
HAL Id: hal-00668051
https://enpc.hal.science/hal-00668051

Submitted on 9 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An approach to the modeling of viscoelastic damage.
Application to the long-term creep of gypsum rock

materials
Boumediene Nedjar, Robert Le Roy

To cite this version:
Boumediene Nedjar, Robert Le Roy. An approach to the modeling of viscoelastic damage. Application
to the long-term creep of gypsum rock materials. International Journal for Numerical and Analytical
Methods in Geomechanics, 2012, 19 p. �10.1002/nag.1138�. �hal-00668051�

https://enpc.hal.science/hal-00668051
https://hal.archives-ouvertes.fr


INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS

Int. J. Numer. Anal. Meth. Geomech.2011;00:1–16

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nag

An approach to the modelling of viscoelastic-damage. Application
to the long-term creep of gypsum rock materials
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Universit́e Paris-Est, Laboratoire Navier (ENPC/IFSTTAR/CNRS), Ecole des Ponts ParisTech, 6 et 8 avenue Blaise
Pascal, 77455 Marne-la-Vallée, France

SUMMARY

A three-dimensional phenomenological model is developed to describe the long-term creep of gypsum
rock materials. The approach is based on the framework of continuum damage mechanics where coupling
with viscoelasticity is adopted. Specifically, a local damage model based on the concept of yield surface is
proposed and deeply investigated. And among the many possibilities, we choose in this work its coupling
with a generalized Kelvin-Voigt rheological model to formulate the whole behaviour. Long-term as well as
short-term relaxation processes can be integrated in the model by means of as many as necessary viscoelastic
processes. The numerical discretization is described for an easy integration within a finite element procedure.
Finally, a set of numerical simulations is given to show the possibilities of the presented model. It shows
good agreement with some experimental results found in the literature. Copyrightc© 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper, the attention is focused on the long-term behaviour of gypsum rock materials. In

fact, creep in natural gypsum rocks is one of the major phenomena at the origin of degradations

in underground mines. It is then of interest to construct life-time predictivetools within a

phenomenological modelling framework.

Typically, the uniaxial creep response of natural gypsum rock undercompressive loads is

characterized by three phases as shown in Figure1 (after [1]). A first transitory phase of creep

is followed by a secondary (almost) steady state phase. The duration of these phases is strongly

dependent on the load level. And for loads beyond a certain value, a tertiary creep phase appears

which quickly leads to failure. Below that loading value, no tertiary phase appears and the material

apparently provides an endurance domain,i.e.a domain in the stress space such that the strains reach
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2 B. NEDJAR AND R. LE ROY

asymptotic values under creep tests. However, the limiting duration of laboratory experimental tests

does not always permit to state the existence of such a domain.
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Figure 1. Typical uniaxial creep curves for a saturated saccharoid gypsum rock (after [1]). Each curve
corresponds to a load level with respect to the pic loadRc in compression.

There exists different approaches in the literature to model the natural gypsum rock material

such as in [2]. In this latter, the approach is based on a viscoplastic model coupled to continuum

damage. In fact, viscoplasticity has been intensively used to model rock salt materials that appear to

be geologically similar to gypsum rock, see for example [3, 4] for the modelling of rock salt.

On the other hand, creep in civil engineering materials has been widely described by means of

viscoelasticity, see for example [5]. Moreover, there exist models where viscoelasticity has been

coupled to damage for a variety of materials, see for example [6, 7]. In particular, viscoelastic-

damage has been coupled to calcium leaching in [8] to model the long-term creep of a leached

concrete.

In this paper, we choose to describe the typical behavior described above by means of a

viscoelastic-damage constitutive model where the framework of the continuum damage mechanics

is used to model the material degradation. The viscoelastic-damage law adopted here is

characterized by means of an internal variable model and it constitutes the simplest form where

damage is coupled to elasticity. We write

σ = (1−D)C : (ε− ε
v) (1)

whereσ andε are the second order stress and strain tensors, respectively,C is the fourth-order

Hooke’s elasticity tensor, the scalarD is the internal damage variable with value0 when the material

is undamaged and value1 when the material is completely damaged. And where the strain-like

internal variableεv is the viscous part of the strain tensor. Isotropy is assumed throughout this

paper. In (1) and in all what follows, the double dot symbol: denotes the double tensor contraction.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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LONG-TERM CREEP OF GYPSUM ROCK 3

As for the damage variableD, the internal variableεv is not accessible to direct observation and,

moreover, it can in turn be the sum of as many as necessary internal contributionsεvi , i.e.

