 
unique solution. 


