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SUMMARY

In this paper, we try to settle the bases of a concise modelling of growth within the unified framework
of continuum thermodynamics. Special emphasis is placed onthe modelling of soft biological tissues
at finite strains. For this, we adopt the nowadays well known kinematic assumption of a multiplicative
decomposition of the deformation gradient into an elastic part and a growth part. It is shown how continuum
thermodynamics is crucial in setting convenient forms for the coupling between stress and growth in general.
The particularization to isotropy simplifies considerablythe growth modelling from both the theoretical and
the numerical points of view. Simple growth constitutive equations are proposed and embedded into a finite
element context. Finally, representative numerical examples examining stress-dependent growth and residual
stress arising from growth and resorption close this study.Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During recent years, much interest has been devoted to the modelling of biological tissues, a

challenging task in the field of computational biomechanics. Living tissues continuously change

and adapt where growth and remodelling are fundamental mechanical processes in their normal

development and in various pathological conditions. On one hand, growthis primarily thought as

a volume change with the mass change following from it. And on the other hand,remodelling

(change in properties) can also lead to mass change if the structural changes are related to the density

changes. The reader is referred for example to (1; 2; 3; 4; 5) for extensive discussions concerning

these topics.

The present paper deals with biomechanical aspects of growth stimulated bymechanical

quantities such as the stress and/or the strain in the tissue. We focus here ona formulation for finite

growth and finite deformation. More precisely, and motivated by the continuum theory proposed by
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2 B. NEDJAR

Rodriguez et al. (1994) in (6), the key kinematical assumption is a multiplicative decomposition of

the deformation gradient into a growth part and an elastic (reversible) part, see also (2; 7; 8; 9) among

others. Moreover, density is considered here to be constant in time and position, an assumption also

adopted in earlier works, for instance see (10; 11) among others. The growth consists then of the

additional or removal of the same tissue material.

Embedded into the classical continuum thermodynamics framework, these considerations lead

to remarkeable properties and match ideas used in earlier works, e.g. the references cited above

for example. Growth being considered here as a dissipative process, itis shown how the effect

of growth on stress and the effect of stress on growth become evident. The constitutive relations

and the characterization of the growth evolution are then constructed in accordance with the

continuum thermodynamics requirements. From this framework, it naturally appears that stress

is the biomechanical factor which drives growth. This agrees with many recent contributions in

the modelling of soft tissues, see for example (12; 13) for the growth modelling in arteries. Other

theories are based on strain-induced or strain-energy driving growth. However, and as mentioned for

instance in (2), in the absence of a universal mechano-growth law, experimental datacan be found

to support each of these mechanical quantities to modulate the growth.

When particularized to isotropy, the above general continuum formulation simplifies

considerably. On the theoretical side, it is deduced that the growth evolution relates the stress tensor

to the symmetric growth-rate tensor. This later quantity was first defined in (6). Simple growth

laws can be proposed and/or adapted from previous ideas developed inthe literature. For instance,

growth or resorption can occur so that the stress due to loading returns toan equilibrium state. And

on the numerical side, the whole procedure is very similar to the current stateof the art in the finite

element treatment of elastoplasticity. In particular, use is made of the so called exponential map to

approximate the (local) growth evolution equations. This procedure is detailed for each of the model

examples proposed in this work.

An outline of the remainder of the paper is as follows. The adopted kinematic assumption

is recalled in Section 2. Then, the finite strain growth formulation is developed inSection 3

where the general form of stress-growth couplings is established in accordance with continuum

thermodynamics. In Section 4, the particularization to isotropy is developed from both the

theoretical and the numerical points of view. A special attention is devoted to the algorithmic

update of the local growth evolution equations. The efficiency of the proposed framework is then

evaluated numerically through a set of representative numerical examplesin Section 5. And finally,

conclusions are drawn in the last section. Interesting properties will be highlighted throughout the

mathematical developments in this paper with noteworthy remarks and comments.

2. OVERVIEW OF THE KINEMATIC ASSUMPTIONS

As a point of departure, we adopt the nowadays well accepted kinematic assumption of a

multiplicative decomposition of the overall deformation gradientF into an elastic partF e and a

(stress-free) growth partF g, as introduced by Rodriguez et al. in (6):

F = F eF g. (1)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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FINITE GROWTH IN SOFT TISSUES 3

HereF e is the part of the deformation gradient comprising the deformation gradient giving

rise to residual elastic stressF r and the deformation gradient due to external loadingF ℓ, see

e.g. (2). Hence we also have the sub-decompositionF e = F ℓF r, see the sketch in Figure1 for

an illustration. For instance, and in the absence of external loads (F e ≡ F r), the partF r can

be computed as an elastic deformation that ensures the continuity of the body.In fact, there is

no requirement that the growth partF g corresponds to a compatible displacement field,i.e. for

example, a cell may grow independently of its neighbors. However, if residual stress is not of

interest, it is not necessary to computeF r. And in all cases,F e can be used as the principal

deformation variable.

