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A passenger traffic assignment model with capamtystraints
for transit networks

Ektoras Chandakas Fabien Leurefit, Alexis Poulhéd

#Université Paris-Est, Laboratoire Ville Mobilité dinsport, Ecole des Ponts ParisTech
6-8 avenue Blaise Pascal, 77455, Marne la VallégleX 2, France

Abstract

A passenger traffic assignment model dealing wihacity constraints for transit networks is prodid&@he CapTA
model constitutes a framework for introducing cédyeeffects, in addition to those included: in-vekicapacity in terms
of seated and standing passengers, the exchangeitgapf vehicles at stations and the line capagityvehicle flows.
Traffic equilibrium is intrinsically dual, or bi-leered: the upper layer pertains to passenger ahdie at the network
level, while the lower layer pertains to vehiclaffic along service routes and their lines of ofiers. The mathematical
formulation is bi-layered, too, with conventiongbtimnal strategies for passenger trip-making andvative “line
models” for the lower layer.

Keywords: Transit network; Traffic assignment; Ceipaconstraints;

1. Introduction

In large urban areas, the transit network is fraetyesubmitted to heavy congestion, especiallyhat t
peak hours on working days. Under these conditioas, only may the passengers face uncomfortable
conditions, due to crowding, delay and unreliapilibut also the transit operation may be disru@ech
result of increased dwell time, bunching and del&ading to the reduction of the service frequency

Although these issues are known to the scientdimmunity and discussed in the Transport Capacidy an
Quality of Service Manual (TRB, 2003), not enougtertion has been given by the transportation neydel
to the interplay of passenger and vehicle traffin.the one hand, passenger traffic is addressadbigls of
traffic assignment to a transit network, typicaily planning studies where the operating conditians
described by service routes and operation freqaensiection run time, station dwelling time andiefeh
capacity (Thomas, 1991; Ortuzar and Willumsen, 20@4some models, one or several of these featnes
flow-responsive. Route frequency has been assdciatdam et al (1999) to the fleet size and cyuieet
considering both station and dwelling time as fldependent. On the other hand, service operatians ar
planned at the line on the basis of a model ofateliunning along the service trajectory, taking iaccount
the local conditions such as line geometry andostatwelling time. The passenger traffic is consédieonly
through its influence on the dwelling times and k&icle load (Vuchic, 2006; Lai et al, 2011).

This paper presents an innovative traffic assignm@del for a public transportation network alonighw
a classroom application. The CapTA model (for Captad Transit Assignment) takes account of the
configuration of transport modes, their respectiveninal and effective performance, the structurerafin-
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destination flows and the route choice behaviauaddition to these classical factors it consideraimber

of traffic-related phenomena. Various phenomenaehbgen treated, such as passengers waiting on a
platform to board a vehicle, the vehicle capadhg capacity of each route as a function of theicer
frequency, and the modulation of this frequency Boarding and alighting passenger flows. The paper
provides a description and a mathematical defimitb the network elements, such as the travel abgte

line legs. In addition, it is focused on the mathéimformulation of the traffic equilibrium at theetwork
level.

The rest of this paper is in six parts. We begirsbéiting the principles of the CapTA model alonghwi
the bi-layer network representation. Then, at thesise layer, the line sub-model and its treatmenet
described and the travel cost function is defidgdhe passenger layer, the hyperpath is definedgaith
the route attractiveness conditions, before fortmgathe mathematical conditions for traffic eqoilum.

An application instance is used to illustrate tleiaus capacity effects and the conclusion focusesn-
going developments of the model.

2. The CapTA model
2.1.Principles of the CapTA model

The assignment model takes account of various tgpeapacity. As public transport involves two tgpe
of traffic, passengers and service vehicles, thdehdistinguishes between two layers: the senagerl and
the passenger layer.

For the service layer, each line is treated seplgrand the following interactions between tramgiites
and passengers are considered:
 for each transit route, the passenger load pechetaries along the journey with passenger flow.
 for each transit route and station, the boardiryaighting passenger flows affect vehicle dwetids.

« for each line and station, the vehicle dwell time passage constraints on the track affect thecserv
frequencies during a given period.

The passenger layer relates to trips between arainl destinations through passenger’s choice aita
on the service network. Each passenger selecfsatheor combination of paths that minimizes a galierd
time criterion where each travel component is rlitd by discomfort coefficients, specific to thatsis of
the individual passengers (who may be in a velicleot, standing or seated etc.). Thus, each pgssés
modeled as a rational microeconomic agent who tsethe route with the minimum cost and perceiveallo
conditions in terms of time spent and discomfos.isitherefore sensitive to the quality of service.