ε
v =

ℓ∑

i=1

ε
v
i (2)

where the i = 1, . . . ℓ hidden tensor variablesεvi characterize viscoelastic processes with

corresponding relaxation timesτi ∈ (0,∞), i = 1, . . . ℓ. Of course, a viscoelastic description based

solely via external variables is also possible. The way all these internal variables evolve is motivated

by the one-dimensional rheological model of Section 2.

The rest of the paper is organized as follows. In Section 3, the one-dimensional rheological model

of Section 2 is extended to the three-dimensional case. A model example is given and its numerical

integration within the finite element method is detailed in Section 4. Then a set of representative

numerical examples are given and discussed in Section 5. And Finally, conclusions are drawn in

Section 6.

2. MOTIVATION. ONE-DIMENSIONAL RHEOLOGICAL MODEL

In order to describe the way the viscoelastic and damage processes evolve, it is necessary to specify

complementary equations that govern the evolution of the internal variablesε
v
i , i = 1, . . . ℓ andD.

This is motivated in this section through a one-dimensional study.

2.1. An effective characterization of viscoelasticity

The rheological model of Figure2 displays both relaxation and creep behavior. It consists of a free

spring on one end and an arbitrary numberℓ of Kelvin elements arranged in series. The stiffnesses

of the free spring and thei-spring elements arēE > 0 andĒi > 0, i = 1, . . . ℓ, respectively. And the

viscosity of thei-dashpot elements are specified by the material constantsη̄i > 0, i = 1, . . . ℓ. For

the sake of simplicity, we suppose in this model that all these elastic and viscoelastic moduli result

from the same damage coupling. That is

Ē = (1−D)E, Ēi = (1−D)Ei η̄i = (1−D) ηi i = 1, . . . ℓ, (3)

whereE and(Ei, ηi), i = 1, . . . ℓ, are the corresponding undamaged moduli.

Now the governing equations for the generalized Kelvin-Voigt model depicted in Figure2 are

derived by elementary considerations. Letσ be the stress applied to the whole model andε be the

external variable which measures the total strain. The stress on eachi-spring isĒi ε
v
i , and the stress

on each correspondingi-dashpot is given by the linear relationη̄i ε̇vi , where the upper doṫ( ) is the

time derivative. Hence, on the one hand, the resultant stress in eachi-Kelvin element (ani-spring in

parallel with ani-dashpot) is the sum̄Ei ε
v
i + η̄i ε̇

v
i . And on the other hand, since the strain on the

free spring isε− εv, whereεv =
∑

i=1,ℓ ε
v
i , the stress on this spring is given bȳE (ε− εv).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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4 B. NEDJAR AND R. LE ROY
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Figure 2. One-dimensional rheological model.

The free spring and all theℓ Kelvin elements being connected in series, then by equilibrium the

stress is found to be given by any of the followingℓ equations

σ = Ē (ε− εv) = Ēi ε
v
i + η̄i ε̇

v
i , i = 1, . . . ℓ (4)

where no sum on the indicesi is assumed.

Denoting byτi = η̄i/Ēi ≡ ηi/Ei > 0, i = 1, . . . ℓ the relaxation times, and byωi > 0 i = 1, . . . ℓ

the stiffness factors such that̄Ei = Ē/ωi, or equivalentlyEi = E/ωi by (3), (4)2 implies the

importantℓ evolution equations

ε̇vi +
1+ωi

τi
εvi +

ωi

τi

ℓ∑

j=1,j 6=i

εvj =
ωi

τi
ε, i = 1, . . . ℓ (5)

for the strain-like internal variablesεvi , i = 1, . . . ℓ. Now in order to describe the way the damage

process evolves, it is necessary to specify more complementary equationsthat govern this time the

evolution of the damage internal variableD. This is discussed in the following.