F

F g

F e

F r

F ℓ

σ = σ0

Ω0

Ωt

σ = 0

σ = 0

Figure 1. Local decomposition of the deformation gradient for finite growth (after (2) modified from (6)).

Last but not least, notice that since growth is not an isochoric process,we haveJg = det [F g] 6= 1

for the growth Jacobian. One has thenJg > 1 for growth (added volume), andJg < 1 for resorption

(removed volume).

3. CONSTITUTIVE MODELLING OF GROWTH

The next step is to account for the effects of growth on stress together with the effects of stress on

growth. It is shown here that the continuum thermodynamics framework constitutes a useful tool to

naturally exhibit those mutual phenomena.

In general, the elastic behaviour is assumed to be characterized by a freeenergy functionψ of the

form

ψ = ψ(Ce), (2)

whereCe = F eTF e is the elastic right Cauchy-Green tensor. Here and in all what follows, the

notation(.)T is used for the transpose operator. The dependence ofψ on F e throughCe follows

from the fundamental principle of material frame indifference, e.g. see (14).

By its nature, growth is considered as a dissipative phenomenon. Then, confining our attention

to isothermal processes, the second law of continuum thermodynamics is given by the following

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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4 B. NEDJAR

expression in the form of the Clausius-Duhem dissipation inequality:

D = S :
1

2
Ċ + ς̇ − ψ̇ ≥ 0, (3)

whereS is the (symmetric) second Piola-Kirchhoff stress tensor, andC = F TF denotes the (total)

right Cauchy-Green tensor. In eqn. (3),ς̇ is a nonmechanical and nonthermal energy supply source

of an electrochemical and/or biological nature assumed to be present in living materials such as

soft tissues. For instance, a similar quantity has also been introduced in the fibre reorientation

remodelling theory proposed in (15). For notational purposes it is written in rate form, but it is

not necessarily the time derivation of a scalar function. Its dimension is a volumetric energy per unit

of time.

Inserting the general expression (2) into (3), and use of the kinematic relation C = F gT

CeF g,

give after simple algebraic manipulations exploiting tensors’ symmetries

D =

[
S − 2

∂ψ

∂Ce

]
:
1

2
Ċe + ς̇ +CeS : lg ≥ 0, (4)

where S = F gSF gT

is the second Piola-Kirchhoff stress tensor in the (local) intermediate

configuration defined byF g, and wherelg = Ḟ gF g−1

is the left-rate tensor of growth distorsion.

This latter is the work-conjugate of the Mandel-like stress tensorCeS.

Remark 1. Notice that the last term in the left hand side of (4) can be equivalently writtenthrough

the following stress-power relationship:

CeS : lg = CS : Lg (5)

where, this time,Lg = F g−1

Ḟ g is the right-rate tensor of growth distorsion. It is the work-conjugate

of thematerialstress tensorCS. This latter is called an Eshelby-like stress tensor in (16) as, up to a

spherical term and a sign, it coincides with it. However, one can also say itis a Mandel-like stress-

tensor, the Mandel stress being defined with respect to the so-called intermediate configuration.

3.1. Effects of growth on stress.

By standard arguments of continuum thermodynamics, see for example (17; 18), we end up with

the following expression for the stress tensor:

S = 2
∂ψ

∂Ce
(6)

This general constitutive relation clearly traduces the effects of growth on stress since the

elastic right Cauchy-Green tensorCe depends on the growth deformation variableF g, i.e. Ce =

F g−T

CF g−1

.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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FINITE GROWTH IN SOFT TISSUES 5

3.2. Effects of stress on growth.

We continue now with the description of the induced growth in the soft tissue. Taking into account

the constitutive relation (6) into (4), the reduced dissipation becomes

D = ς̇ +Σ : lg ≥ 0, (7)

where we have introduced the notationΣ = CeS for the generally nonsymmetric Mandel-like stress

tensor.

