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Abstract

The Reduced-Basis Control-Variate Monte-Carlo method was introduced recently in [S. Boyaval and T.

Lelièvre, CMS, 8 2010] as an improved Monte-Carlo method, for the fast estimation of many parametrized

expected values at many parameter values. We provide here a more complete analysis of the method in-

cluding precise error estimates and convergence results. We also numerically demonstrate that it can be

useful to some parametrized frameworks in Uncertainty Quantification, in particular (i) the case where the

parametrized expectation is a scalar output of the solution to a Partial Differential Equation (PDE) with

stochastic coefficients (an Uncertainty Propagation problem), and (ii) the case where the parametrized ex-

pectation is the Bayesian estimator of a scalar output in a similar PDE context. Moreover, in each case, a

PDE has to be solved many times for many values of its coefficients. This is costly and we also use a re-

duced basis of PDE solutions like in [S. Boyaval, C. Le Bris, Nguyen C., Y. Maday and T. Patera, CMAME,

198 2009]. This is the first combination of various Reduced-Basis ideas to our knowledge, here with a view

to reducing as much as possible the computational cost of a simple approach to Uncertainty Quantification.

Keywords: Monte-Carlo method, Variance reduction, Control variate, Reduced Basis method, Partial

Differential Equations with stochastic coefficients, Uncertainty Quantification, Bayesian estimation .

1. Introduction

The Reduced-Basis (RB) control-variate

Monte-Carlo (MC) method was recently intro-

duced in [1] to compute fast many expectations

of scalar outputs of the solutions to parametrized

ordinary Stochastic Differential Equations (SDEs)

at many parameter values. But as a simple,

generic MC method with reduced variance, the

RB control-variate MC method can also be useful

in other parametric contexts and the main goal

of this article is to show that it can be useful to

Uncertainty Quantification (UQ) too, possibly in

combination with the standard RB method in a

PDE context.

There is a huge literature on the UQ subject.

Indeed, to be actually predictive in real-life situ-

ations [2], most numerical models require (i) to

calibrate as much as possible the parameters and

(ii) to quantify the remaining uncertainties propa-

gated by the model. Besides, the latter two steps

are complementary in an iterative procedure to im-

prove numerical models using datas from experi-
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ments: quantifying the variations of outputs gen-

erated by input parameters allows one to calibrate

the input uncertainties with data and in turn re-

duces the epistemic uncertainty in outputs despite

irreducible aleatoric uncertainty. Various numer-

ical techniques have been developped to quantify

uncertainties and have sometimes been used for

years [3, 4]. But there are still a number of chal-

lenges [5, 6, 7].

For PDEs in particular, the coefficients are typ-

ical sources of uncertainties. One common mod-

elling of these uncertainties endows the coeffi-

cients with a probability distribution that presum-

ably belongs to some parametric family and the

PDEs solutions inherit the random nature of the

uncertainty sources. A Bayesian approach is often

favoured to calibrate the parameters in the proba-

bility law using observations of the reality [8, 9].

But the accurate numerical simulation of the PDEs

solutions as a function of parametrized uncertain

coefficients is a computational challenge due to its

complexity, and even more so is the numerical op-

timization of the parameters in uncertain models.

That is why new/improved techniques are still be-

ing investigated [10, 11]. Our goal in this work

is to develop a practically useful numerical ap-

proach that bases on the simple MC method to

simulate the probability law of the uncertain coef-

ficients. We suggest to use the RB control-variate

MC method in some UQ frameworks to improve

the computational cost of the naive MC method, in

particular in contexts where some coefficients in a

PDE are uncertain and other are controlled.