2.2. A strain-based characterization of damage

It is physically essential to take into account both the instantaneous and the delayed deformations in

the definition of quantities that drive the damage evolution to, among others, describe the variability

of the secondary plateau-like creep phase duration. To this end, the crucial idea underlining the

continuum damage model presented in this work is the hypothesis that damage inthe material is

in fact directly linked to the history of thetotal strains. Attention is still focused here on the one-

dimensional case, but later on, these ideas will be extended to the three-dimensional formulation.

To characterize the progressive degradation of the mechanical properties within the continuum

damage mechanics’ framework, we choose a damage criterion formulated in strain space as

g(D; ε) = (1−D)m S(ε)−W ≤ 0 (6)

whereW is the initial damage threshold andS(ε) is the driving source of damage which depends

solely on the total strainε. W andS are expressed here in terms of volumetric energies[Nm/m3].

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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LONG-TERM CREEP OF GYPSUM ROCK 5

And theup to now constantdimensionless exponent parameterm > 0 controls the hardening or the

softening material response as will be discussed below.

We next define the evolution of the damage variableD by the rate equation

Ḋ = δ (7)

whereδ is the damage consistency parameter that defines the standard damage loading/unloading

conditions

δ ≥ 0, g(D; ε) ≤ 0, δ g(D; ε) = 0. (8)

This model is no more than the local version of the gradient damage model presented in [9, 10]. If

g(D; ε) < 0, the damage criterion is not satisfied and condition(8)3 givesδ = 0, hence the damage

rule (7) implies thatḊ = 0 and no further damage takes place. If, on the other hand,δ > 0; that

is further damage is taking place,(8)3 now impliesg(D; ε) = 0. In this event the value ofδ is

determined by the damage consistency conditionġ(D; ε) = 0 which, in our case, gives

δ ≡ Ḋ =
1−D

mS(ε)
Ṡ(ε). (9)

This latter has a form that matches the general framework proposed in [11]. Now to gain further

insight into the nature of the present damage model, let us express in rate form the one-dimensional

elastic-damage version of (1):σ = (1−D)Eε, when onlyinstantaneousdamage takes place and

in the absence of any viscous strains,i.e. with εv = ε̇v = 0. And, moreover, let the driving source

of damage be given for simplicity by the effective strain energy:S(ε) = 1/2Eε2 which implies

Ṡ(ε) = Eεε̇, both these latter quantities to be replaced in the expression (9). One obtainsthen

σ̇ = (1−D)Eε̇− Ḋ Eε ≡ (1−D)

{

1−
2

m

}

Eε̇. (10)

It is a well known theoretical result that the tangent modulus is positive fora hardening material

response, and is negative in the case of softening. Then, as(1−D) ≥ 0, the sign of the tangent

modulus deduced from the rate form (10) depends solely on the value of the exponent parameterm.

We then conclude that, in the present form, the elastic-damage model exhibits pure hardening for

m > 2, or pure softening form < 2.

However, for geomaterials in general and for rock-like materials in particular, the behavior in

compression is characterized by a hardening response when damage initiates until a pic load is

reached, and then is followed by a material softening until complete degradation. Hence, to take

into account those facts, the exponent material parameterm should not be kept constant but must

be variable. In this work, we choose to make it damage-dependent through the following form

m(D) = m1 (1−D)m2 +m3, (11)

with m1 ≥ 0, m2 > 0 andm3 > 0 being from now new material parameters. That is, when damage

initiates (D ≈ 0), one hasm ≈ m1 +m3, and m tends tom3 when D approaches complete

degradation,i.e. whenD → 1. Hence, for instance, choosing the parametersm1 andm3 such that

m1 +m3 > 2 with m3 < 2 permits to cover both the hardening and softening stages of the material

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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6 B. NEDJAR AND R. LE ROY

response. The convenient parameterm2 controls the rate at which the transition from hardening

to softening is achieved. Also, notice that form1 = 0, the original model with constant exponent

parameter (m ≡ m3) is reached.