Then, one has to define an evolution equation for the rate quantitylg. In accordance with

the expression (7), a natural choice is to assume this rate to depend on its work-conjugate

thermodynamic forceΣ. Such a relation may be either of a simple or a complicated form. At this

stage of the study, we consider a general expression written as

lg = Γ(Σ), (8)

whereΓ(Σ) is a tensor valued function. Furthermore, using the definition of the left-ratelg, the

relation (8) can be equivalently written as

Ḟ g = Γ(Σ) F g, (9)

where one can clearly notice the effect of stress on growth through the tensorial functionΓ(Σ).

This general expression describes the direct evolution of the nonsymmetric growth deformation

gradient. And from the numerical point of view, its approximation in the solutionprocess could

be non trivial. However, algorithms for the evaluation of the exponential mapof a nonsymmetric

argument have been developed for similar local evolution equations in finite viscoplasticity, see for

example (19; 20). The isotropic case discussed below simplifies considerably this task.

Remark 2. With the general evolution equation (8), the scalar valued productΣ : Γ(Σ) could be

positive or negative, unlessΓ(Σ) is derived from a (convex) pseudo-potential functionφ(Σ), i.e.

Γ(Σ) = ∂Σφ(Σ), in which case it would be always positive. Hence, in general, an energy supply in

the form of nonzero values for the source termς̇ is needed in order to always satisfy the dissipation

inequality (7).

4. ISOTROPIC FINITE GROWTH

Of interest for the developments presented below is the consideration of theisotropic case. In our

context, this restriction is assumed on the intermediate configuration defined byF g. The free energy

functionψ in eqn. (2) equivalently depends on the elastic left Cauchy-Green tensor be = F eF eT ,

i.e.ψ = ψ(be). Then, and as a consequence, the constitutive relation (6) can equivalently be written

as, see e.g. (14; 21),

τ = 2
∂ψ

∂be
be, (10)

whereτ = Jσ (≡ FSF T ) is the (symmetric) Kirchhoff stress tensor,σ being the true Cauchy

stress tensor andJ = det [F ] > 0 is the Jacobian of the overall deformation.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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6 B. NEDJAR

Combining (10) with the relationS = F e−1

τF e−T

, replacing the result into (7), and exploiting

again the tensors’ symmetries, lead to:

D = ς̇ + 2
∂ψ

∂be
: F edgF eT ≥ 0, (11)

where

dg = sym[lg] =
1

2

(
Ḟ gF g−1

+ F g−T

Ḟ gT
)

(12)

is no more than the growth rate-of-deformation tensor as first defined in (6), see also (2).

Expression (11) can again be rearranged. In fact, and on one hand, exploiting the kinematic

relationbe = FCg−1

F T , whereCg = F gT

F g is the growth right Cauchy-Green tensor, one can

define the Lie derivative ofbe as, see e.g. (22),

Lvb
e = F

d
dt

[
Cg−1

]
F T . (13)

An easy calculation then gives the identity

−
1

2
Lvb

e = F edgF eT . (14)

And on the other hand, replacing this last result into (11) and using the constitutive relation (10)

lead then to the following reduced dissipation inequality relative to the isotropic case:

D = ς̇ + τ :

[
−
1

2
(Lvb

e) be
−1

]
≥ 0, (15)

which must hold for all admissible process in the soft biological tissue.

Now for the description of the (local) growth evolution, one has to define a relation for the rate

quantity− 1
2 (Lvb

e) be
−1

. In view of the expression (15), a natural choice is to assume this later to

depend on the Kirchhoff stress tensorτ . We consider again a general form written this time as

−
1

2
(Lvb

e) be
−1

= g(τ ) ⇒ Lvb
e = −2g(τ )be, (16)

whereg(τ ) is a tensor valued function which, besides on its lonely argumentτ , can also depend

on other variables, but these latters can only act as parameters,i.e. g ≡ g(τ ; . . .). Notice that from

(16), the growth response reduces to the evolution of the (symmetric) spatial tensorbe defining the

stress through the constitutive relation (10).

Remark 3. Notice that the tensorial functiong(τ ) is restricted by material frame indifference to

isotropic functions. That is,

g(QτQT ) = g(τ ), ∀Q ∈ SO(3), (17)

whereSO(3) is the finite group of rotations.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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FINITE GROWTH IN SOFT TISSUES 7

Remark 4. Use of the definition (13) together with the kinematic relationCg−1

= F−1beF−T into

the evolution equation(16)2, we get

d
dt

[
Cg−1

]
= −2G̃ Cg−1

for G̃ = F−1gF . (18)

This last expression allows the integration of the same growth evolution equation, but this time in

the material reference configuration.

