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An approach to the modelling of viscoelastic-damage. Application
to the long-term creep of gypsum rock materials
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Universié Paris-Est, Laboratoire Navier (ENPC/IFSTTAR/CNRS), EcekeRbnts ParisTech, 6 et 8 avenue Blaise
Pascal, 77455 Marne-la-Vak, France

SUMMARY

A three-dimensional phenomenological model is developedescribe the long-term creep of gypsum
rock materials. The approach is based on the framework dfrearm damage mechanics where coupling
with viscoelasticity is adopted. Specifically, a local dgmanodel based on the concept of yield surface is
proposed and deeply investigated. And among the many plitgssh we choose in this work its coupling
with a generalized Kelvin-Voigt rheological model to fortate the whole behaviour. Long-term as well as
short-term relaxation processes can be integrated in tlkelhby means of as many as necessary viscoelastic
processes. The numerical discretization is describedferaay integration within a finite element procedure.
Finally, a set of numerical simulations is given to show tlesgibilities of the presented model. It shows
good agreement with some experimental results found initd&ture. Copyrightc 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper, the attention is focused on the long-term behaviour of gypeak materials. In
fact, creep in natural gypsum rocks is one of the major phenomena atitfie @f degradations
in underground mines. It is then of interest to construct life-time predidibgds within a
phenomenological modelling framework.

Typically, the uniaxial creep response of natural gypsum rock uwcdenpressive loads is
characterized by three phases as shown in Figui@ter [1]). A first transitory phase of creep
is followed by a secondary (almost) steady state phase. The durationsef phases is strongly
dependent on the load level. And for loads beyond a certain value, aytentéeep phase appears
which quickly leads to failure. Below that loading value, no tertiary phapeas and the material
apparently provides an endurance domiaga domain in the stress space such that the strains reach
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2 B. NEDJAR AND R. LE ROY

asymptotic values under creep tests. However, the limiting duration of labpestperimental tests
does not always permit to state the existence of such a domain.
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Figure 1. Typical uniaxial creep curves for a saturated lsaagd gypsum rock (afterl]). Each curve
corresponds to a load level with respect to the pic I&adn compression.

There exists different approaches in the literature to model the natupaugy rock material
such as inJ]. In this latter, the approach is based on a viscoplastic model coupled tiowam
damage. In fact, viscoplasticity has been intensively used to model rihckatarials that appear to
be geologically similar to gypsum rock, see for examgled] for the modelling of rock salt.

On the other hand, creep in civil engineering materials has been widatyiloles by means of
viscoelasticity, see for examplé&][ Moreover, there exist models where viscoelasticity has been
coupled to damage for a variety of materials, see for exantl&][ In particular, viscoelastic-
damage has been coupled to calcium leachingjrtd model the long-term creep of a leached
concrete.

In this paper, we choose to describe the typical behavior describeck diyo means of a
viscoelastic-damage constitutive model where the framework of the contidamage mechanics
is used to model the material degradation. The viscoelastic-damage law ddopte is
characterized by means of an internal variable model and it constitutegnipkest form where
damage is coupled to elasticity. We write

oc=(1-D)C:(e—¢&") 1)

whereo ande are the second order stress and strain tensors, respec@éythe fourth-order
Hooke's elasticity tensor, the scal@ris the internal damage variable with valueshen the material

is undamaged and valuewhen the material is completely damaged. And where the strain-like
internal variables" is the viscous part of the strain tensor. Isotropy is assumed throughisut th
paper. In (1) and in all what follows, the double dot symbaénotes the double tensor contraction.
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LONG-TERM CREEP OF GYPSUM ROCK 3

As for the damage variablp, the internal variable" is not accessible to direct observation and,
moreover, it can in turn be the sum of as many as necessary internabatiotrse?, i.e.

i

&= e @

where thei=1,...¢ hidden tensor variableg} characterize viscoelastic processes with
corresponding relaxation times e (0,00), ¢ = 1, ... ¢. Of course, a viscoelastic description based
solely via external variables is also possible. The way all these intemables evolve is motivated
by the one-dimensional rheological model of Section 2.