3. THREE-DIMENSIONAL EVOLUTION EQUATIONS

For the viscoelastic part of the material behavior, we motivate the evolution equations for the three-

dimensional deformation by reference to the relationship (5). An obvious choice of appropriate

evolution equations for the internal tensor variablesε
v
i is given by

ε̇
v
i +

1+ωi

τi
N : εvi +

ωi

τi

ℓ∑

j=1,j 6=i

N : εvj =
ωi

τi
N : ε, i = 1, . . . ℓ (12)

where τi, i = 1, . . . ℓ are the relaxation times and the dimensionless factorsωi, i = 1, . . . ℓ are

material parameters. And whereN is the fourth-order tensor which depends solely on the Poisson’s

rationν. In Voigt engineering notation, this tensor is given by

Ñ =
1

(1 + ν)(1− 2ν)














1− ν ν ν

ν 1− ν ν

ν ν 1− ν

1− 2ν

1− 2ν

1− 2ν














(13)

where, and in all what follows, the tilde notatioñ( . ) refers to matrix and vector representations of

fourth- and second-order tensor quantities in Voigt notation, respectively.

Notice that, except for the case of a simple Kelvin-Voigt model withℓ = 1, the ℓ evolution

equations (12) are all coupled since each single internal variableε
v
i appears in all theℓ equations.

Notice also that if theℓ factorsωi are set to zero, then no viscous evolution takes place and the

material response becomes elastic coupled to instantaneous damage.

And for the damage part of the material behaviour, the damage flow is givenby an identical form

as given for the unidimensional case, see (6)-(8). That is







g(D; ε) = (1−D)m(D) S(ε)−W

Ḋ = δ

δ ≥ 0, g(D; ε) ≤ 0, δg(D; ε) = 0

(14)

together with the consistency conditionδġ(D; ε), and where the exponentm(D) is now given by

the function (11).

Last but not least, as it is observed that damage within many rock-like materials is mostly

produced by extensions, we choose the driving source of damageS(ε) to depend on positive strain

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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LONG-TERM CREEP OF GYPSUM ROCK 7

quantities through the following volumetric energy form

S(ε) =
1

2
ζ1 ε

+ : ε+ +
1

2
ζ2

(
〈tr[ε]〉+

)2
, (15)

where the moduliζ1 andζ2 are material parameters, tr[ . ] designates the trace operator of second-

order tensors,〈 . 〉+ is the positive part scalar function as〈x〉+ = 1
2{x+ |x|}, and where the positive

partε+ of thetotalstrain tensorε is obtained after diagonalisation. In fact, as this latter is symmetric,

its spectral decomposition is given as

ε =

3∑

A=1

εA n
(A) ⊗ n

(A), (16)

where{εA}A=1,2,3 are the principal strains with{n(A)}A=1,2,3 being their corresponding principal

directions. In (16), the symbol⊗ designates the tensor product. Henceε
+ is then expressed as

ε
+ =

3∑

A=1

〈εA〉
+
n

(A) ⊗ n
(A), (17)

and the source of damage function in (15) is then equivalently written as

S(ε) =
1

2
ζ1

{
(〈ε1〉

+)2 + (〈ε2〉
+)2 + (〈ε3〉

+)2
}
+

1

2
ζ2

(
〈ε1 + ε2 + ε3〉

+
)2

. (18)

Notice that this source of damage is general enough in the model at hand. It is decomposed

into pure directional extensions’ contribution in the first term, and a pure volumetric dilatency

contribution in the second term. For simple compression tests, only the first termwill contribute

to damage evolution through the Poisson’s ratio effect. However, the choice made forS(ε) is not

unique and alternative expressions can be used instead of (18). For instance, one can choose to make

it depend solely on the deviatoric part of the total strain tensor if the material ismore sensitive to

shearing.

In summary: the phenomenological viscoelastic-damage model we use for thedescription of

creep in natural gypsum rock is given by the constitutive equations (1)-(2), the ℓ viscoelastic

evolution equations (12)-(13), and the damage flow equations (14) together with the definitions

(11) and (18).