The traffic equilibrium is determined by the intetian between the two layers: route choices detemi
the flows on the access-egress journeys; thuspdksenger layer influences the service layer. Varea,
the volumes on the access-egress journeys for teatsit route determine the local loads on eactvort
element, and by extension the quality of servinghis way the service layer influences the passelayer.

2.2.A bi-layered network representation

We provide distinct network topologies for each eloldyer. At the passenger layer, we interest & th
origin destination trips and the route choiceshefpassengers at the network level. The netwotkiB) is a
directed graphG =(N, A) composed of a seN of nodesn together with a setA; of arcsa with

endpoints inN . These arcs represent the state transition foipamaker: the set consists of a subset of
private links A,, (considering among others the passenger acces®liatform A,) and the subset of the

transit links composed of the line leds .
At the service layer we are based on the access®purneys within a transit line to define thieef of

the capacity constrains. Let us define the conogptline / as a subset of transit routs , serving a set of
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destinationsJ* , that share the same infrastructure (track antibst@latforms) and cannot overtake one

another. The network consists of bipartite graﬁﬁst ! (Fig.1a) that link the routes to the stations tset
A of arcs. It consists for each transit servicehaf subsets of boardinddg, alighting, Ay, and sojourn,

Ag, links at each station platform and the interstatarcs A, . The line leg arc set consists of the set
A = Ag 0 A,OAOA with the associated nodes.

Fig. 1. A representation of the network at (a)dbevice layer and (b) the passenger layer
2.3. Definition of the model variables

Let us define the network flow state and the linkilautes. The node sel contains origin and
destination nodesx[1O O N andsOS[ N respectively. An origin — destination pair= (0, s) - having

an origin — destination flow ofj, - is associated with each destination n&dehrough a seW* of origin

— destination (OD) pairs. hf\/=UsDSWS is the set of all the origin destination pairsgrtithe OD trip
matrix is the vector of OD flovg =[q,,Juw - The arcsall A are characterized by,g, the transit flow per
destination s . The network flow state is defined as a vector of arc destination flows,
Xas =[Xgs:aldA sOS].

A transit line /0L is composed of a group of directed transit ses/ic@ Z'. A transit service has
certain attributes;f,(xas), the frequency of the service, dependent on thevark flow state,k, the
vehicle total capacity anl; the seat capacity per vehicle, if a transit serviccomposed of homogenous
vehicles. The total capacity of a transit serviseflow-dependent, sinc&,(xas) =k, F,(xasg) and
K3 (xas) = k3 [F,(x ag) for total and seat capacity respectively. Theeefthne attributeg f,,x,,«;) of a
transit line ¢ depend on the transit services connecting eadlorstpair (i, j) . Considering a function,

1 if zOG, j)

YoaG,in = .~ , the line attributes at a station platfoirmare:
’ 0 otherwise

fif (Xas) = X F2(XasW g, i)
K (XAS) = 2y 51 K (XasT i, )

K{3(X pg) = Zﬂz,j>i KiZS(XAS)]{ZEl(i,J')}

The arcs on the service networlgJ Ag, are defined by an average traversal égstind a frequency
f4. Depending on the arc type, their average tralexst ¢, may include the average travel time in the
vehicle, as well as the cost of waiting, dependimdhe waiting conditions. The frequency of thesaix

given through the flow dependent revised frequelﬁgyx As) (see section 4.2).
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3. The line sub-model

The line sub-model deals with a single traffic diren on a line of operation. Its inputs consisttlod
passenger flows for the journeys between the a@ed®gress stations. It acts as an elaborateaue
cost function of the line legs by estimating thegmlized time between access and egress staticdhs o
line through a flow loading — ZIP — algorithm anteg costing — UNZIP — algorithm.

In the following section we provide a descriptidntloe capacity effects included in the line sub-eiod
the platform waiting sub-model, the in-vehicle comfsub-model and the frequency modulation sub-hode
That leads to the arc-travel cost function andsaessment of the efficiency of the algorithm.

3.1.The platform waiting time sub-model

Each vehicle that stops at a given station on argiine has a residual capacity once the passengers
wishing to alight have done so. There are stockpasfsengers on the platform: these are differewtiat
according to egress station, serving as the model’s principal endogenous teia

For each transit route , the total stock of waiting passengerg at a stationi is compared to the
residual capacityk, of each vehicle. This determines the probabilityirmmediate boardingsz,;. That
probability defines the flow that can be handledabljne during the reference period and gives théing

time by passenger. The vehicle flows between tieediations are defined ay‘-jz =15V -

The transit bottleneck model, developed by Leu(20i1b) is formulated as a fixed point problem. The
existence and uniqueness of a solution was denadedtrlt is solved with a Newton-Raphson algorithm.