The rest of the paper is organized as follows. In Section 3, the one-diomathrheological model
of Section 2 is extended to the three-dimensional case. A model examplerisagid its numerical
integration within the finite element method is detailed in Section 4. Then a setrekespative
numerical examples are given and discussed in Section 5. And Finallglus@mns are drawn in
Section 6.

2. MOTIVATION. ONE-DIMENSIONAL RHEOLOGICAL MODEL

In order to describe the way the viscoelastic and damage processes, évslnecessary to specify
complementary equations that govern the evolution of the internal variahles=1,...¢ andD.
This is motivated in this section through a one-dimensional study.

2.1. An effective characterization of viscoelasticity

The rheological model of Figuradisplays both relaxation and creep behavior. It consists of a free
spring on one end and an arbitrary numbeif Kelvin elements arranged in series. The stiffnesses
of the free spring and thiespring elements arg > 0 andE; > 0,4 = 1,.. ./, respectively. And the
viscosity of thei-dashpot elements are specified by the material consfani®), i = 1,...¢. For

the sake of simplicity, we suppose in this model that all these elastic and vistoetduli result
from the same damage coupling. That is

E=(1-D)E, E;=(1-D)E;, i3,=0Q0-D)n, i=1,...4, ()

whereFE and(E;,n;),i = 1,...¢, are the corresponding undamaged moduli.

Now the governing equations for the generalized Kelvin-Voigt model degim Figure2 are
derived by elementary considerations. bebe the stress applied to the whole model arige the
external variable which measures the total strain. The stress ori-spdng isE; ¥, and the stress
on each correspondingdashpot is given by the linear relatigns}, where the upper dc(t') is the
time derivative. Hence, on the one hand, the resultant stress iri-&athin element (ari-spring in
parallel with ani-dashpot) is the sum; ¢f + 7; €Y. And on the other hand, since the strain on the
free spring is — ¢V, wheres¥ = Zi:l,z eY, the stress on this spring is given By(c — ).

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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4 B. NEDJAR AND R. LE ROY

£y E,

Figure 2. One-dimensional rheological model.

The free spring and all theKelvin elements being connected in series, then by equilibrium the
stress is found to be given by any of the followihgquations

oc=E(—¢")=FE;el +Mmi &, i=1,...0 4)

where no sum on the indicéss assumed.

Denoting byr; = #;/E; = n;/E; > 0,i = 1,...¢ the relaxation times, and by, > 0i =1,...¢
the stiffness factors such thdt; = £ /w;, or equivalentlyE; = E/w; by (3), (4), implies the
important/ evolution equations

1+w; wj ‘ wj
v Py 42 Y gy = =1, 5
ey + p— + — €] - €, i=1, 5)

) Y. T
Jj=1,j#i

2 7

for the strain-like internal variables’, i = 1,...¢. Now in order to describe the way the damage
process evolves, it is necessary to specify more complementary equatbdgevern this time the
evolution of the damage internal varialdle This is discussed in the following.

2.2. A strain-based characterization of damage

It is physically essential to take into account both the instantaneous anel#yed deformations in
the definition of quantities that drive the damage evolution to, among othagjloethe variability
of the secondary plateau-like creep phase duration. To this end, tbialddea underlining the
continuum damage model presented in this work is the hypothesis that damihgenmaterial is
in fact directly linked to the history of thiotal strains. Attention is still focused here on the one-
dimensional case, but later on, these ideas will be extended to the threesdinmad formulation.

To characterize the progressive degradation of the mechanicalrpespeithin the continuum
damage mechanics’ framework, we choose a damage criterion formulateaimspace as

g(D;e) = (1-D)"S5() =W <0 (6)

whereW is the initial damage threshold aiftle) is the driving source of damage which depends
solely on the total strain. W andS are expressed here in terms of volumetric energies /m?].

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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LONG-TERM CREEP OF GYPSUM ROCK 5

And theup to now constandimensionless exponent parameter- 0 controls the hardening or the
softening material response as will be discussed below.
We next define the evolution of the damage variablby the rate equation

D=5§ (7)

where) is the damage consistency parameter that defines the standard damagy oémhding
conditions
0>0, 9(D; e) <0, dg(D;e)=0. (8)

This model is no more than the local version of the gradient damage modehpee in 9, 10]. If
g(D; €) < 0, the damage criterion is not satisfied and condi(i®® givess = 0, hence the damage
rule (7) implies thatD = 0 and no further damage takes place. If, on the other hand); that
is further damage is taking plac&)s; now impliesg(D; ) = 0. In this event the value of is
determined by the damage consistency condigidn; ) = 0 which, in our case, gives

1-D .