Remark 5. Comparing the evolution equations (8) and (16), and using the kinematic definitions

(12) and (14), the tensorial functionsg andΓ are related as

g(τ ) = F e sym
[
Γ

(
Σ = F eT τF e−T

)]
F e−1

. (19)

To get further insight into the nature of the present general form of growth response, the tensorial

equation(16)2 implies the following evolution for the rate of growth volume change:

d
dt

[ln [Jg]] = tr [g(τ )] . (20)

where we recall thatJg = det[F g] is the growth volume change.

To prove this result, let us first recall that time differentiation ofbe = FCg−1

F T yields the

identity

ḃe = lbe + belT + Lvb
e, (21)

where l = Ḟ F−1 is the spatial velocity gradient. The elastic volume change being given by

Je = det [F e] = (det [be])
1/2

> 0, the proof follows from (21) along with (16), since

J̇e =
1

2
Jebe

−1

: ḃe = Je

[
tr [d] +

1

2
Lvb

e : be
−1

]
= Jetr [d− g(τ )] , (22)

whered = sym[l] denotes the rate of (total) deformation gradient tensor. Inserting the relations

J = JeJg andJ̇ = J tr [d] into (22) gives (20).

Moreover, using the identityJ̇g = Jgtr [dg], the evolution equation (20) can equivalently be

written as
1

V

dV
dt
≡ tr [dg] = tr [g(τ )] , (23)

whereV is the growth volume as defined in (23), see also (2).

4.1. A growth modelling example

The modelling framework developed above is independent of the particularchoices made for the

elastic behaviour and the growth evolution in soft tissues. However, and inthe light of the lack

of appropriate experiments, we consider for simplicity that the growth process is uniform in all

directions. That is, the tensorial functiong(τ ) simplifies to a spherical form as

g(τ ) = g(τ ) I, (24)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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8 B. NEDJAR

whereg(τ ) is here a scalar valued isotropic function, and whereI is the second order identity tensor.

With this specific type of evolution law, the rate of volumetric growth becomes, see eqn. (23),

tr [dg] = 3g(τ ). (25)

Examples for the general functiong(τ ; . . .) will be precised in the applications’ section below.

4.2. Integration algorithm

We formulate in this section a numerical algorithm to integrate the constitutive relations developed

above. The algorithmic approximation mimics the principal steps adopted in modernfinite

element treatments of elastoplasticity and viscoelasticity at finite strains based onmultiplicative

decomposition kinematics.

In the isotropic case, and at a given material point, we consider known thesolution at time

tn, consisting of the deformation gradientFn and the internal variable, sayCg−1

n (or ben since

ben = FnC
g−1

n F T
n ). Given a deformation gradientFn+1 at tn+1, we are interested in the stresses

and the updated internal variableCg−1

n+1.

An appropriate approximation of the general evolution equation(16)2 is given by the exponential

map

ben+1 = exp [−2∆t gn+1] b
e tr
n+1, (26)

where∆t = tn+1 − tn, and be trn+1 is the trial state defined from the initial conditions and the

application of the operator split to(16)2, see for example (24; 25) and references therein for

similarities with the elastoplastic case,

be trn+1 = Fn+1C
g−1

n F T
n+1. (27)

In deriving (26), use has been made of the particularization (24) wherethe growth scalar function

is evaluated atτn+1, i.e.gn+1 = g(τn+1; . . .), and where in turn,τn+1 is defined by the constitutive

relation (10) evaluated atben+1. The discrete equation (26) simplifies considerably when written in

the principal frame. In fact, on one hand, letn
(A)
n+1 and(λeAn+1)

2, A = 1, 2, 3, denote the principal

directions and principal values ofben+1. And on the other hand, letn(A) tr
n+1 and(λe trAn+1)

2,A = 1, 2, 3,

be the corresponding quantities forbe trn+1. Then, from the uniqueness of the spectral decomposition,

(26) impliesn(A)
n+1 = n

(A) tr
n+1 , A = 1, 2, 3, for the principal directions and

(
λeAn+1

)2
= exp [−2∆t gn+1]

(
λe trAn+1

)2
, A = 1, 2, 3. (28)

Moreover, taking the natural logarithm of this later expression, we obtain

εeAn+1 = εe trAn+1 −∆t gn+1, A = 1, 2, 3 (29)

for the logarithmic elastic principal stretchεeAn+1 = ln[λeAn+1] and its trial counterpart.

