N
N

N

HAL

open science

On a continuum thermodynamics formulation and
computational aspects of finite growth in soft tissues

Boumediene Nedjar

» To cite this version:

Boumediene Nedjar. On a continuum thermodynamics formulation and computational aspects of
finite growth in soft tissues. International Journal for Numerical Methods in Biomedical Engineering,

2011, 27, pp.1850-1866. 10.1002/cnm.1448 . hal-00668026

HAL Id: hal-00668026
https://enpc.hal.science/hal-00668026
Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://enpc.hal.science/hal-00668026
https://hal.archives-ouvertes.fr

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
Int. J. Numer. Meth. Biomed. Engng010;00:1-21
Published online in Wiley InterScience (www.intersciengkyvwcom). DOI: 10.1002/cnm

On a continuum thermodynamics formulation and computational
aspects of finite growth in soft tissues
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Pascal, 77455 Marne-la-Vak, France

SUMMARY

In this paper, we try to settle the bases of a concise modediingrowth within the unified framework

of continuum thermodynamics. Special emphasis is placethermodelling of soft biological tissues
at finite strains. For this, we adopt the nowadays well knowrerkatic assumption of a multiplicative
decomposition of the deformation gradient into an elasdit @and a growth part. It is shown how continuum
thermodynamics is crucial in setting convenient formsli@r¢oupling between stress and growth in general.
The particularization to isotropy simplifies consideratblg growth modelling from both the theoretical and
the numerical points of view. Simple growth constitutiveiations are proposed and embedded into a finite
element context. Finally, representative numerical exasgxamining stress-dependent growth and residual
stress arising from growth and resorption close this stGdypyright© 2010 John Wiley & Sons, Ltd.

Received ...
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1. INTRODUCTION

During recent years, much interest has been devoted to the modelling lo§ib& tissues, a
challenging task in the field of computational biomechanics. Living tissuesncmusly change
and adapt where growth and remodelling are fundamental mechanicasges in their normal
development and in various pathological conditions. On one hand, gisvptimarily thought as
a volume change with the mass change following from it. And on the other manthdelling
(change in properties) can also lead to mass change if the structurgeshene related to the density
changes. The reader is referred for exampleli®{ 3; 4; 5) for extensive discussions concerning
these topics.

The present paper deals with biomechanical aspects of growth stimulatedeblganical
guantities such as the stress and/or the strain in the tissue. We focus leef@omlation for finite
growth and finite deformation. More precisely, and motivated by the comntirtheory proposed by
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2 B. NEDJAR

Rodriguez et al. (1994) irg}, the key kinematical assumption is a multiplicative decomposition of
the deformation gradient into a growth part and an elastic (reversibleyparalsoZ; 7; 8; 9) among
others. Moreover, density is considered here to be constant in time aitidpoan assumption also
adopted in earlier works, for instance sé€;(11) among others. The growth consists then of the
additional or removal of the same tissue material.

Embedded into the classical continuum thermodynamics framework, theselextions lead
to remarkeable properties and match ideas used in earlier works, e.gfafences cited above
for example. Growth being considered here as a dissipative processshibwn how the effect
of growth on stress and the effect of stress on growth become evideatcdnstitutive relations
and the characterization of the growth evolution are then constructed ordacce with the
continuum thermodynamics requirements. From this framework, it naturafigeap that stress
is the biomechanical factor which drives growth. This agrees with margntemntributions in
the modelling of soft tissues, see for examplé&; (13) for the growth modelling in arteries. Other
theories are based on strain-induced or strain-energy driving grblethever, and as mentioned for
instance in ), in the absence of a universal mechano-growth law, experimentatdatae found
to support each of these mechanical quantities to modulate the growth.

When particularized to isotropy, the above general continuum formulatiomplifies
considerably. On the theoretical side, it is deduced that the growth evohelmtes the stress tensor
to the symmetric growth-rate tensor. This later quantity was first define@)irS{mple growth
laws can be proposed and/or adapted from previous ideas develoghedliterature. For instance,
growth or resorption can occur so that the stress due to loading retuainseguilibrium state. And
on the numerical side, the whole procedure is very similar to the currentostitte art in the finite
element treatment of elastoplasticity. In particular, use is made of the so cafledential map to
approximate the (local) growth evolution equations. This procedure is detaileach of the model
examples proposed in this work.