3.2.The in-vehicle comfort sub-model

Each transit user considers two distinct categafds-vehicle comfort; sitting — with a unit cost- and

standing — with a cost -, while (_:sE. The rider seeks to minimize travel cost, by tgyto sit, since it is a

less inconvenient situation. The in-vehicle com8ub-model transposes the Seat Capacity Model clese|
in Leurent (2010) to the line approach of the Capiiédel.

We consider two behavioural rules to all passenderst, the standing riders have the same motinat
sit, whatever their egress station. The passenglethe same class (boarding or on-board) have equal
probability to sit. Secondly, the on-board passengé a station have a priority to occupy an abéélseat
over the boarding passengers. As a result, theeliicle perceived cost is a random variable relatethe

sitting probabilities at each station — subjecthi® in-vehicle flow vectory, =[yijZ 2zOnL G, )DOALI<]].
The average cost per service leg is calculateditfir@a recursive leg-based algorithm.

3.3.The frequency modulation sub-model

Each vehicle occupies an operation block for aagetime plus the safety headways. The time seleasi
limits the route frequencies on the line. The caist is greatest at the stations, where vehidies. STheir
occupancy time depends on the dwell time and tlegadional time. If the doors stay open for as lasgt
takes for all the passengers wishing to do so &rdor alight, the dwell time will depend on thduroe of
boarding and alighting passengers.

The frequency modulation model, given in Leureralg2011) computes the station platform occupation

time H', related to the dwell time per vehicle and theviserfrequency of upstream arrivaISZ+ . If that
time is longer than the reference periddl, the service frequency is reduced, by a modulatamtor,
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n=min{}; H/H"} . That factor is applied to the frequency of ainisit routes using the station infrastructure,
whether it stops or not. The modulated frequendigsare propagated downstream along each transit.route

3.4.The arc travel-cost function

The arc travel cost is calculated according tolithe leg flows and depends on the network flowestat
X g according to the cost-flow functioxag — ca(Xas) =[Ca(Xas) 1@l Al

That cost reflects the impact of various capadigats, both at a node and on a transit line, atitie leg
arc. The former is induced by the local arc floxy = ZsDS Xas » Dy restricting the function,

Ca(Xas) =Ca(Xg) - The latter concerns the line legs[d A , by restricting to the flow of the legs,
X, =[Xg :aldA ]. Thus, c;(Xas) =Ca(Xy) -

The cost flow function on the CapTA model consitexecuting for each transit line two algorithms i
sequence. First, the ZIP — flow loading — algoritbtarts at the origin and moves forward, dealinip wivery
station in the topological order of the line. Atchastation it assembles the vehicle flows and appihe
capacity constraints. The bottleneck sub-modebygi¢he probability to board, = P(x,) and consequently

the vector of in-vehicle flowy, =[yijZ :z07, (i, ))OAL, i <j] for the services of the transit line. The

function can be made continuous by enforcing orhaaaite, for each station a strictly positive thgbu
arbitrarily small minimal residual capacity. Thevahicle comfort calculates the probabilities gfessenger

to occupy a seat at the station, differentiatir&goh-boardp(z’ = Po(yz) , and the boardingpy =P*(y,),

passengers, according to the in-vehicle flow vegtpr The continuous approximation also applies for the

in-vehicle comfort function. Finally, the frequenoydulation adjusts the frequency downstream adaegrd
to the in-vehicle flows | =f([y,],0/)-

Then, the UNZIP — leg costing — algorithm moves Koards, treating each station at a reverse
topological order. Initially, it evaluates the iehicle comfort by leg recursively as described @ulent

(2010), yielding a continuous approximati@fg(yz) . Combining the other effects, the cost of the leg

a=(,j]) aong a line ¢ , wil be then characterized by the function
Ca =C{\j ([P (X, )0 [F (X 30 [GFF (v D ) OF:
Clig :[al'i'Z:z[Ki’j)Gijz‘9 fz'in‘zgi]/Zﬂ(i’j) fZ’iﬂgi if qi-j'- 20 1)

Sinceal A is aline leg arc, it is noted thaf =cZ (X »g)-
The evaluation of the arc cost through the ZIP &fdZIP algorithms is efficient with minimal
complexity. If a line consists 0§, stations andZ, transit services, the complexity of the ZIP alguori is

O(S, xZ,) and of the UNZIP aIgorithn@(Séz). The complexity of the line sub-model is not geeahan
o(S,?).