§=D = 50 S(e). 9)

This latter has a form that matches the general framework proposéd]irNow to gain further
insight into the nature of the present damage model, let us express inmatthéone-dimensional
elastic-damage version of (1:= (1 — D) Ee, when onlyinstantaneouslamage takes place and
in the absence of any viscous strains, with ¢V = ¢V = 0. And, moreover, let the driving source
of damage be given for simplicity by the effective strain eneigjfe) = 1/2 E<? which implies
S(e) = Eeé, both these latter quantities to be replaced in the expression (9). One dhtains

6 =(1—-D)Eé—DFe = (1-D) {1;}&'. (10)

It is a well known theoretical result that the tangent modulus is positiva fardening material
response, and is negative in the case of softening. Thef1,-ad) > 0, the sign of the tangent
modulus deduced from the rate form (10) depends solely on the value exflonent parameter.
We then conclude that, in the present form, the elastic-damage model exhitgthgrdening for
m > 2, or pure softening fom < 2.

However, for geomaterials in general and for rock-like materials in pdaticthe behavior in
compression is characterized by a hardening response when damadesinitiéil a pic load is
reached, and then is followed by a material softening until complete dagradbelence, to take
into account those facts, the exponent material parametgnould not be kept constant but must
be variable. In this work, we choose to make it damage-dependent thtibeidollowing form

m(D) =my (1 — D)™ + mg, (11)

with m; > 0, mo > 0 andms > 0 being from now new material parameters. That is, when damage
initiates (D ~ 0), one hasm ~ m; +ms3, and m tends toms when D approaches complete
degradationi.e. when D — 1. Hence, for instance, choosing the parameteysandms such that

my + msz > 2 with mz < 2 permits to cover both the hardening and softening stages of the material

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
Prepared usinghagauth.cls DOI: 10.1002/nag



6 B. NEDJAR AND R. LE ROY

response. The convenient parameter controls the rate at which the transition from hardening
to softening is achieved. Also, notice that f@q, = 0, the original model with constant exponent
parameter:o = mg) is reached.

3. THREE-DIMENSIONAL EVOLUTION EQUATIONS

For the viscoelastic part of the material behavior, we motivate the evolutigatiegs for the three-
dimensional deformation by reference to the relationship (5). An obviboge of appropriate
evolution equations for the internal tensor variatalgss given by

14
14w, i i .
€ 4 —UINier 4+ Y Niel = YiNie, =1, (12)
T Ti . ‘. Ti
Jj=1,j#i
wherer;, i = 1,.../¢ are the relaxation times and the dimensionless factgrs =1,.../¢ are
material parameters. And whelkkis the fourth-order tensor which depends solely on the Poisson’s

rationv. In Voigt engineering notation, this tensor is given by

1—-v v v
v 1—v v
~ 1 v v 1—v
Ne — 13
(1+v)(1-2v) 1-2v (13)
1-—2v
1—2v

where, and in all what follows, the tilde notation ) refers to matrix and vector representations of
fourth- and second-order tensor quantities in Voigt notation, resedgctiv

Notice that, except for the case of a simple Kelvin-Voigt model witk 1, the ¢ evolution
equations (12) are all coupled since each single internal varigbd@pears in all thé equations.
Notice also that if the/ factorsw; are set to zero, then no viscous evolution takes place and the
material response becomes elastic coupled to instantaneous damage.

And for the damage part of the material behaviour, the damage flow is lgjvan identical form
as given for the unidimensional case, see (6)-(8). That is

g(D;e) = (1—D)"P) S(e) =W
D=5 (14)
0>0, g(D;e)<0, dg9(D;e)=0

together with the consistency condition(D; ), and where the exponent(D) is now given by
the function (11).