An outline of the remainder of the paper is as follows. The adopted kinemagiorgsion
is recalled in Section 2. Then, the finite strain growth formulation is developeSettiion 3
where the general form of stress-growth couplings is established ordsstce with continuum
thermodynamics. In Section 4, the particularization to isotropy is developmd fyoth the
theoretical and the numerical points of view. A special attention is devotedet@ltforithmic
update of the local growth evolution equations. The efficiency of theqmeg framework is then
evaluated numerically through a set of representative numerical exam@estion 5. And finally,
conclusions are drawn in the last section. Interesting properties will didtged throughout the
mathematical developments in this paper with noteworthy remarks and comments.

2. OVERVIEW OF THE KINEMATIC ASSUMPTIONS

As a point of departure, we adopt the nowadays well accepted kinemsdgiongtion of a
multiplicative decomposition of the overall deformation gradi&hinto an elastic par#® and a
(stress-free) growth pafe, as introduced by Rodriguez et al. i)

F = F°F®. (1)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
Prepared usingnmauth.cls DOI: 10.1002/cnm



FINITE GROWTH IN SOFT TISSUES 3

Here F*° is the part of the deformation gradient comprising the deformation gradieimgg
rise toresidual elastic stresF™ and the deformation gradient due to external loadifg see
e.g. @). Hence we also have the sub-decompositith= FF", see the sketch in Figurk for
an illustration. For instance, and in the absence of external loBfs=(F"), the partF* can
be computed as an elastic deformation that ensures the continuity of thelbddgt, there is
no requirement that the growth paf corresponds to a compatible displacement fiekl,for
example, a cell may grow independently of its neighbors. However, if uakistress is not of
interest, it is not necessary to compui®. And in all cases,F¢ can be used as the principal
deformation variable.

0

Qp

Fé

]
i

Figure 1. Local decomposition of the deformation gradienffihite growth (after 2) modified from §)).

Last but not least, notice that since growth is not an isochoric prosessavejs = det [F?] # 1
for the growth Jacobian. One has th&nh> 1 for growth (added volume), ané# < 1 for resorption
(removed volume).

3. CONSTITUTIVE MODELLING OF GROWTH

The next step is to account for the effects of growth on stress togettiethe effects of stress on
growth. It is shown here that the continuum thermodynamics framewodticates a useful tool to
naturally exhibit those mutual phenomena.

In general, the elastic behaviour is assumed to be characterized byeaémregy function) of the
form

¥ =9(C°), )

whereC® = F°' F© is the elastic right Cauchy-Green tensor. Here and in all what follows, the
notation(.)” is used for the transpose operator. The dependeng¢eonf F° throughC*® follows
from the fundamental principle of material frame indifference, e.g. $ée (

By its nature, growth is considered as a dissipative phenomenon. Towimiog our attention
to isothermal processes, the second law of continuum thermodynamic®islgivthe following

Copyright®© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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4 B. NEDJAR
expression in the form of the Clausius-Duhem dissipation inequality:
1. . .

wheres is the (symmetric) second Piola-Kirchhoff stress tensor,@nd F” F denotes the (total)
right Cauchy-Green tensor. In egn. (8)s a nonmechanical and nonthermal energy supply source
of an electrochemical and/or biological nature assumed to be preseninig thaterials such as
soft tissues. For instance, a similar quantity has also been introduced irbtberdorientation
remodelling theory proposed ii%). For notational purposes it is written in rate form, but it is
not necessarily the time derivation of a scalar function. Its dimension is anedtic energy per unit
of time.

Inserting the general expression (2) into (3), and use of the kineméaitoreC = F&' C°Fs,
give after simple algebraic manipulations exploiting tensors’ symmetries

oY
ocCe

_ 1. _
D:|:S—2 :|206+§+Ceslg20, (4)
where § = FeSFe" is the second Piola-Kirchhoff stress tensor in the (local) intermediate
configuration defined by"¢, and wherdg = FeFs ' is the left-rate tensor of growth distorsion.
This latter is the work-conjugate of the Mandel-like stress teG&d.

Remark 1. Notice that the last term in the left hand side of (4) can be equivalently wittexigh
the following stress-power relationship:

C®S:18=CS: Lt (5)

where, this timeL& = F& ' F¢ is the right-rate tensor of growth distorsion. It is the work-conjugate
of thematerialstress tensaf’'S. This latter is called an Eshelby-like stress tensof#) &s, up to a
spherical term and a sign, it coincides with it. However, one can also &g Mandel-like stress-
tensor, the Mandel stress being defined with respect to the so-calledéatiate configuration. [

3.1. Effects of growth on stress.

By standard arguments of continuum thermodynamics, see for exafiplég), we end up with
the following expression for the stress tensor:

oY

S=2
ocCe

(6)

This general constitutive relation clearly traduces the effects of growtlstess since the
elastic right Cauchy-Green tens6f depends on the growth deformation varialtg, i.e. C¢ =

—1

Fe "CFs .