4. NUMERICAL INTEGRATION FOR THE LOCAL EVOLUTION EQUATIONS

In this section, we consider an algorithmic approximation consistent with the local evolution

equations developed above. In a finite element context, this is accomplished at the integration

points level through a strain-driven type of numerical procedure. Consider a typical time interval

[tn, tn+1], an arbitrary material pointx and assume that the variablesε
v
i n, i = 1 . . . ℓ andDn are

known prescribed initial data onx at timetn. The objective is then to approximate theℓ equations

(12) and equations (14) to advance the solution to timetn+1 and update the variables toεvi n+1,

i = 1 . . . ℓ andDn+1 for a fixed increment of deformation.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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8 B. NEDJAR AND R. LE ROY

The key idea in the design of the integration algorithm is to exploit the fact that the ℓ viscoelastic

evolution equations (12) are independent on the damage internal variable, on the one hand, and

that the damage flow in (14) is independent on the viscous strain-like internal variables, on the

other hand. This idea is then carried out simply by the combination of an algorithm adapted to the

viscoelastic evolution and an algorithm adapted to the damage flow.

4.1. Implicit time integration of the viscoelastic part

Among other possibilities, we choose here the implicit backward-Euler schemeto approximate the

evolution equations (12). This gives a linear system ofℓ coupled equations

ωi∆tN : εv1n+1 + . . .+ (τi I+ (1 + ωi)∆tN) : εvi n+1

+ . . .+ ωi∆tN : εvℓ n+1 = ωi∆tN : εn+1 + τi ε
v
i n

(19)

i = 1, . . . ℓ, whereεn+1 is the known total incremented strain tensor at timetn+1, ∆t = tn+1 −

tn stands for the time increment, and whereI is the fourth-order symmetric unit tensor with

componentsIijkl = (δikδjl + δilδjk)/2 with δij being the Kronecker delta. For computational

purposes, theℓ equations (19) can be equivalently written in Voigt notation as

H







ε̃
v
1n+1

...

ε̃
v
i n+1

...

ε̃
v
ℓ n+1







=







ω1∆t Ñε̃n+1 + τ1 ε̃
v
1n

...

ωi∆t Ñε̃n+1 + τi ε̃
v
i n

...

ωℓ∆t Ñε̃n+1 + τℓ ε̃
v
ℓ n







(20)

with H being the matrix of the system given by

H =













τ1Ĩ+(1+ω1)∆t Ñ · · · ω1∆t Ñ · · · ω1∆t Ñ
...

...
...

ωi∆t Ñ · · · τiĨ+(1+ωi)∆t Ñ · · · ωi∆t Ñ
...

...
...

ωℓ∆t Ñ · · · ωℓ∆t Ñ · · · τℓĨ+(1+ωℓ)∆t Ñ













. (21)

Notice that this latter matrix is constant and is the same for each integration point with the same

material properties. Moreover,H need to be computed, inverted and stored only once whenever the

time increment∆t is kept constant during the incremental process.

4.2. Numerical integration for the damage flow

Within the same time interval[tn, tn+1], the nowadays well known concept of “trial

predictor/damage corrector” algorithm is applied to approximate the damage evolution given by

the set of equations (14).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(2011)
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LONG-TERM CREEP OF GYPSUM ROCK 9

Within the trial prediction step, the damage flow is frozen and the criterion(14)1 is evaluated for

D = Dn andε = εn+1. That is

gtrn+1 ≡ g(Dn; εn+1) = (1−Dn)
m(Dn) Sn+1 − W. (22)

whereSn+1 ≡ S(εn+1) is a known quantity obtained by mere function evaluation of the source

of damage function (18) atεn+1. Sn+1 is considered fixed at this level. Hence, two situations can

occur:

• if gtrn+1 ≤ 0, then the trial state is admissible and we setDn+1 = Dn.

• else ifgtrn+1 > 0, then a damage flow process is taking place and a damage correction has to

be performed.