Last but not least, as it is observed that damage within many rock-like matesianostly
produced by extensions, we choose the driving source of dasiage¢o depend on positive strain

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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LONG-TERM CREEP OF GYPSUM ROCK 7
quantities through the following volumetric energy form
1 T 1 12
S(e) = 5(16 cet + 5(2 ((trle))™)", (15)

where the modul{; and¢, are material parameters| tf designates the trace operator of second-
order tensors,. )™ is the positive part scalar function &9 = 1{z + |z|}, and where the positive
parte™ of thetotal strain tensoe is obtained after diagonalisation. In fact, as this latter is symmetric,
its spectral decomposition is given as

3
€= Z ean @n, (16)
A=1

where{e 4} a=12,3 are the principal strains Wit{m(A)}A:LM being their corresponding principal
directions. In (16), the symbab designates the tensor product. Heateis then expressed as

3
et =5 (ea)" n® @ n™), (17)
A=1

and the source of damage function in (15) is then equivalently written as

5(€) = 5 G {Ue) )+ (@) + ()} + 3G (e tate))’.  (8)

Notice that this source of damage is general enough in the model at haadddcomposed
into pure directional extensions’ contribution in the first term, and a puhenwvetric dilatency
contribution in the second term. For simple compression tests, only the firswtdroontribute
to damage evolution through the Poisson’s ratio effect. However, theechwacle forS(e) is not
unique and alternative expressions can be used instead of (18)skorda, one can choose to make
it depend solely on the deviatoric part of the total strain tensor if the matemabis sensitive to
shearing.

In summary: the phenomenological viscoelastic-damage model we use fdesiaption of
creep in natural gypsum rock is given by the constitutive equationg2j1)}the ¢ viscoelastic
evolution equations (12)-(13), and the damage flow equations (14) tageith the definitions
(11) and (18).

4. NUMERICAL INTEGRATION FOR THE LOCAL EVOLUTION EQUATIONS

In this section, we consider an algorithmic approximation consistent with theé éwcdution
equations developed above. In a finite element context, this is accomplistibd etegration
points level through a strain-driven type of numerical procedure siden a typical time interval
[tn,tn11], @n arbitrary material point and assume that the variable§,, i =1...¢ andD,, are
known prescribed initial data an at timet,,. The objective is then to approximate thequations
(12) and equations (14) to advance the solution to timg and update the variables &§,, , ;,
i=1...¢andD,, for afixed increment of deformation.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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8 B. NEDJAR AND R. LE ROY

The key idea in the design of the integration algorithm is to exploit the fact tedtiscoelastic
evolution equations (12) are independent on the damage internal vaabtee one hand, and
that the damage flow in (14) is independent on the viscous strain-like ihteariables, on the
other hand. This idea is then carried out simply by the combination of an algoaittapted to the
viscoelastic evolution and an algorithm adapted to the damage flow.

4.1. Implicit time integration of the viscoelastic part

Among other possibilities, we choose here the implicit backward-Euler scteeapproximate the
evolution equations (12). This gives a linear system cdupled equations

wiAtN:ey, 1 +...4+ (RI1+ (1 +w)AtN):ey,

(19)
+...+ wAtN: €Zn+1 = w;AtN: Ent1 + TiEY,

i=1,...¢, wheree, . is theknowntotal incremented strain tensor at time.;, At = t,11 —

t, stands for the time increment, and whdrés the fourth-order symmetric unit tensor with
componentsl;;x = (0ix0;; + 0:10,%)/2 With ¢;; being the Kronecker delta. For computational
purposes, thé equations (19) can be equivalently written in Voigt notation as

€lnt1 wiAtNe, 11 + 71 €7,
H éynJrl = wiAtNE, 11 + 75 348 (20)
é}.]n-i-l weAtNE, 11 + 74 é}’n

with H being the matrix of the system given by

T1ﬁ+(1+wl)AtN wlAtN wlAtN
H-= wiAtN coo w4+ (14+w)ALN - wiAtN . (2D
weAtN weAtN oo Tl (14w AN |

Notice that this latter matrix is constant and is the same for each integration pthirthes same
material properties. Moreovdr] need to be computed, inverted and stored only once whenever the
time incrementAt is kept constant during the incremental process.

4.2. Numerical integration for the damage flow

Within the same time intervallt,,t,1], the nowadays well known concept of “trial
predictor/damage corrector” algorithm is applied to approximate the damagdien given by
the set of equations (14).