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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FINITE GROWTH IN SOFT TISSUES 5

3.2. Effects of stress on growth.

We continue now with the description of the induced growth in the soft tisalénd into account
the constitutive relation (6) into (4), the reduced dissipation becomes

D=¢+ 318 >0, @)

where we have introduced the notatiBn= C*S for the generally nonsymmetric Mandel-like stress
tensor.

Then, one has to define an evolution equation for the rate qudtitin accordance with
the expression (7), a natural choice is to assume this rate to depend onrikcomjugate
thermodynamic forc&. Such a relation may be either of a simple or a complicated form. At this
stage of the study, we consider a general expression written as

15 =1(%), (8)

whereI'(X) is a tensor valued function. Furthermore, using the definition of the lefttfatie
relation (8) can be equivalently written as

F& =T(X) F&, 9)

where one can clearly notice the effect of stress on growth through risertel functionI'(X).
This general expression describes the direct evolution of the nonsyimmgeaiwth deformation
gradient. And from the numerical point of view, its approximation in the solupimtess could
be non trivial. However, algorithms for the evaluation of the exponential ofi@nonsymmetric
argument have been developed for similar local evolution equations in fiaiteplasticity, see for
example {9; 20). The isotropic case discussed below simplifies considerably this task.

Remark 2. With the general evolution equation (8), the scalar valued proBucl'(X) could be
positive or negative, unleds(X) is derived from a (convex) pseudo-potential functiaix), i.e.
T'(¥) = 0=¢(%), in which case it would be always positive. Hence, in general, an gisegply in
the form of nonzero values for the source teria needed in order to always satisfy the dissipation
inequality (7). O

4. ISOTROPIC FINITE GROWTH

Of interest for the developments presented below is the consideration isbthepic case. In our
context, this restriction is assumed on the intermediate configuration defirietl Bye free energy
function+ in egn. (2) equivalently depends on the elastic left Cauchy-Greenrtéhiso FeFe"
i.e.1) = ¢(b°). Then, and as a consequence, the constitutive relation (6) can lequliyde written
as, see e.gl¢; 21), o

T = 2%bc, (10)
whereT = Jo (= FSFT) is the (symmetric) Kirchhoff stress tenser,being the true Cauchy
stress tensor andl = det [F'] > 0 is the Jacobian of the overall deformation.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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6 B. NEDJAR

Combining (10) with the relatiol§ = F¢ '+F¢ ', replacing the result into (7), and exploiting
again the tensors’ symmetries, lead to:

Doci22  pearp > (11)
obe
where .
d® = sym(i®] = 5 (]}?‘gFgf1 + FngFgT) (12)

is no more than the growth rate-of-deformation tensor as first definé), isde alsoZ).

Expression (11) can again be rearranged. In fact, and on one Baplbiting the kinematic
relationb® = FCe ' FT, whereCe = F&' F¢ is the growth right Cauchy-Green tensor, one can
define the Lie derivative d§¢ as, see e.g20),

d

£vb :F&

[Cg’l} FT. (13)
An easy calculation then gives the identity
1 T
- 5vae = F°d®F° . (14)

And on the other hand, replacing this last result into (11) and using thstittdgive relation (10)
lead then to the following reduced dissipation inequality relative to the isotragie: ¢
1
2

D=¢H4T: [ (L,b°) bel] >0, (15)

which must hold for all admissible process in the soft biological tissue.

Now for the description of the (local) growth evolution, one has to defiredaion for the rate
quantity —3 (£,b°) b . In view of the expression (15), a natural choice is to assume this later to
depend on the Kirchhoff stress tensoiWe consider again a general form written this time as

- % (Lb)b =g(T) = L,b° =—2g(T)b", (16)

whereg(7) is a tensor valued function which, besides on its lonely argumentn also depend
on other variables, but these latters can only act as paramietets= g(7;...). Notice that from
(16), the growth response reduces to the evolution of the (symmetric)ldpasarb® defining the
stress through the constitutive relation (10).