4. The passenger route choice at the network level
4.1.The attributes of the arcs and the hyperpath desori

The arcs of the service networ®,= (N, Ag) , have an average traversal cogtwith an arc split defined

by an flow dependent revised frequenﬁy(xAS) (see section 4.2). The average arc traversalotdbe set
of line legsal A includes the weighted average in-vehicle journegt@nd the cost of traversing a
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passenger stock for a saturated flow. Additionaiting due to the discontinuity of the transit sees is
considered among the platform access arcsA, .

The route choice to a destination is described bymerpath. A hyperpath = (7, ﬁ) with a destination

node S is defined through a pair, the arc g#etand the routing fieldh. The routing field is a mapping of the
set Ag onto [01], where for an ar@ of the hyperpath it will stanﬁa > 0. The routing proportions of the

outgoing arcsaDArT1 at a nodem are ﬁa =1 for the arcsall Ag\ A, . The routing proportions of the
platform access arcal] A, depend on the revised frequency of the line leggesl at the platform.
The travel cost from a node to a destinatiors along a hyperpath O H g, for a network flow state

Xas, IS the average travel cost along its paths.w%(xAS) = a'm/ZaDA;{1 Yo fa(XAS) the waiting delay

at a nodem for outgoing platform arcsal A, , or W,'; =0 otherwise. If R(h) is the set of the

p L
elementary paths alongh from n to s, ﬁr = ﬂaDr ﬁa the path flow proportion and, (X,g) the travel

cost of an ara related to network flow statg,, it will stand:

Cas(hXa) =3 oy Pt Y Wh(XAS) * 2y CalXas)] 2)

The waiting factora,,, depends on the arrival distribution of the veldcd@d the passengers at nade

4.2.A bi-layer route choice and the bundle attractivene

The passenger route choice presented previoushespmnds to a bi-layer route choice. At the lower
layer, a passenger at a platform will choose the leg with the shortest path. The arc travel cqfst, is

composed of a waiting time — related to the disowntty of the service and the presence of a sadriow
— and the weighted average of the perceived ineleliavel time of the transit services composimg line

leg. Therefore, if we consideerjS the perceived travel cost from nodeto the destinatiors, the cost from

nodei to the destination, will beg;s) = cif +Ujs. At the platform level, if the demand exceeds cépathe

passengers wait in a stock that does not dissigftee the departure of a vehicle. The presence, nbn
dissipating stock absorbs the discontinuous charigtit of the transit services. A transition phasests
between the two traffic states.

At the upper level of the path choice, a passefamgs a choice among alternative lines to reach the
destinations. A line combination may occur in order to minimitte travel time to the destination. Let us
provide the appropriate definitions.

Definition 1 - Discontinuity attenuator: If a’ is a line leg arc,a’0A , and a is the platform arc
leading to that, let us define the discontinuityeatiator asf, = @wy -1/ fy) whereg¢ is a continuous
function decreasing fronp(0) =1 to @(x) =0 for all valuesx=> ¢, a small argument. The discontinuity

attenuator corresponds to the transition betweedistontinuous uncongested service and a continuous
congested one.

For the line leg a transition phase is distinguisbetween uncongested and saturated flow states Ev
though it stems from the line leg, it is appliedhe platform access arc.

Definition 2 - Revised FrequencyA transition phase exists between the uncongeksedntinuous and
the congested continuous service and the line amatibin at the station level may occur in a revisesly.

Each arca is then associated to a revised frequerfgys fa/Ba for B, >0; otherwise an S0,
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According to that definition, an ar@= (i, j) , delivers a minimum time ont{j” =uy +W, —(a/fa)[Ba

and a mean time ai, +w,, or c{jz +a/ fa. In addition, the combined frequency of an atix@cbundle
and the routing proportions of a path depend oméhised frequency.

Definition 3 - Bundle Attractiveness: Assuming that the lines are not saturated, a lnis attractive in
respect to a bundI® if, denotingc{jz the minimum time of a line leg, it holds;’j” +Ujg < ci?s) +am/ fB

Where q?s) denotes the minimum time from nodeo the destinatiors by the bundleB .

5. The traffic equilibrium at the network level

After the necessary mathematical formulations ffier hetwork elements and the arc travel cost fungctio
we define the traffic equilibrium. We first estalfli the feasible flow states and their hyperpath
representation. Then, we define the traffic equilim in the form of a Nonlineal Complemementarity
Problem (NCP). The existence of an equilibriumestzn be demonstrated through a Variational Indgual
Problem (VIP).