The isotropy assumption also implies that the free energyψ is a function of the principal

elastic streches, and therefore, a function of the principal logarithmic streches:ψ(be) = ψ̂(εe) for

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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FINITE GROWTH IN SOFT TISSUES 9

Table I. Exponential map for isotropic finite growth.

Given{Fn, b
e
n} andFn+1 for a time increment∆t, then

1. Compute the initial state for the exponential map

be trn+1 = Fn+1C
g−1

n F T
n+1

for Cg−1

n = F−1
n benF

−T
n .

2. Compute the spectral decomposition

be trn+1 =

3∑

A=1

(
λe trAn+1

)2
n

(A) tr
n+1 ⊗ n

(A) tr
n+1

and the logarithmic stretchesεe trAn+1 = ln
[
λe trAn+1

]
.

3. Solve for the updated logarithmic stretchesεeAn+1,
eqn. (29).

4. Recover the updated tensors

ben+1 =

3∑

A=1

exp
[
2 εeAn+1

]
n

(A)
n+1 ⊗ n

(A)
n+1

τn+1 =

3∑

A=1

τAn+1 n
(A)
n+1 ⊗ n

(A)
n+1

wheren(A)
n+1 = n

(A) tr
n+1 andτAn+1 =

∂ψ̂

∂εeA
(εen+1),

A = 1, 2, 3.

5. Compute the algorithmic3× 3 matrixag
n+1 and

the spatial tagent modulĩcn+1.

εe = [εe1, ε
e
2, ε

e
3]

T . Moreover, the stress tensorτn+1 being coaxial withben+1, they share the same

principal directions{n(A)
n+1}A=1,2,3 for the principal kirchhoff stressesτAn+1 given as

τ̂n+1 =
∂ψ̂

∂εe
(εen+1), (30)

whereτ̂n+1 = [τ1n+1, τ2n+1, τ3n+1]
T . TableI summarizes the conceptual steps involved during the

algorithmic treatment of the isotropic finite growth. Being growth model specific,steps 3 and 5 of

TableI will be detailed in the next section for each particular model example.

4.2.1. Algorithmic tangent moduli.The initial boundary value problem of finite growth is nonlinear.

The sources of nonlinearities are geometric (arising from the multiplicative kinematics) and material

(arising from the nonlinearity of the constitutive relations). Hence, this problem is solved by means

of an iterative process of the Newton’s type. Accordingly, this requiresthe linearization of the global

equilibrium problem about a known state at timetn. This procedure is nowadays standard. We give

here the contribution to the material part of the tangent stiffness (step 5 of Table I) where it is

of interest to determine the relation between the rate of strain and the rate of stress. In spatial

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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10 B. NEDJAR

description, this takes the form

Lvτn+1 ≡ Fn+1Ṡn+1F
T
n+1 = c̃n+1 : dn+1 (31)

whereLvτn+1 is here the Lie derivatve of the Kirchhoff stress tensor, andc̃n+1 is the fourth order

spatial tangent moduli given by, see for instance (24; 26) for details,

c̃n+1 =
∑

A=1,3

∑

B=1,3

agABn+1 m
(A) tr
n+1 ⊗m

(A) tr
n+1 + ktr

n+1 (32)

wherem(A) tr
n+1 = n

(A) tr
n+1 ⊗ n

(A) tr
n+1 , and the nonzero componentsktrIJKL of the rank-four tensorktr

n+1

relative to the basis{n(A) tr
n+1 } are given by,I, J,K,L = 1, 2, 3,

ktrIIII = −2τI n+1,

ktrIJIJ = ktrIJJI =
τI n+1(λ

e tr
J n+1)

2 − τJ n+1(λ
e tr
I n+1)

2

(λe trI n+1)
2 − (λe trJ n+1)

2
for I 6= J,

(33)

and whereagABn+1 are the components of the3× 3 matrixag
n+1 obtained by linearizing the local

algorithm (29)

a
g
n+1 =

∂τ̂n+1

∂εe trn+1

. (34)

This latter matrix is also model dependent, and it will also be detailed for each growth model

example in the next section.