Remark 3. Notice that the tensorial functiog(r) is restricted by material frame indifference to
isotropic functions. That is,

9(QTQ") =g(r), vQ € SO(3), 17)
whereSO(3) is the finite group of rotations. O
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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FINITE GROWTH IN SOFT TISSUES 7

Remark 4. Use of the definition (13) together with the kinematic relaioh = = F~16°F -7 into
the evolution equatiofil6),, we get
d 1 ~ ~ .
= [Cg ] — 2GCc* for G=FlgF. (18)
This last expression allows the integration of the same growth evolution equhtibthis time in
the material reference configuration. O

Remark 5. Comparing the evolution equations (8) and (16), and using the kinematidtioefn
(12) and (14), the tensorial functiogsandT are related as

1

g(t) = F° sym [r (2 - FeTTFe’Tﬂ Fe (19)

O

To get further insight into the nature of the present general formaftr response, the tensorial
equation(16)- implies the following evolution for the rate of growth volume change:

d g1 —
o [ [7%]) = tr[g()]. (20)

where we recall thaf¢ = det[F'¢] is the growth volume change.

To prove this result, let us first recall that time differentiationbéf= FC® ' F7 vyields the
identity
b = 1b° + b°l" + L,b°, (21)

wherel = FF~! is the spatial velocity gradient. The elastic volume change being given by
J¢ = det [F*] = (det [be})l/2 > 0, the proof follows from (21) along with (16), since

. 1 -1 . 1 -1
JO= SJbT b0 = |trfd] 4 S LbT b | = et [d —g(7)), (22)

whered = sym[l] denotes the rate of (total) deformation gradient tensor. Inserting the rsatio
J = JeJ& and.J = Jtr [d] into (22) gives (20). O

Moreover, using the identity/s = .J5tr [d#], the evolution equation (20) can equivalently be
written as L dv
— = 2] —
g = trlas =trlg(r)]. (23)

whereV is the growth volume as defined i&3), see alsoZ).

4.1. A growth modelling example

The modelling framework developed above is independent of the partidutéces made for the
elastic behaviour and the growth evolution in soft tissues. However, atiteifight of the lack

of appropriate experiments, we consider for simplicity that the growth psoieuniform in all

directions. That is, the tensorial functigitr) simplifies to a spherical form as

g(m) =g(7) 1, (24)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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8 B. NEDJAR

whereg(7) is here a scalar valued isotropic function, and wheisethe second order identity tensor.
With this specific type of evolution law, the rate of volumetric growth becomesega. (23),

tr [d8] = 3g(7). (25)
Examples for the general functigfir; . . .) will be precised in the applications’ section below.

4.2. Integration algorithm

We formulate in this section a numerical algorithm to integrate the constitutive redateveloped
above. The algorithmic approximation mimics the principal steps adopted in mduhée

element treatments of elastoplasticity and viscoelasticity at finite strains basadlbplicative

decomposition kinematics.

In the isotropic case, and at a given material point, we consider knowsdiugon at time
t,, consisting of the deformation gradieh}, and the internal variable, saty,gf1 (or bS, since
bs = FnC,%‘*lFE). Given a deformation gradierft, ., att,.;, we are interested in the stresses
and the updated internal varial!]ﬁrl.

An appropriate approximation of the general evolution equdtiéiy, is given by the exponential
map
bl1 = exp [~2At g, 1] b3, (26)

where At = t, 11 —t,, and b2, is the trial state defined from the initial conditions and the
application of the operator split t016),, see for example2d; 25) and references therein for
similarities with the elastoplastic case,

b%t-il = Fn+1C§7 FnT+1- (27)

In deriving (26), use has been made of the particularization (24) whergrowth scalar function
is evaluated at;, .1, i.€.g,+1 = g(Tnt1; .. .), and where in turng,,; is defined by the constitutive
relation (10) evaluated &, , ;. The discrete equation (26) simplifies considerably when written in
the principal frame. In fact, on one hand, ie&;‘fl and(\%,, )% A =1,2,3, denote the principal
directions and principal values bf . ;. And on the other hand, let'>)" and( %% , )2, A = 1,2,3,
be the corresponding quantities fey'}, . Then, from the uniqueness of the spectral decomposition,
(26) impliesn}), = n{", A = 1,2, 3, for the principal directions and
2 . 2
( Zn+1) = exp [_2At gn+1] ( ?4tn+1) , A=1,23. (28)
Moreover, taking the natural logarithm of this later expression, we obtain
SZn—Q—l = 5?4t7rz+1 — At In+1, A= 1; 27 3 (29)

for the logarithmic elastic principal stretey ,, , ; = In[)\%,,,,] and its trial counterpart.

The isotropy assumption also implies that the free enebgg a function of the principal

elastic streches, and therefore, a function of the principal logarithmich&tse) (b°) = (e°) for

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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FINITE GROWTH IN SOFT TISSUES 9

Table I. Exponential map for isotropic finite growth.