5.1.Feasible flow states and hyperpath representation

Definition 4 — Feasible network flow state’A network flow stateX as =[Xaslaoa s0s is feasible if it is
non-negative and the conservation of flow by dastin sO S is satisfied at every node.

The second condition corresponds to the equa@gm:n Xas = Oms + zaDAr_nan' OsOS,mON,m#s
illustrating the conservation of flow by destinatisS for a node, other than the destination Ax,

defines the set of outgoing arcs of nade(respectivelyA,, , for the set of ingoing arcs) arg,s the origin
— destination flow from nodem # s to destinationsdS.
Let the hyperpath sdil 5 include the hyperpathis from n to s. We define the hyperpath flow state

X ns as alinear combination of elementary flows altrgghyperpathd with coefficientsqﬂsz

Xns =[als:sO0S,nON\{s}, hOH pg] @A)

Definition 5 — Feasible hyperpath flow state:Considering the origin — destination trip matrix
ans =[Anslnon, s1s » the hyperpath flow stat& 5 is feasible if it is non-negative and if the canagion of

flow by origin destination pain,sis satisfied:

qhs =0 OsO0S,nON\{s}, hOH g (4a)
ZhDHnSqES=an, OsOS,nON,n#s (4b)
The set of feasible hyperpath flow states is ndigd. An elementary path is composed of a series of
arcs fromn to the destinatiore . The proportion of the flow frorm to s of the hyperpathh at the
elementary pathr is noted ﬁr = |_|ajjr ﬁa . The network flow statexyg= A(Xysg) is linked to the
hyperpath flow state via the arc flow state:

_ h -
Xas = 2N 2otiTH e s 2R o(hy r Yoy ®)
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5.2.Definition and characterization of the traffic egarium

Definition 6 — Traffic Equilibrium: Given the OD trip matrix ns =[dns]non,s7s @nd the arc-cost

function, a hyperpath flow stat¥ g =[qﬂs:sD S,nON\{s}, hOH ] with xp5=A(Xng) is a traffic
equilibrium if there exists a cost matrixyg =[tns:SOS,NON\{s}] , such that for allsOS and
nON\{s} the following conditions apply:

qls>0, OhOH g (6a)
h _

ZhDHnSq”S =0ns (6b)

Crs(N, Xas) = s 2 0, DhOH g (6¢)

qus [ICas(, Xas) = Hns] =0, OhOH g (6d)

The previous set of conditions can be defined a®ralinear complementarity problem (NCP) in the
variable (X s, tns) - The associated cost function is:

(X ns: 1tns) - [Chs(h A(X ns)) = Hns - SOS,nON\{s}, hOH ]
The characterization of traffic equilibrium is demstrated through a Variational Inequality Problem
(VIP).
Assuming that the arc travel cost functioBg are continuous, we can prove that there exists an

equilibrium state for the capacitated transit assignt model. Nevertheless, it is not proven thatelis a
unique solution.

5.3.Computation scheme

The solution of the traffic equilibrium problem oftwork assignment is guaranteed by applying a
Method of Successive Averages (MSA), using a deimgasequence of positive numbérk, ) -go with
Ao =1. An equilibrium state is reached with the follogisteps:
* Initialization: setx, =0 andk =0
» Cost formation: execute the line sub-model by lvesed onx 5. The ZIP algorithm loads the leg flows

and enforces the capacity constraints (platforwifig, in-vehicle comfort and frequency modulation)
and the UNZIP algorithm estimates the costs ofitieelegs.

» Auxiliary state: search of the shortest hyperpathafl origin — destination pairs and assign the f@s
to the network elements, yielding an auxiliary flovy .

» Flow update: the previous and auxiliary state fl@anes combinedx’s = A ya + Q-4 ) Xa
» Convergence criterion: If the stat&s and x'5 are sufficiently close, break the loop with sautix’, .
Else, incremenk, setx 5 =x'5 and go to Cost formation.

k k-1| ;.k-1
Co(s) ~ Co(s) e’ 3)

The convergence is measured by the functiGAR, 3 = Zom <15 (dos o(9)

6. An application instance

A classroom instance is used to demonstrate tleetsfbf the model. That example lies in a simglifie
representation of the busiest railway line in ttei$ Metropolitan area, the RER A. At the mornireak
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hour more than 50 000 passengers per hour passgthrhe busiest segment of the line. The nominal
frequency of 30 trains/h is frequently decreasezbtdue to congestion at the central trunk stations

North West RER E o o ih Fast.
.
.
L Y
/RER A s
(®) () %
Auber Nation \‘
(o)
South West South East

Figure 2. Abstraction of the selected network, eagiting on line legs

The simplified network consists of two transit rsitonnecting the Northern (resp. Southern) brantthe
the central trunk, running from East to West. Amothine, the RER E, competes with the RER A between
the North East and Centre (Fig 2). Table 1 resuthescharacteristics of the transit routes. Theiserv
network contains 6 stations as origin and destinationes with 50 arcs and 35 nodes. We have preduce
truncated OD trip matrix to come as close as ptss$ihthe actual conditions at the central trunk, ib the
same time emphasize on the effects produces bgafbecity constraints.