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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LONG-TERM CREEP OF GYPSUM ROCK 9

Within the trial prediction step, the damage flow is frozen and the critéiion is evaluated for
D =D, ande =¢,;. Thatis

g1t1r+1 = g(Dn7 €n+1) = (1 - Dn)’m(Dn) Sn+1 - W. (22)

whereS,, 11 = S(e,+1) IS @ known quantity obtained by mere function evaluation of the source
of damage function (18) &t,.1. S,.+1 is considered fixed at this level. Hence, two situations can
occur:

o if gi*., <0, then the trial state is admissible and weBgt., = D,,.
e else ifg;’ | > 0, then a damage flow process is taking place and a damage correction has to
be performed.

For the damage model at hand, the damage correction procedure is siapipmished by
solving gn+1 = g(Dnt1; €nt1) = 0 for D,,1. Moreover, using the natural logarithm leads to an
equivalent equation

m(Dpi1) In(1 — Dpyy) = m{ W ]

23
S (23)
This nonlinear equation can be solved locally by means of a Newton iteratbe=gure as

summarized in Tablé

4.3. Algorithmic tangent moduli

The initial boundary value problem of gypsum creep is nonlinear. Theceoof nonlinearity is a
material one which arises from the constitutive relation. Hence, this praklepived by means of
an iterative process of the Newton’s type. Accordingly, this requireéiribarization of the global
equilibrium problem about a known state at timg This procedure is nowadays standard. We
give here the contribution to the algorithmic tangent stiffness where it is afesitéo determine
the relation between the rate of stress and the ratetaf strain via the algorithmic change of the
internal variableg}, i = 1,...¢andD.

We start from the rate form of the constitutive relation (1) by taking into astthe additive
decomposition (2). One obtains

6=(1-D)EN:(é—-¢é)—...—¢€}) — Doy (24)

whereo, = C : (e — ") denotes the effective stress tensor and where use has been madeoin (24
the fact that the isotropic Hooke’s elasticity tensor can be writte@ as £ N where the Poisson’s
ratio’s dependent fourth-order tensirhas been defined in (13), and where the scalar material
parametet? is the elastic Young's modulus.

On the one hand, from the discrete form (20), we deduce the algorithteiofahange of the
internal variableg}, i = 1,...¢, in terms of the rate of change of the total straiin matrix form,
this is given by

é‘ll w1 At N
c y=H" : é. (25)
éZ wp At N
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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10 B. NEDJAR AND R. LE ROY

Table I. Local damage update.

If g;7, > 0 then perform the following correction procedure
1. Initialize: k = 0, D), = D,
2. Evaluate residual and check convergence

1% X
A =[] it - D2
sz+1

with miﬂl =my (1 - ngl)mz +ms3

IF|r{*),| > TOL THEN go to Stef8
ELSE set D, = D), andEXIT.

3. Compute the damage increment

(k)
mn
seta), =m/) m(1 - D)) — 7%)
1- D71,+1
with m/] = —myma (1 — D) )m=1
k
AD® . _ 7’7(1+)1
n+1l = O((]:)_l
4. Update /

k+1 k k
D& = D, +ADY,
Setk <— k + 1 and return to Stef.

And, on the other hand, the rate form of the damage consistency equz8jagivies the following
rate of change of the damage variablen terms of the rate of change of the total strain

1 0S(e) .
a(D)S(e) oe ' °© (26)

with the notation (see also Tablestep3) a(D) = m/(D)In(1 — D) — m(D)/(1 — D).
Then, in Voigt notation, the algorithmic tangent moduli are given in matrix fosm a

wlAtN ~

~ algo ~ ~ ~ _ 1 - W
C, =(1-DE|N- |N---N| H' : * D) 5@ 0'0®8€] (27)
{ times WKAtN

. ~algo .
such thatr = C;goé.