5. REPRESENTATIVE NUMERICAL APPLICATIONS

We apply in this section the preceding developments to two simple model examples ofgrowth: a

stress-dependent growth model, and a stress-free growth model. For both models, we choose the

same hyperelastic behaviour for the soft tissue as given by the Hencky’s model whose free energy

is written as

ψ(be) =
1

2
κ (ln [Je])

2
+ µ

3∑

A=1

(
ln
[
λ̃eA

])2
, (35)

where λ̃eA = Je−1/3

λeA, A = 1, 2, 3, are the principal deviatoric elastic stretches, andκ > 0 and

µ > 0 are the bulk and shear moduli, respectively. After noticing thatln [Je] = εe1 + εe2 + εe3, the

elastic stress-strain relation in principal axes as given by (30) takes the following simple form

τ̂ = hεe (36)

where the second order tensorh is given as

h = κ1⊗ 1+ 2µ

[
I −

1

3
1⊗ 1

]
, (37)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
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FINITE GROWTH IN SOFT TISSUES 11

and where, and in all what follows, we have introduced the vector notation1 = [1, 1, 1]
T . Observe

thath is constant for this particular hyperlastic behaviour.

5.1. A stress-dependent growth model

As a first modelling example, we consider a growth law inspired by the three equilibrium state

model proposed in (1). Here, and within the present tensorial formulation, only one equilibrium

state is considered for simplicity, say, the equilibrium around the normal physiological state of

stress. The isotropic scalar valued functiong(τ ; . . .) in eqn. (24) is chosen as

g(τ ; J) = η
{

tr
[τ
J

]
− p
}
≡ η {tr [σ]− p} , (38)

where the parameterp is the equilibrum (hydrostatic) stress state,η is a viscous-like parameter

which influences the rate of growth, and the dimension of which is[Pa.time]−1. Hence, recalling

the stress relationτ = Jσ, the growth is here governed by thetrue Cauchy stress state defined in

the actual (deformed) configuration.

5.1.1. Algorithmic aspects.For this simple growth law, the logarithmic stretches update at the

integration points level is explicit (step 3 of TableI)

εen+1 = [I + δn+11⊗ 1h]
−1 {

εe trn+1 +∆tηp1
}
, (39)

where we have used the notationδn+1 = η ∆t/Jn+1, h is given by (37), and whereJn+1 =

det[Fn+1] is a known quantity at timetn+1. Moreover, the algorithmic3× 3 matrixag
n+1 in step 5

of TableI is here given by

a
g
n+1 =

[
h−1 + δn+11⊗ 1

]
−1
× [I + δn+1 [τ̂n+1.1] 1⊗ 1] , (40)

where one can notice that[τ̂n+1.1] = tr[τn+1]. In deriving (40), use has been made of the kinematic

relation Jn+1 = Je
n+1J

g
n+1 which, by algorithmic construction, is also equivalently written as

Jn+1 = Je tr
n+1J

g
n. Hence, one obtains the differential identity dJn+1 = Jn+11.dεe trn+1 which is used

during the computation (34) to get (40).

5.1.2. Homogeneous growth example.As an illustration, we consider a(10× 10× 10) mm3

specimen discretized with4× 4× 4 common 8-nodes brick elements. This sample is submitted

to a uniform traction along the z-axis with the two other dimensions free (see Figure 2). For the

soft tissue, we assume elastic properties of the same order as those employed for the modelling of

arterial walls, see for example (27): κ = 2.5MPa andµ = 1.15MPa, i.e. with a Poisson’s ration

ν = 0.375. The equilibrium stress is chosen asp = 0.45MPa.

Two series of computations are performed, the first one with a uniform prescribed nominal

traction of value0.6MPa (resultantF̄ = 60N ), and the second one with a prescribed nominal

traction of value0.2MPa (resultantF̄ = 20N ). While the former loading exhibits growth, the

later produces resorption, compare the loadings with the value of the normalphysiological stress

p. Figure 2 shows the results of the evolution of the Cauchy stressσ33 for different values
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12 B. NEDJAR

of the material viscous-like parameterη. In each computation, the stress decreases or increases

asymptotically reaching the equilibrium valuep.
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Figure 2. Evolution of the axial stressσ33 in cases of growth or resorption for different values of the
parameterη [(MPa.s)−1].

For instance, and as a geometrical illustration, Figures3 and 4 show the evolutions of the

deformations for growth and resorption, respectively, obtained with the particular valueη =

0.005(MPa.s)−1. Here again, one can observe that the tissue grows or resorbs until equilibrium is

reached.

 0
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Figure 3. Evolution of the total volumeJ and the axial streches(λ1 = λ2, λ3) in the case of growth
(F̄ = 60N ) with η = 0.005(MPa.s)−1.