For the damage model at hand, the damage correction procedure is simply accomplished by

solving gn+1 ≡ g(Dn+1; εn+1) = 0 for Dn+1. Moreover, using the natural logarithm leads to an

equivalent equation

m(Dn+1) ln(1−Dn+1) = ln

[
W

Sn+1

]

. (23)

This nonlinear equation can be solved locally by means of a Newton iterative procedure as

summarized in TableI.

4.3. Algorithmic tangent moduli

The initial boundary value problem of gypsum creep is nonlinear. The source of nonlinearity is a

material one which arises from the constitutive relation. Hence, this problemis solved by means of

an iterative process of the Newton’s type. Accordingly, this requires thelinearization of the global

equilibrium problem about a known state at timetn. This procedure is nowadays standard. We

give here the contribution to the algorithmic tangent stiffness where it is of interest to determine

the relation between the rate of stress and the rate oftotal strain via the algorithmic change of the

internal variablesεvi , i = 1, . . . ℓ andD.

We start from the rate form of the constitutive relation (1) by taking into account the additive

decomposition (2). One obtains

σ̇ = (1−D)E N : (ε̇− ε̇
v
1 − . . .− ε̇

v
ℓ ) − Ḋσ0 (24)

whereσ0 = C : (ε− ε
v) denotes the effective stress tensor and where use has been made in (24) of

the fact that the isotropic Hooke’s elasticity tensor can be written asC = E N where the Poisson’s

ratio’s dependent fourth-order tensorN has been defined in (13), and where the scalar material

parameterE is the elastic Young’s modulus.

On the one hand, from the discrete form (20), we deduce the algorithmic rate of change of the

internal variablesεvi , i = 1, . . . ℓ, in terms of the rate of change of the total strainε. In matrix form,

this is given by






˙̃
ε
v
1

...
˙̃
ε
v
ℓ







= H
−1







ω1∆t Ñ
...

ωℓ∆t Ñ







˙̃
ε. (25)
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10 B. NEDJAR AND R. LE ROY

Table I. Local damage update.

If gtrn+1 > 0 then perform the following correction procedure

1. Initialize: k = 0, D(0)
n+1 = Dn

2. Evaluate residual and check convergence

r
(k)
n+1 = ln

[
W

Sn+1

]

− m
(k)
n+1 ln(1−D

(k)
n+1)

with m
(k)
n+1 = m1 (1−D

(k)
n+1)

m2 +m3

IF |r(k)n+1| > TOL THEN go to Step3

ELSE set Dn+1 = D
(k)
n+1 andEXIT.

3. Compute the damage increment

setα(k)
n+1 = m

′ (k)
n+1 ln(1−D

(k)
n+1) −

m
(k)
n+1

1−D
(k)
n+1

with m
′ (k)
n+1 = −m1m2 (1−D

(k)
n+1)

m2−1

∆D
(k)
n+1 =

r
(k)
n+1

α
(k)
n+1

4. Update

D
(k+1)
n+1 = D

(k)
n+1 +∆D

(k)
n+1

Setk ←− k + 1 and return to Step2.

And, on the other hand, the rate form of the damage consistency equation (23) gives the following

rate of change of the damage variableD in terms of the rate of change of the total strainε

Ḋ = −
1

α(D)S(ε)

∂S(ε)

∂ε
: ε̇ (26)

with the notation (see also TableI, step3) α(D) = m′(D) ln(1−D)−m(D)/(1−D).

Then, in Voigt notation, the algorithmic tangent moduli are given in matrix form as

C̃
algo

T = (1−D)E






Ñ −



Ñ · · · Ñ
︸ ︷︷ ︸

ℓ times



 H
−1







ω1∆t Ñ
...

ωℓ∆t Ñ













+
1

α(D)S(ε)

[

σ̃0 ⊗
∂̃S

∂ε

]

(27)

such that˙̃σ = C̃
algo

T
˙̃
ε.