Given{F,, b} andF, , for atime incremenit¢, then
1. Compute the initial state for the exponential map
biﬂh = Fn+1C§_1Ff+1
forcs ' = F 'beF; 7.
2. Compute the spectral decomposition
bfﬁh = i: (Azt;+1)2 "gﬁr)ltr ® ng;i)ltr
and the Ioga?i?ﬁmic stretche§™ , =In [X57,].

3. Solve for the updated logarithmic stretches, _ |,
eqn. (29).

4. Recover the updated tensors

3
A A
b, 11 Z exp [2 5?4n+1} ngur)1 ® "2431
A=1
3
A A
Th+l1 — Z TAn+1 n’EL-’r)l ® n’EL—&-)l
A=1 R
A A %
Wherenfw)1 = nfw)f’ andran41 = %(EZ+1)'
A
A=1,2,3.

5. Compute the algorithmig x 3 matrixa$ , , and
the spatial tagent moduti,, . ;.

e® = [e5, 5,57 Moreover, the stress tensej ., being coaxial withb¢ , |, they share the same
principal directions{nﬁffl}A:Lgyg for the principal kirchhoff stresses, , .1 given as

. N .

T+l = @(Enﬂ)v (30)
wheret, .1 = [T1n41,Tent1, 3ne1)” . Tablel summarizes the conceptual steps involved during the

algorithmic treatment of the isotropic finite growth. Being growth model spesiféps 3 and 5 of
Tablel will be detailed in the next section for each particular model example.

4.2.1. Algorithmic tangent moduliThe initial boundary value problem of finite growth is nonlinear.
The sources of nonlinearities are geometric (arising from the multiplicatiesidtics) and material
(arising from the nonlinearity of the constitutive relations). Hence, thiblpro is solved by means
of an iterative process of the Newton'’s type. Accordingly, this reqiresinearization of the global
equilibrium problem about a known state at time This procedure is nowadays standard. We give
here the contribution to the material part of the tangent stiffness (step akdé I where it is

of interest to determine the relation between the rate of strain and the ratesd.dim spatial

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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10 B. NEDJAR
description, this takes the form

£1J7—n+1 n+lsn+1 n+1 cn+1 . dn+1 (31)

whereL, 1,11 is here the Lie derivatve of the Kirchhoff stress tensor, éndl is the fourth order
spatial tangent moduli given by, see for instan®é ¢6) for detalils,

A)tr A) tr
n+1 Z Z a5 p i1 miwr)1 ® 51+)1 + ki (32)
A=1,3B=1,3
Wheremf;ffr = fi)fr ® ﬁ{i)fr, and the nonzero componemts, ., of the rank-four tensak!", |

relative to the bas@nﬁi)l“} aregivenby/, J K, L =1,2,3,

tr _
kirrr = —2Tra4a,

n )\etr 2 _ n )\etr 2 33
ks = ki = LR ZSH)Q TJEJI( ;”H) for I # J, (33)
(/\I n+1) - (>\J n+1)

and where:%, ;. ., are the components of tiiex 3 matrix a? | obtained by linearizing the local
algorithm (29)

o7,
g ZTntl 34
at, e (34)

This latter matrix is also model dependent, and it will also be detailed for eastitgmodel
example in the next section.

5. REPRESENTATIVE NUMERICAL APPLICATIONS

We apply in this section the preceding developments to two simple model examgesadh: a
stress-dependent growth model, and a stress-free growth modelofromiodels, we choose the
same hyperelastic behaviour for the soft tissue as given by the Hentkydel whose free energy
is written as

(b) = 5 K (nlJ°] +u§:OnP}), (35)
where e, = J¢ "\, A =1,2,3, are the principal deviatoric elastic stretches, and 0 and

> 0 are the bulk and shear moduli, respectively. After noticing th&f°] = =$ + 5 + &5, the
elastic stress-strain relation in principal axes as given by (30) takesltbeihg simple form

7T = he® (36)

where the second order tengois given as
h:m1®1+2u{I—;1®1}, (37)
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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FINITE GROWTH IN SOFT TISSUES 11

and where, and in all what follows, we have introduced the vector notatieril, 1,1]". Observe
thath is constant for this particular hyperlastic behaviour.