5.1.3. A nonhomogeneous growth in a tube.As a second illustrative example, we consider the

response of a long circular tube submitted to a prescribed constant internal pressurēpi in a selected
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Figure 4. Evolution of the total volumeJ and the axial streches(λ1 = λ2, λ3) in the case of resorption
(F̄ = 20N ) with η = 0.005(MPa.s)−1.

subsection in the middle. In the reference configuration, the internal radius isRi = 4mm and the

thickness ise = 0.5mm. The lenght of the portion we consider in the computation is initially

H = 30mm. For symmetry reasons, we choose to discretize one quarter of the tube with8× 24

common 8-nodes brick elements and three elements through the thickness,i.e. a total of 576

elements (see Figure5).
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Figure 5. Circular tube submitted to an internal pressure. Geometry, finite element discretization, loading
and boundary conditions.

For the hyperelastic behaviour of the tissue, use is made of the following parameters (see

for example (28; 29) for similar values adopted in the modelling of aretries):κ = 8.5 kPa and

µ = 3.2kPa, i.e. ν ≈ 0.4. And for the growth part, we choose the equilibrium stressp = 0.65kPa

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2010)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



14 B. NEDJAR

and the evolution parameterη = 510−4(kPa.s)−1. Figure6 depicts selective results obtained for

the prescribed constant internal pressure of valuep̄i = 0.2 kPa. The time increment was fixed to

∆t = 1s during the whole computation. One can observe a pronounced growth at areas of increased

tension in the middle of the tube (Jg > 1), and resorption at areas where the stress state were under

the equilibrium stress at the initial state (the zones whereJg < 1).

.803499

.907462

1.01143

1.11539

1.21935

1.32332

1.42728

1.53125

1.63521

1.73917

1.84314

Jg

10∆t 200∆t 400∆t

Figure 6. Qualitative simulation of growth. Different deformed meshes and growth fieldJg = det[F g] at the
last time step.

5.2. A stress-independent growth model

As a second modelling example, let us consider and discuss a growth law thatis independenton the

stress state. For instance, such a model could be interesting in describing growth in stress-free tissue

culture, or in the normal developement of tissues from young to mature organisms. We consider the

general scalar functiong(τ ; . . .) in eqn. (24) given as

g(Jg) = η (δ − Jg)
γ
, (41)

where the dimensionlessδ is a growth equilibrium parameter,η is again a viscous parameter

influencing the rate of growth, the dimension of which is here[time]−1, and the powerγ > 0 is

a convenient dimensionless parameter. Hence, and as a first observation in this modelling design,

the growth process stops when the growth volumeJg reaches the valueδ.

5.2.1. Algorithmic aspects.From the algorithmic point of view, the logarithmic stretches update

(step 3 of TableI) is rewritten here as

εen+1 = εe trn+1 −∆tη

(
δ −

Jn+1

exp[εen+1.1]

)γ

1, (42)

where we have used the propertyJe
n+1 = exp[εen+1.1] together with the kinematic relationJg

n+1 =

Jn+1/J
e
n+1. This nonlinear equation can be solved locally by means of a Newton iterativeprocedure

as summarized in TableII . The algorithmic3× 3 matrix a
g
n+1 (step 5 of TableI) takes here a
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Table II. Local logarithmic stretche update.

GivenJn+1 = det[Fn+1] and the time increment∆t, then

1. Initialize: k = 0, εe (0)n+1 = εe trn+1

2. Evaluate residual and check convergence

r
(k)
n+1 = −ε

e (k)
n+1 + εe trn+1 −∆tη

(
δ −

Jn+1

exp[ε
e (k)
n+1 .1]

)γ

1

IF ‖ r(k)n+1 ‖> TOL THEN go to Step3

ELSE setεen+1 = ε
e (k)
n+1 andEXIT.

3. Compute the tangent moduli and the increment

setα(k)
n+1 =

Jn+1

exp[ε
e (k)
n+1 .1]

D
(k)
n+1 =

[
I +∆tηγα

(k)
n+1

(
δ − α

(k)
n+1

)γ−1

1⊗ 1

]
−1

∆ε
e (k)
n+1 = D

(k)
n+1r

(k)
n+1

4. Update the logarithmic elastic streches

ε
e (k+1)
n+1 = ε

e (k)
n+1 +∆ε

e (k)
n+1

Setk ←− k + 1 and return to Step2.

remarkably simple form

a
g
n+1 = h. (43)

5.2.2. Uniform growth in a confined cylinder.We consider a plain cylinder confined in a rigid tube

so that no radial expansion can occur. At the initial state, the cylinder matches perfectly the hollow

tube with free initial stresses. Also, at timet = 0, we consider thatF g
0 = I so thatJg

0 = 1. Then,

as the tissue grows, the confinment generates volumic stresses until growthequilibrium is reached,

i.e. when Jg = δ. This uniform analysis is conducted in two dimensions under the plane strain

assumption, see Figure7 for an illustration.