Table 1. The characteristics of the transit routes

Route Frequency (t/h)  Seat Capacity (per veh.) IT@apacity (per veh.)
RER A north 18 432 1760
RER A south 12 600 1888
RER E 8 1100 2564

Table 2 contains the results after 500 iteraticmrstifiree model variables; first without any capacit
constraints, then taking account of waiting in fadeh and frequency modulation and thirdly with theee
capacity effects modeled. There is a significaotease in the Generalized Time between the thredemo
variables, especially as waiting and in-vehicletdesconcerned. Indeed we observe that by including
vehicle sitting conditions, the in-vehicle cost des, but in the same time the waiting cost isiced due
to a larger number of passengers preferring tleerative RER E line from North East to Auber.

Table 2. The Generalized Time (in minutes) for eadiel variable

Model Variable Optimal GT Waiting cost In-vehiclest  Transfer cost Access — Egress cost
Without Capacity 52,8 7.8 31 0 14
Without Comfort 67 22 31 0 14
With all capacity 82,8 19,7 48,5 0 14

constraints
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That origin destination pair demonstrates the behaf passenger when comfort is included. Without
capacity constraints only 27% of the OD flow chaot® RER E. Instead, when waiting constraints and i
vehicle comfort is considered, 86% of that OD flpkefer that route.

If we look at the disaggregated origin-destinatimsts between the non-capacitated and the capmtitat
model variables, the increase in the optimal gdizexh time varies from 16%, between North East and
Auber — where an alternative service exists — 8/ detween Auber and South West, due to the conditi
of accessing the vehicles and the absence of gemtailable.

Let us focus on the results of CapTA model on theration of the transit routes. The dwell time lfoth
services increases at Nation due to the boardinigatighting passenger flows, as it is shown indabl
Therefore a decrease in the vehicle frequency B0mo 26,35 vehicles/h is observed at the downstrea
station of Auber. That contributes to a seconddfgce of insufficient total capacity, causing a ko
formation and an important increase in waiting taméuber.

Table 3. Operation results of RER A under capamitystraints

Transit Route Dwell Time Dwell Time Frequency at Expected Waiting time

at Nation (s) at Auber (s) Auber at Auber (min)
RER A north 61,6 40 15,80 60,3
RER A south 48,9 40 10,55 59,9

Conclusion

This paper develops the CapTA model, introducedeiarent et al (2011). It addresses route choice at
network level, while including the effects of a widange of traffic phenomena: in-vehicle passelager
seat capacity, access — egress capacity, the qoatfack capacity on the vehicle side. The modébised on
a dual network representation of the service ardptissenger layers. A line sub-model is used tmatst
the generalized time between access and egregmsiathin a line, according to the usual flows each
network element. A mathematical formulation of tredfic equilibrium is provided at the network ldve

The CapTA model constitutes a framework for intrcidg capacity effects. In addition to the capacity
effects already modeled, it would be straightfoivir include corridor pedestrian capacity in aistattrack
capacity in vehicles. These features are expededdetuseful in transit planning applications. Oingo
work, is focused on congestion assessment of ttig Patropolitan network.
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Appendix A. Continuity of leg-cost flow relationshp

Theorem 1 — Continuity of leg cost-flow relationsip
Let the service leg cosl@aijZ of the transit servicez[1/ be functions of the leg trip matrix, with

X, 20as well as the expected waiting time for a line léghe travel cost functions and the waiting cost

I3
function are continuous with respectg , so it is the approximate average leg cost fumcmp”,j defined

previously, except at the points whéeg =0 and qi}' =0.
We develop 4 Lemmas for the demonstration of theofém.