5.1. A stress-dependent growth model

As a first modelling example, we consider a growth law inspired by the thredibeoym state
model proposed inl). Here, and within the present tensorial formulation, only one equilibrium
state is considered for simplicity, say, the equilibrium around the normaligdbggal state of
stress. The isotropic scalar valued functigmr; . ..) in egn. (24) is chosen as

g(rid) = n{wr[Z] —p} =n{trfo] - p}. (39)

where the parameter is the equilibrum (hydrostatic) stress stateis a viscous-like parameter
which influences the rate of growth, and the dimension of whidi®istime] . Hence, recalling
the stress relatiom = Jo, the growth is here governed by ttreie Cauchy stress state defined in
the actual (deformed) configuration.

5.1.1. Algorithmic aspectd-or this simple growth law, the logarithmic stretches update at the
integration points level is explicit (step 3 of Tabe

€1 = [T+ 0,11 @17 {2t + Atypl}, (39)

where we have used the notatiop,; = n At/J,+1, h is given by (37), and wherd,, ., =
defF,,.1] is a known quantity at time, ;. Moreover, the algorithmi8 x 3 matrix aiH in step 5
of Tablel is here given by

at = [h 406,011 01) " X [T+ 0,41 [Fapr 1] 1@1], (40)

where one can notice thgt, . ;.1] = tr[r,,.1]. In deriving (40), use has been made of the kinematic
relation J,, .1 = J5 ,,J5,, Which, by algorithmic construction, is also equivalently written as

Jnt1 = J5 1 JE. Hence, one obtains the differential identity,d, = J,41 1.deS%; which is used
during the computation (34) to get (40).

5.1.2. Homogeneous growth exampkes an illustration, we consider &10 x 10 x 10) mm?
specimen discretized with x 4 x 4 common 8-nodes brick elements. This sample is submitted
to a uniform traction along the z-axis with the two other dimensions free (seseiy For the
soft tissue, we assume elastic properties of the same order as those ehiptajpe modelling of
arterial walls, see for exampl@7): x = 2.5 M Pa andp = 1.15 M Pa, i.e. with a Poisson’s ration

v = 0.375. The equilibrium stress is chosenjas- 0.45 M Pa.

Two series of computations are performed, the first one with a uniforrecpbed nominal
traction of value0.6 M Pa (resultant? = 60 N), and the second one with a prescribed nominal
traction of value0.2 M Pa (resultantF = 20 N). While the former loading exhibits growth, the
later produces resorption, compare the loadings with the value of the nphysiblogical stress
p. Figure 2 shows the results of the evolution of the Cauchy stregs for different values

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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12 B. NEDJAR

of the material viscous-like parametgr In each computation, the stress decreases or increases
asymptotically reaching the equilibrium valpe

«Q .
= 3
E -
[}
(%]
& N
m l
()
= !
|_
@
%]
=
kel
=
=
=]
0 _.
Time (s)

Figure 2. Evolution of the axial stress;s in cases of growth or resorption for different values of the
parameter, [(M Pa.s) ).

For instance, and as a geometrical illustration, Figutemnd 4 show the evolutions of the
deformations for growth and resorption, respectively, obtained with #réicplar valuen =
0.005(M Pa.s)~t. Here again, one can observe that the tissue grows or resorbs wrilhegm is
reached.

sl J = det[F| |

Growth ratio

O 1 1 1 1
0 200 400 600 800 _.
Time (s)

Figure 3. Evolution of the total volumé and the axial streche§\; = X2, \3) in the case of growth
(F = 60N) with ) = 0.005 (M Pa.s) L.

5.1.3. A nonhomogeneous growth in a tube. a second illustrative example, we consider the
response of a long circular tube submitted to a prescribed constant Irgegasurep; in a selected

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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Growth ratio

0.2+ —

0 L L L L
0 200 400 600 800 _.
Time (s)

Figure 4. Evolution of the total volumég and the axial streches\; = X2, A3) in the case of resorption
(F = 20N) with = 0.005 (M Pa.s) .

subsection in the middle. In the reference configuration, the internalsr&ii®, = 4 mm and the
thickness ise = 0.5 mm. The lenght of the portion we consider in the computation is initially
H = 30mm. For symmetry reasons, we choose to discretize one quarter of the tubg wih
common 8-nodes brick elements and three elements through the thickeesstotal of 576
elements (see Figuis.

81
S35
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]
T A Y Y B A

L U N
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!

« 10

10

W W U W W W W

Figure 5. Circular tube submitted to an internal pressuenrizetry, finite element discretization, loading
and boundary conditions.