Now it only remains to precise the expression of the symmetric second-ordertensor∂S/∂ε. As

the source of damage function given by (18) is of the formS = S(ε1, ε2, ε3), by the chain rule
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together with the spectral decomposition (16), one obtains

∂S

∂ε
=

3∑

A=1

∂S

∂ εA
n

(A) ⊗ n
(A), (28)

where the important spectral property

∂ εA
∂ε

= n
(A) ⊗ n

(A), A = 1, 2, 3 (29)

has been used. And finally, with the other useful property relative to the positive part function that

∂ 〈x〉+

∂x
〈x〉+ = 〈x〉+ (30)

for any scalarx, we end up with the following expression

∂S

∂ εA
= ζ1 〈εA〉

+ + ζ2 〈ε1 + ε2 + ε3〉
+, A = 1, 2, 3. (31)

5. REPRESENTATIVE NUMERICAL EXAMPLES

As an illustration of the modelling framework developed in this paper, we give inthis section

numerical examples of gypsum creep simulated within the context of the finite element method.

To identify the parameters of the viscoelastic-damage model at hand from laboratory tests we

proceed in two steps. In the first step, we capture the short-term behavior of the material when no

creep takes place. Roughly speaking, in this case, only the elastic-damagefree spring is activated in

the rheological model of Figure2, while theℓ Kelvin elements are kept frozen. In fact, we admit that

the characteristic relaxation times are large enough compared to the duration of monotonic tests.

This permits to identify the elastic and the damage parts of the material parameters:the Young’s

modulusE, the Poisson’s ratioν, the initial damage thresholdW , the parameters of the exponent

functionm1, m2 andm3, and the source of damage parametersζ1 andζ2. For instance, curve fitting

can be used from experimental test results in compression. And, in the second step, creep tests have

to be performed at different levels of loading to capture the complementary material parameters

relative to the viscous behavior. Curve fitting can also be used to capture one or more characteristic

times (ℓ ≥ 1) together with the corresponding parameters:(τi, ωi), i = 1 . . . ℓ.

After [1], the strength in compression of saccharoid gypsum in saturated conditionvaries between

13.7 and23.5MPa, while the Young’s modulus is found to vary between6900 and9100MPa. This

natural gypsum rock is of macrocrystalline type with mean crystal dimensionsvarying between0.1

and1mm. Now, and in the absence of experimental results under monotonic tests, wepostulate a

ductile response in compression. The short-term behavior we use in the following computations is

given by the simulated curve illustrated in Figure3.
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Figure 3. Short-time behavior. Stress-strain curve in simple compression.

The material parameters used to obtain this stress-strain relation in compression are

E = 9000MPa, ν = 0.27,

W = 0.75 10−4MPa, m1 = 4, m2 = 0.8, m3 = 1.8, ζ1 = 2250MPa.
(32)

And the resulting strength in compression isRc = 15.12MPa. Two important observations must

be pointed out:

• To obtain the result of Figure3, the partial set of parameters (32) has been chosen such that

the strain at the pic-loadεc coincides more or less with the total strain that initiates the tertiary

creep in Figure1. Here we haveεc = 4.7 10−3.

• If, for example, the compressive load direction coincides with the global~e1-axis, the principal

strainε1 is then negative while the other two principal strains are equal and positivedue to the

Poisson’s ratio effect

ε1 < 0, and ε2 = ε3 = −ν ε1 > 0. (33)

Then, in view of the expression of the driving source of damage functionS(ε) in (18),

the volumetric strain(ε1 + ε2 + ε3) is negative in this case and the material response is

independent on the material parameterζ2.

5.1. Long-term creep tests

In this example, a series of creep tests are computed using the precedent (instantaneous) elastic-

damage behavior with different levels of the load in compression. Besides on the material paramaters

(32), we choose to activate three viscoelastic mechanisms with the following couples of parameters

(τ1 = 20 h, ω1 = 0.9) (τ2 = 100 h, ω2 = 0.5) (τ3 = 1000 h, ω3 = 0.2) (34)

The Figure4 gives a set of simulated axial strain curves versus time up to14400h (about600

days) for the lowest load. On the one hand, we obtain the typical S-shaped curves hilighting the

three stages corresponding to the primary transient creep, the secondary pseudo-linear creep, and

the fast tertiary creep before failure. And on the other hand, one can check that the tertiary creep

initiates at strains of the order of the pic-strainεc.
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Figure 4. Axial strain curves versus time for simulated creep tests under different levels of loading (solid
lines). Superposition with experimental results of Figure1 for 0.37, 0.4, 0.41 and0.44Rc (dashed lines).