Lemma 1 — Regularity of probability to board
The passenger stock for a transit servitg is a function of the exogenous flow, the modulé&teguency

1 1

and the available capacity), =n,(qj, f,;,ky), wheren, =0 for g; =0 and n, >0 for g >0. For

+ i + : k" . r + i + .
(ki ,0;) =0 let p(ky,q;)=min{————=——7 if kj; >0 and g >0, else p(ky,q;)=0 if
nz(qij ' fzi’kzi)

ky =0, else p(k}, ,qi}') =1 if kl; >0 and qi}' =0. Then the functionp is continuous with respect to
(k3 ,qi}r) , except at(0,0) . It is continuously differentiable except alofid,, = nz(qi}', fo K}

Proof. Once we have defined the function of the passestyek, the property is obvious fét, >0,
g; >0 and ky #n,(q;, f;,ky) since the probability function will yield eitherp=1 if
ki > nz(qi}', fli Ky), or p=kj, /nz(qi}', fri ky) if ki < nz(qi}', f,i,ky) which is differentiable on each
restricted domain. The two sub-domains of diffeiedility are separated by the lid€; =n,(qj, f,;,k}).

If k; >0 then the functionpis right continuous at] =0, sinceky; /n,(q;, f;.,ky) — « asq; - 0"
and p=1. On the other hand, ik, =0 and qij+ >0, then it holds for the functiorp(O,qu*) -0 as

g; — 0" and therefore the functiop is continuous at(00) .

11
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Lemma 2 — Regularity of modulation factor
The platform temporal occupancy is a function @& th-vehicle flow vectoy, and the transit service

frequenciesf, for all the services in the selig, Hi =H Yzl [fl10) . The platform temporal

occupancy function has a lower boundtof = Himin and it is strictly increasing. Let the modulatitattor
be 7, =min{; H/H'} . Therefore, it is continuous with respect(tp f) and continuously differentiable
except alondH =H'} .

Proof. The proof follows the guidelines of the previo@snima. The property is obvious fét # H',
since the function vyieldsy; =1 for H>H" or 7, =H/H' for H<H' , which is continuously

differentiable on their restricted domain. The Ilifél =H'} separates the two sub-domains of
differentiability. The same applies for the modathfrequency.

Lemma 3 — Continuity throughout line loading
Along a transit servicez[0/ of a transit line, at every station, the functionsky and y,; are

continuous and sub-differentiable with respecth® vectorx, . That also applies for the derived functions.

The probability of the stock to boawd,; is regular for the domain, exceptqﬁ =0.

Proof. We use an inductive process for the proof of tamina property. From the origin statior 1, we
have k; =k, for a service and/,; = 0. Let an Induction Assumption that the Lemma prgpéolds for a
stationi and a transit service . Let us consider the next statidnt 1. If k;; is the available capacity at the

departure from statiom, the number of passengers alightingi atl, y;iﬂ:z Z and the

j<i+, k:i+1yj
available capacitk’;,; =k — Yy, are regular. Furthermore, lreurent (2011b) it is demonstrated that

the passenger stock functian— n,; :Zﬂi 0 j>ivj is continuous. Therefore the probability of thecktto

T T .
board 77,; = min{1,—2} is continuous fom,; = 0.
zi

Lemma 4 — Continuity throughout line costing
If the perceived travel timGijz is continuous for each transit serviegl ¢ with respect tox, , then the

approximate arc cost functioqﬁg is also continuous for the line lgg, j) .

Proof. In Leurent (2010)the author demonstrated that for a transit senvieearc-cost functioﬂisijZ (xy)

is continuous. In addition, we determined in Lemrbasd 2 that the approximated probability for shack

to board a vehicle and the modulated frequencyesmly are continuous functions. Therefore the
approximate arc cost function is also continuougesicontinuity is maintained through the operatuirs
addition and multiplication. It is also maintaingadough division since according to Lemma 1 it Isofdr
the approximate function of the probability of teck to board thatz;, > 0 with respect tox,, .

Therefore the Lemmas 1, 2, 3 and 4 make Theoreaidltfue.

Appendix B. Bundle Optimality

Theorem 2 - Optimal Bundle
By optimal bundle we call the bundle that minimittes expected total travel time, including the voajt
time from a node to the destinatiore. Therefore, it is optimal when further combinatioiha line cannot
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improve the expected travel time. The minimum dgddcavel time of the lines within the attractiset is
inferior to the expected travel time.

Proof. To prove the theorem, we first demonstrate thatadle is optimal when it contains the lines
whose minimum travel time is inferior to the exmettravel time of the bundle. Conversely, we shbat t
by withdrawing a line from that attractive set, tlew bundle is not optimal.

If B is a bundle and for line holds cif +Ujg < ciE(gs) +a/ fB , then bundleB'= B +{/} is also optimal.

It suggests that if the minimum travel time of three from the node to the destination is inferiorthe
expected travel time of the bundle, then the Ispdrt of the attractive set. It is obvious thawé start from

that inequality, and forFB, fa #0, we get:
ey + a/ fg <cfy + al fg

By induction it is obvious that a line bundle ig optimal, unless it contains all the lines whodaimum
travel time is inferior to the bundle expected &laime.