Now it only remains to precise the expression of the symmetric secondersaroS/de. As
the source of damage function given by (18) is of the f&fm: S(e1,e2,¢3), by the chain rule

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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LONG-TERM CREEP OF GYPSUM ROCK 11

together with the spectral decomposition (16), one obtains

dS 298
Loy n @ n), (28)
Oe o 86,4

where the important spectral property

924 _ M gn@  A_123 (29)

has been used. And finally, with the other useful property relative todhiiye part function that

9 (z)*
ox

(@) = (2)" (30)

for any scalar, we end up with the following expression

oS

= Cl <EA>+ + CQ <51 + &2 +53>+7 A= 17273' (31)
Jea

5. REPRESENTATIVE NUMERICAL EXAMPLES

As an illustration of the modelling framework developed in this paper, we giviigsection
numerical examples of gypsum creep simulated within the context of the finiteertenethod.

To identify the parameters of the viscoelastic-damage model at hand frarataly tests we
proceed in two steps. In the first step, we capture the short-term belodtiee material when no
creep takes place. Roughly speaking, in this case, only the elastic-dén@agering is activated in
the rheological model of Figurg while thel Kelvin elements are kept frozen. In fact, we admit that
the characteristic relaxation times are large enough compared to the durfatimmotonic tests.
This permits to identify the elastic and the damage parts of the material parantiete¥saiung's
modulusE, the Poisson’s ratie, the initial damage threshold’, the parameters of the exponent
functionm;y, mo andmg, and the source of damage paramege@nd(,. For instance, curve fitting
can be used from experimental test results in compression. And, in thedssiep, creep tests have
to be performed at different levels of loading to capture the complementaigrialgparameters
relative to the viscous behavior. Curve fitting can also be used to captareranore characteristic
times ¢ > 1) together with the corresponding parametérsiw;),i =1...¢.

After [1], the strength in compression of saccharoid gypsum in saturated congities between
13.7 and23.5 M Pa, while the Young’s modulus is found to vary betwe@00 and9100 M Pa. This
natural gypsum rock is of macrocrystalline type with mean crystal dimensanygg betweer.1
and1 mm. Now, and in the absence of experimental results under monotonic tegigsivdate a
ductile response in compression. The short-term behavior we use inlitheifg computations is
given by the simulated curve illustrated in Figie

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
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12 B. NEDJAR AND R. LE ROY

Stress (M Pa)

ot

Strain

Figure 3. Short-time behavior. Stress-strain curve in gnapmpression.

The material parameters used to obtain this stress-strain relation in compragsio

E =9000 MPa, v=0.27,

32
W =0.7510"*MPa, m; =4, my=0.8 m3=18 ( =2250MPa. (32)

And the resulting strength in compressioiis= 15.12 M Pa. Two important observations must
be pointed out:

e To obtain the result of Figurg, the partial set of parameters (32) has been chosen such that
the strain at the pic-load. coincides more or less with the total strain that initiates the tertiary
creep in Figurel. Here we have, = 4.71072.

o If, for example, the compressive load direction coincides with the glgbakis, the principal
straine; is then negative while the other two principal strains are equal and padité/eo the
Poisson’s ratio effect

€1 <0, and e, = €3 =—-vep > 0. (33)

Then, in view of the expression of the driving source of damage fundii@) in (18),
the volumetric straine; + 2 + e3) is negative in this case and the material response is
independent on the material parameter

5.1. Long-term creep tests

In this example, a series of creep tests are computed using the prededtrit@neouselastic-
damage behavior with different levels of the load in compression. Besidiée anaterial paramaters
(32), we choose to activate three viscoelastic mechanisms with the followindesoof parameters

(7'1 =20 h, w1 = 09) (Tg =100 h, Wy = 05) (T3 = 1000 h, w3z = 02) (34)

The Figure4 gives a set of simulated axial strain curves versus time upl460 4 (about600
days) for the lowest load. On the one hand, we obtain the typical S-dlapees hilighting the
three stages corresponding to the primary transient creep, the secpsdado-linear creep, and
the fast tertiary creep before failure. And on the other hand, onelwackahat the tertiary creep
initiates at strains of the order of the pic-strajn
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Figure 4. Axial strain curves versus time for simulated preests under different levels of loading (solid
lines). Superposition with experimental results of Figlfer 0.37,0.4,0.41 and0.44 R. (dashed lines).

Having in mind that there are almost always dispersions in laboratory ddeasit due to
dispersion of rock properties, there is qualitatively and, to a lesser texjeantitatively good
accordance with the experimental results of FigurEinally, and as an illustration, Figuteshows
the correspondingiddendamage evolutions predicted by the viscoelastic-damage model.