For the hyperelastic behaviour of the tissue, use is made of the followirameters (see
for example £8; 29) for similar values adopted in the modelling of aretries)= 8.5 kPa and
uw=3.2kPa,i.e.v = 0.4. And for the growth part, we choose the equilibrium stress0.65 k Pa
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14 B. NEDJAR

and the evolution parameter= 510~*(kPa.s)~'. Figure6 depicts selective results obtained for
the prescribed constant internal pressure of value 0.2 kPa. The time increment was fixed to

At = 1s during the whole computation. One can observe a pronounced growteataf increased
tension in the middle of the tubdf > 1), and resorption at areas where the stress state were under
the equilibrium stress at the initial state (the zones whére 1).
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Figure 6. Qualitative simulation of growth. Different defeed meshes and growth fiel&@ = de{ F¢] at the
last time step.

5.2. A stress-independent growth model

As a second modelling example, let us consider and discuss a growth lawitidependenon the
stress state. For instance, such a model could be interesting in describivty i stress-free tissue
culture, or in the normal developement of tissues from young to matureisrga. We consider the
general scalar functiog(r;...) in eqn. (24) given as

g(JE) =n (6 = J*)7, (41)

where the dimensionless is a growth equilibrium parameter, is again a viscous parameter
influencing the rate of growth, the dimension of which is hgimae] !, and the power > 0 is

a convenient dimensionless parameter. Hence, and as a first obseiuaticis modelling design,
the growth process stops when the growth volurieeaches the valug

5.2.1. Algorithmic aspectg=rom the algorithmic point of view, the logarithmic stretches update
(step 3 of Table) is rewritten here as

Jn+1 K
e —eotr At §— n+ 1 42
5n+1 €n+1 n < exp[€2+l.1] ) ( )
where we have used the propeity, ;, = expl[et, , ;.1] together with the kinematic relatioff_ , =
Jnt1/J5, 11 This nonlinear equation can be solved locally by means of a Newton itepaiticedure
as summarized in Tablg. The algorithmic3 x 3 matrix a?_ , (step 5 of Tablel) takes here a
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Table II. Local logarithmic stretche update.

GivenJ,; = defF, ;] and the time incremenkt¢, then

TR TH e (0)
1. Initialize:k =0, e, ] =5

2. Evaluate residual and check convergence

¥
&) e(k) | _otr Jnt1
Thi1 = —€p31 + é:nti-l - At’f] (5 - e(k)]_> !
exple, 1-1]

IF || %), ||> TOL THEN go to Step3

ELSE sete?, = &5/) andEXIT.

3.  Compute the tangent moduli and the increment

(k) JnJrl
Setan+1 = W
exple,1-1]

y—1 -1
Dgizl = [I + Atn'yagﬁ)l (6 - afﬁzl) 1® 1}

k k) (K
Al =Dyl

4. Update the logarithmic elastic streches

e(k+1) _ _e(k) e (k)
€n+1 - €n+1 n+1

Setk «+— k + 1 and return to Stef.

+ Ae

remarkably simple form
at ., =h. (43)

5.2.2. Uniform growth in a confined cylindéWe consider a plain cylinder confined in a rigid tube
so that no radial expansion can occur. At the initial state, the cylinder esmprfectly the hollow
tube with free initial stresses. Also, at time= 0, we consider thaF; = I so thatJ§ = 1. Then,

as the tissue grows, the confinment generates volumic stresses until gquilthrium is reached,

i.e. when J& = §. This uniform analysis is conducted in two dimensions under the plane strain
assumption, see Figufefor an illustration.

We use the following parameters for the hyperelastic behaviour of the tisste.14 M Pa
and ;. = 2.3 M Pa. And for the growth part, we choose the equilibrium growthéte- 2 and
fix the viscous parameter t9 = 0.001 s—!, this later having the same role as in the precedent
model. Figures (top panel) shows the evolution of the growth voluntefor different values of
the exponent parametet The morev is higher the more the growth process is slower. Hence,
~ can have the same influlence on the behaviour as the viscous parambteérthe former is
dimensionless as opposite to the later one. In each computdtiancreases asymptotically until
it reaches the model dependent given valde= § = 2. Also in Figure8 (lower panel), one can
observe that the corresponding internal pressure increases uefjudibrium stress is indireclty

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
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R =3mm

Figure 7. Confined growing cylinder. Plane strain two-disienal analysis. Geometry and finite element
mesh.

reached. This later is consequent of the structural effect of thdegmmoas opposite to the normal
physiological stress in the precedent growth law (in Section 5.1) whichawastrinsic material
parameter. Finally, notice that due to the confinment, the Jacobian of thellogeformation
J = defF|]is equal to 1 during the whole growth process.