Conversely, ifB is an optimal bundle and for line, it holds cﬁ +Ujs SCi?s) +a/ fB , then bundle
B'=B-{/} is not an optimal one.

We advance as previously, by showing that fgr, fa # 0, it holds:
cs) +a/ fg 2y +a/ g

Thus, we prove that the bundle is optimal if andyahit contains the lines where their minimum\eh
time to the destination is inferior to the expediedel time of the bundle.

A special case to be considered is that of the ested line, where the bundle is reduced to theesing
line. Since a congested line is considered to P continuous service, where the revised frequenc

fa - o, the arc resembles a private arc like the pedesaics. Therefore if a line is congested, it foams

bundle of a single line, whose expected travel toaanot be further reduced by combining with other
bundles.

Appendix C. Characterization of Traffic Equilibrium

Theorem 3 — Characterization of Traffic Equilibrium
Let us consider a hyperpath flow staXeyg :[qRS :sOS,nON\{s}, hOH 5] which is feasible for the

OD trip matrix qns =[nslnon, 515 - I Ans(Xns) =[Chs(h, A(Xns)) :sOS,nON\{s}, hOIH 6] , then
Xns corresponds to a traffic equilibrium if and onlf; for any other feasible hyperpath flow state
Yns =[€0s :sO0S,nON\{s}, hOH ], we have:
ANS(Xns) Y Ns —Xns) 20 (7)
Proof. Firstly, while considering thaK s is a traffic equilibrium state, we wish to provet expression

(7) stands. Therefore, for any feasible hyperpatbw f state, we have&ﬂS >0 , for any
sOS,nON\{s}, hOOH 5. According to the definition of the traffic equdtium, it holds for (8c):

ENTCES(N X as) — Hns] 2 0,00 H g
Therefore,{rﬂ‘S [Ci(h, X p5) = {rf]‘s s
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For all the hyperpathshOH,,, we have:} . {r?sm:rﬁ*;zzhm &N Uy . According to the
ns ns

feasible hyperpath flow state definition (6b) hOIGEhEIH . qﬂs = (s - And:

h &h h -
thHnSEns [Chs 2 zth nSC(ns Ciins = Ons Ltins (a)
The sum over all the hyperpaths from equation (§idEs respectively:
h - h -
ZhIZIH o dns [Crs(h, X as) = ZhIZIH s dns Ciins = Ons Dins
If we combine that expression with (a), we QEHDH C,ﬁg(h, Xas) EQEES —qﬁs) >0.
ns

By summing over all the nodes, 1N\ {s} , and the destinationg[1S, we build (7).

Secondly, while assuming that the expression himids( g, we prove that it is the hyperpath flow state
corresponding to the traffic equilibrium. We assume feasible hyperpath flow state,
YnNs :[Er?s :sOS,nON\{s}, hOH ] almost equal toX g, with only a difference on a node-destination
pair (n,s) . If the set of hyperpath$,, contains only one hyperpath, we can prove thaasguming
Uns = Cis(h,xag) and by replacing it in (7), the expressions (6o)l 46d) hold. The flow stateX g
corresponds to traffic equilibrium. If there aremathan one hyperpaths, we assume that for a pwosilive
numberd, while g, >0and &l > 0, there is{r?s = qQS -6 and Er?s = qﬂs -6 . Therefore, by applying to
(7), we have:

(Ch (' x as) = CRE(h.X as)) B 20

According to the inequality, any hyperpaiti] H , with a positive flowqﬂS in the flow stateX s has a

minimum cost onH ;. We further demonstrate that if we defipgs = minggy Cis(h,xag) , the (6¢) and
(6d) hold and the hyperpath flow state correspdaadstraffic equilibrium.

Appendix D. Existence of traffic equilibrium

Theorem 4 — Existence of traffic equilibrium
Assuming that the arc travel cost functidDg are continuous, there exists an equilibrium statethe

user and service equilibrium model.
Proof. The continuity of the travel cost functions gudems that, according to the Theorems 1 and 3, the

cost functionsx ag > Cis(n, X ag) are continuous with respect to the network floatest In addition, we
have defined that there is a continuous functi@meresponding to the combination of the hyperpktivs —
such that xas=A(Xns) - Therefore, the composed functionsX g Cis(h, A(Xys)) and
Xns P ans(Xns) - are continuous. Since the set of feasible hypkrflaw states is convex and compact,

there is at least one solution for the variationaljuality, (7). Nevertheless, it is not proventttieere is a
unique solution.