We use the following parameters for the hyperelastic behaviour of the tissue: κ = 6.14MPa

and µ = 2.3 MPa. And for the growth part, we choose the equilibrium growth toδ = 2 and

fix the viscous parameter toη = 0.001 s−1, this later having the same role as in the precedent

model. Figure8 (top panel) shows the evolution of the growth volumeJg for different values of

the exponent parameterγ. The moreγ is higher the more the growth process is slower. Hence,

γ can have the same influlence on the behaviour as the viscous parameterη, but the former is

dimensionless as opposite to the later one. In each computation,Jg increases asymptotically until

it reaches the model dependent given valueJg = δ ≡ 2. Also in Figure8 (lower panel), one can

observe that the corresponding internal pressure increases until anequilibrium stress is indireclty
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R = 3mm

Figure 7. Confined growing cylinder. Plane strain two-dimensional analysis. Geometry and finite element
mesh.

reached. This later is consequent of the structural effect of the problem as opposite to the normal

physiological stress in the precedent growth law (in Section 5.1) which wasan intrinsic material

parameter. Finally, notice that due to the confinment, the Jacobian of the overall deformation

J = det[F ] is equal to 1 during the whole growth process.

5.2.3. Residual stresses arising from growth.To gain more insight into the nature of the present

stress-independent growth law, we study in this section the response of agrowing free three-layer

thick-walled tube. One can then expect that different growing behaviours between the layers will

inevitably lead to resisual stresses within the tube thickness. To illustrate this fact qualitatively, we

choose the geometry shown in Figure9 and analyze its growth in two dimensions within the plane

strain hypothesis.

The following table gives the material data used for each layer during the computation. The

inner and outer layers have the same elasto-growth behaviour. Moreover, the three layers are chosen

to have the same elastic behaviour. For the growth part, and for the sake ofclarity, the exponent

parameterγ has been set to1 for each layer. And for the other parameters, they have been chosen

such that the inner and outer layers grow faster to their equilibrium growth than the intermediate

one, on one hand, and to a different value of this equilibrium growth, on the other hand. The time

increment was fixed to∆t = 1s during the whole computation.

Layer κ [MPa] µ [MPa] η
[
s−1
]

δ

inner & outer 6.14 2.3 0.01 1.5

intermediate 6.14 2.3 0.001 3

As an example of results, Figure10(a) shows the distribution of the circumferential Cauchy stress

through the three layers at an early stage where the growth of the inner and outer layers dominate,

for instance here at25∆t where the deformed total thickness is2.18mm. One can observe that this

stress state is in compression in the the external layers, while it is in tension in themiddle layer.

This situation is reversed later on when growth in the outer and inner layers isin equilibrium while

the middle layer continues growing untill a higher equilibrium value (here forδ = 3). Figure10(b)

shows this fact at800∆t where the total thickness is this time2.86mm.
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Figure 9. Three-layer thick-walled tube. Geometrical dataand finite element mesh.
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Figure 10. Plots of the residual stress vs deformed radius for the three-later thick-walled tube at25∆t (a),
and800∆t (b).

In all cases, this simple illustrative example shows that free growth of multi-layered soft tissues

can exhibit residual stresses not only due to different elastic characteristics, but also because of the

different growth behaviours within each layer.

6. CONCLUDING REMARKS

The main thrust of this paper has been the presentation of a thermodynamicallysound formulation

of growth designed for soft tissues at finite strains. Based on the nowadays well known kinematic

notion of multiplicative decomposition of the deformation gradient into an elastic part and a growth
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part, standard arguments of continuum thermodynamics lead to a concise characterization of general

growth evolution laws.

As an illustrative modelling example, the proposed methodology has been applied to model

isotropic growth. Simple stress-dependent and stress-independent laws have been proposed and

embeded into a finite element context. A set of representative numerical simulations has then been

given to illustrate their effectiveness. Of course, and out of the scopeof this paper, more complex

growth laws can also be proposed within this framework.

Last but not least, the numerical effort is of the order of that of finite plastic computations.

Moreover, the algorithms can simplify considerably when isotropy is considered. This has been

shown through the detailed numerical algorithms given for the two growth lawsused in this paper.
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[15] Karšaj I, Sansour C, Soric̀ J. The modelling of fibre reorientation in soft tissue.Biomech.

Model Mechanobiol.2009;8(5):359–370.
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