5.2.3. Residual stresses arising from growdio gain more insight into the nature of the present
stress-independent growth law, we study in this section the responsgrofvang free three-layer
thick-walled tube. One can then expect that different growing behewvioetween the layers will
inevitably lead to resisual stresses within the tube thickness. To illustrate ¢chigualitatively, we
choose the geometry shown in Fig@and analyze its growth in two dimensions within the plane
strain hypothesis.

The following table gives the material data used for each layer during timpwiation. The
inner and outer layers have the same elasto-growth behaviour. Mordwvéhree layers are chosen
to have the same elastic behaviour. For the growth part, and for the salaitf, the exponent
parametery has been set tb for each layer. And for the other parameters, they have been chosen
such that the inner and outer layers grow faster to their equilibrium growti tthe intermediate
one, on one hand, and to a different value of this equilibrium growth, emmther hand. The time
increment was fixed té\¢ = 1s during the whole computation.

Layer kK[MPa] | p[MPa) | n[s7'] | 0
inner & outer| 6.14 2.3 0.01 1.5
intermediate | 6.14 2.3 0.001 3

As an example of results, Figut€(a) shows the distribution of the circumferential Cauchy stress
through the three layers at an early stage where the growth of the inch@uger layers dominate,
for instance here &5 At where the deformed total thicknes2i$8 mm. One can observe that this
stress state is in compression in the the external layers, while it is in tension niddée layer.
This situation is reversed later on when growth in the outer and inner layersdgiilibrium while
the middle layer continues growing untill a higher equilibrium value (here for3). Figure10(b)
shows this fact a800 At where the total thickness is this ti2e36 mm.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
Prepared usingnmauth.cls DOI: 10.1002/cnm



FINITE GROWTH IN SOFT TISSUES 17

=
)
@
3 22) i
Il
o0
=
o 2r T T e b
< / o
5] : e m
< / -
© 18+ -7 - 7
@ / - e
€ - e
] / . PSS
6l /.7 -7 i
, -
S ! / _/’/ =05
= AV aRe —me— 7 =0
< i, s -1
IR —_— 7= R
I e
% . ~4=3
120 i 1
l L L L L
0 500 1000 1500 2000 Time (S)
0
=
S 4
= \ -
a | —emm Y=
0 \
e \\ ¥ =
- \
» -2 \\ o _
> \\\\\ Y
N
NN o =
T SO
O _3 \ N S~
2 ; S -l
T \ S o Tl
L - _
7] \ ~~ -
° T - -
S —4r N T = -
> N T
I
_5,
_6 L Il + n
0 500 1000 1500 2000 Time (S)

Figure 8. Evolution of the growth volume change (top panel) and of the hydrostatic Cauchy stress (lower
panel) for different values of the parameter

Figure 9. Three-layer thick-walled tube. Geometrical datd finite element mesh.

Copyright®© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@010)
Prepared usingnmauth.cls DOI: 10.1002/cnm



18 B. NEDJAR

0.151 B

0.1 \

0.05 B

Circumferential Cauchy stress

0 0.5 1 15 2
Deformed radius at 25At [mm)

(@)

0.8 4

o —— ]

0.4} .

0.2 i

Circumferential Cauchy stress

0 05 1 15 2 25
Deformed radius at 800At [mm)]

(b)

Figure 10. Plots of the residual stress vs deformed radiuthéthree-later thick-walled tube 2% At (a),
and800 At (b).

In all cases, this simple illustrative example shows that free growth of multrddysoft tissues
can exhibit residual stresses not only due to different elastic chastict® but also because of the
different growth behaviours within each layer.

6. CONCLUDING REMARKS

The main thrust of this paper has been the presentation of a thermodynareaaily formulation
of growth designed for soft tissues at finite strains. Based on the rywadell known kinematic
notion of multiplicative decomposition of the deformation gradient into an elasti@pd a growth
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part, standard arguments of continuum thermodynamics lead to a conaigetehiaation of general
growth evolution laws.

As an illustrative modelling example, the proposed methodology has beendpplimodel
isotropic growth. Simple stress-dependent and stress-independenh#se been proposed and
embeded into a finite element context. A set of representative numerical sonalhas then been
given to illustrate their effectiveness. Of course, and out of the sobfigs paper, more complex
growth laws can also be proposed within this framework.

Last but not least, the numerical effort is of the order of that of finitestpdacomputations.
Moreover, the algorithms can simplify considerably when isotropy is coresidd his has been
shown through the detailed numerical algorithms given for the two growthuaes in this paper.
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