Load 0.44 R,

Load 0.41 R,
Load 0.4 R,
Load 0.37 R,

Load 0.5 RR,.

0.8 b
Load .33 RC

0.6

Damage variable D

0.4

0 2000 4000 6000 8000 10000 12000 14000
Time (h)

Figure 5. Corresponding damage evolutions during the desstp under different levels of loading.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. GeomegR011)
Prepared usinghagauth.cls DOI: 10.1002/nag



14 B. NEDJAR AND R. LE ROY

5.2. Multi-step creep tests

To gain further insight into the present model, we simulate in this section vamolisstep creep
tests. The material data used are those of the precedent example gi{a2) bpd (34).

Figure 6 shows the strain curves versus time for different loading histories. &firali, notice
from Figure4 that the complete failure for a constant compressive creep load of value. is
reached at timeé = 3725 h. We next observe that a reduction of this stress to a valwe3diR,. at
various terms produce marked differences in the material responset/thie material degradation
is almost stabilized for the test duration when the load is dropped at early, tetiie beyond a
threshold term where a certain limit deformation has been reached, thisddadtion does not
preclude failure, but delays it of some thousands or decades of.hours

Hence, with the present model, the gypsum rock would consequentlydiféent responses
depending on the loading conditions applied in its natural underground mémvigonment and
with regards to the influence of the recovery duration representing thgedktime between the in
situ sampling and the laboratory tests.

e
=
o
0.008} g ,
5
< 5 t1 = 3600 A
£ 0.006+ t1 = 3500 h 1
17} L/—’//
8
prd t; = 3000 h
0.004] ,
Load
0.4 R,

0.002 0.33 R, —\7 7

time

0 | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000
Time (h)

Figure 6. Multi-step creep tests. Loading histories anclasirain evolutions for different terms &t =
3000, 3500, 3600 and3650 k. The strength in compressionfs. = 15.12 M Pa.

Moreover, for perfectly identical loading histories but reversed, théeriz response differs
significantly. In other words, the response is greatly influenced by tiher af application of the
loads for the same loading durations. This property is illustrated in the exaffrifilguoe 7 where the
following two loading histories have been applied: The first one with a cossfe of valué.4 R,
up to timet; = 2800 h followed by a drop to the load of value3 R, until timet, = 5600 h = 21;.

And the second one with a compression of vadlueR,. up to timet = ¢; followed by a jump to the
load of valued.4 R, until timet = ¢,. One can observe that the two strains at the end of the tests are
very different. The latter is reaching failure while the former is almost stahblilize
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Figure 7. Multi-step creep tests with reversed loadingohies att; = 2800 k. Axial strain evolutions for
the two loading histories. The strength in compressiaR.is= 15.12 M Pa.

6. CONCLUSIONS

The main thrust of this paper has been the presentation of a model in ogteride a tool for the
prediction of the long-term creep in gypsum rock materials. The modelajeee is based on the
nowadays well known continuum damage mechanics framework.

The material response has been captured with the coupling between ddotge model based
on the yield surface concept, and a generalized Kelvin-\Voigt rheolbgicael. Each of them
has been deeply investigated and motivated by experimental observatiopatticular for the
viscoelastic part, the model can integrate as many as necessary viscgetastgses with different
relaxation times.

A detailed algorithmic treatment has been developed to numerically integratentbtéutive law
together with the evolution equations within a finite element procedure. Due toathee of the
local evolution equations, an algorithm adapted to the viscoelastic evolution hascbewined
with a return mapping algorithm adapted to the damage flow. And the algorithmiertangpduli
have been given in order to numerically solve tiebal nonlinear initial boundary value problem
by a Newton-like iterative procedure.

It has been shown through a set of numerical examples that the press® is able to
capture the long-term creep response of natural gypsum rock matérigtsod accordance with
experimental results on saccharoid gypsum under saturated condiiams ih the literature has
been obtained. Notice that saturated conditions correspond to an upperlmound. And finally,
numerical simulations with different loading histories have exhibited surgrisimg-term responses
that should be investigated more deeply from the experimental point of view.
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