Having in mind that there are almost always dispersions in laboratory data atleast due to

dispersion of rock properties, there is qualitatively and, to a lesser extent, quantitatively good

accordance with the experimental results of Figure1. Finally, and as an illustration, Figure5 shows

the correspondinghiddendamage evolutions predicted by the viscoelastic-damage model.
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Figure 5. Corresponding damage evolutions during the creeptests under different levels of loading.
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5.2. Multi-step creep tests

To gain further insight into the present model, we simulate in this section variousmulti-step creep

tests. The material data used are those of the precedent example given by(32) and (34).

Figure6 shows the strain curves versus time for different loading histories. Firstof all, notice

from Figure4 that the complete failure for a constant compressive creep load of value0.4Rc is

reached at timet = 3725h. We next observe that a reduction of this stress to a value of0.33Rc at

various terms produce marked differences in the material response. In fact, the material degradation

is almost stabilized for the test duration when the load is dropped at early terms, while beyond a

threshold term where a certain limit deformation has been reached, this load reduction does not

preclude failure, but delays it of some thousands or decades of hours.

Hence, with the present model, the gypsum rock would consequently havedifferent responses

depending on the loading conditions applied in its natural underground miningenvironment and

with regards to the influence of the recovery duration representing the delayed time between the in

situ sampling and the laboratory tests.
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Figure 6. Multi-step creep tests. Loading histories and axial strain evolutions for different terms att1 =

3000, 3500, 3600 and3650h. The strength in compression isRc = 15.12MPa.

Moreover, for perfectly identical loading histories but reversed, the material response differs

significantly. In other words, the response is greatly influenced by the order of application of the

loads for the same loading durations. This property is illustrated in the example of Figure7where the

following two loading histories have been applied: The first one with a compression of value0.4Rc

up to timet1 = 2800h followed by a drop to the load of value0.3Rc until time t2 = 5600h ≡ 2 t1.

And the second one with a compression of value0.3Rc up to timet = t1 followed by a jump to the

load of value0.4Rc until time t = t2. One can observe that the two strains at the end of the tests are

very different. The latter is reaching failure while the former is almost stabilized.
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Figure 7. Multi-step creep tests with reversed loading histories att1 = 2800h. Axial strain evolutions for
the two loading histories. The strength in compression isRc = 15.12MPa.

6. CONCLUSIONS

The main thrust of this paper has been the presentation of a model in order toprovide a tool for the

prediction of the long-term creep in gypsum rock materials. The model developed is based on the

nowadays well known continuum damage mechanics framework.

The material response has been captured with the coupling between a localdamage model based

on the yield surface concept, and a generalized Kelvin-Voigt rheological model. Each of them

has been deeply investigated and motivated by experimental observations.In particular for the

viscoelastic part, the model can integrate as many as necessary viscoelasticprocesses with different

relaxation times.

A detailed algorithmic treatment has been developed to numerically integrate the constitutive law

together with the evolution equations within a finite element procedure. Due to thenature of the

local evolution equations, an algorithm adapted to the viscoelastic evolution has been combined

with a return mapping algorithm adapted to the damage flow. And the algorithmic tangent moduli

have been given in order to numerically solve theglobal nonlinear initial boundary value problem

by a Newton-like iterative procedure.

It has been shown through a set of numerical examples that the presentmodel is able to

capture the long-term creep response of natural gypsum rock materials. A good accordance with

experimental results on saccharoid gypsum under saturated conditions found in the literature has

been obtained. Notice that saturated conditions correspond to an upper creep bound. And finally,

numerical simulations with different loading histories have exhibited surprising long-term responses

that should be investigated more deeply from the experimental point of view.
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