There exist various numerical approaches to

UQ. The computational cost of MC methods is

certainly not optimal when the random PDE solu-

tion is regular, see e.g. [12]. But we focus here on

MC methods because they are (a) very robust, that

is useful when the regularity of the solution with

respect to the random variables degrades, and (b)

very easy to implement (they are non-intrusive in

the sense that they can use a PDE numerical solver

as a black-box, with the values of the PDE coef-

ficients as input and that of the discrete solution

as output). Besides, note that even when the ran-

dom PDE solution is very regular with respect to

the random variables, it is not yet obvious how al-

gorithms can take optimal profit of the regularity

of random PDE solutions and remain practically

efficient as the dimension of the (parametric) prob-

ability space increases, see e.g. [13]. So, focusing

on a MC approach, our numerical challenge here

is basically two-sided: (i) on the probabilistic side,

one should sample fast the statistics of the random

PDE solution (or of some random output that is

the quantity of interest), and (ii) on the determin-

istic side, one has to compute fast the solution to

a PDE for many realizations of the random coef-

ficients. It was proposed in [14] to use the RB

method in order to reduce the numerical complex-

ity of (ii), but this does not fully answer the nu-

merical challenge. In particular, although the RB

method can improve naive MC approaches at no-

cost (since the selection of the reduced basis for the

PDE solutions at various coefficients values can be

trained on the same large sample of coefficients

values that is necessary to the MC sampling), the

resulting MC approach might still be very costly,

maybe prohibitively, due to the large number of

realizations that is necessary to accurately sample

the statistics of the PDE solution (side (i) of our

challenge above). In this work, we thus tackle the

question how to reduce the numerical complexity

of (i). We have in mind the particular but useful

case where one is interested in the expected value

of a random scalar output of the random PDE so-

lution as a function of a (deterministic) control pa-

rameter, typically another (deterministic) coeffi-
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cient in the UQ problem which is “under control”.

(Think of the construction of response surfaces for

a mean value as a function of control parameters.)

A similar parametric context occurs in Bayesian

estimation, sometimes by additionally varying the

hyper parameters or the observations. In any case,

our goal is to reduce the computational cost of a

parametrized (scalar) MC estimation when the lat-

ter has to be done many times for many values

of a parameter, and we illustrate it with examples

meaningful in a UQ context.

To accelerate the convergence of MC methods

as numerical quadratures for the expectation of a

random variable, one idea is to tune the sampling

for a given family of random variables like in the

quasi-Monte-Carlo (qMC) methods [15, 16, 17].

Another common idea is to sample another ran-

dom variable with same mean but with a smaller

variance. Reducing the variance allows one to

take smaller MC samples of realizations and yet

get MC estimations with confidence intervals of

similar (asymptotic) probability. Many techniques

have been designed in order to reduce the vari-

ance in various contexts [18, 19]. Our RB control-

variate MC method bases on the so-called control-

variate technique. It has a specific scope of appli-

cation in parametric contexts. But it suits very well

to some computational problems in mathematical

finance and molecular dynamics as shown in [1],

and can be useful in UQ as we are going to see.

The paper is organized as follows. In Section 2,

we recall the RB control-variate technique as a

general variance reduction tool for the MC approx-

imation of a parametrized expected value at many

values of the parameter. The presentation is a bit

different to that in [1], which was more focused

on SDEs. Moreover, we also give new error esti-

mates and convergence results. In Section 3, the

RB control-variate MC method is applied to com-

pute the mean of a random scalar output in a model

PDE with stochastic coefficients (the input uncer-

tainty) at many values of a control parameter. In

Section 4, it is applied to Bayes estimation, first for

a toy model where various parametric contexts are

easily discussed, then for the same random PDE as

in section 3.

We also note that this work does not only im-

prove on the RB approach to UQ [14] but also

on an RB approach to Bayesian estimation pro-

posed in [20] with a deterministic quadrature for-

mula to evaluate integrals. For both applications,

to our knowledge, our work is the first attempt at

optimally approximating the solution with a sim-

ple MC/FE method by combining RB ideas of two

kinds, stochastic and deterministic ones [21]. Note

that for convenience of the reader non-expert in

RB methods, the standard RB method [22, 23] is

briefly recalled in Section 3.3.

2. The RB Control-Variate MC Method

The RB control-variate technique is a generic

variance reduction tool for the MC approxima-

tion of a parametrized expected value at many

values of the parameter. In this section we re-

call the technique for the expectation E(Zλ) of a

generic square-integrable random variable Zλ ∈ L2
P

parametrized by λ. The principle for the reduction

of computations is based on the same paradigm as

the standard RB method and allows one to acceler-

ate the MC computations of many E(Zλ) at many

values of λ. Our presentation is slightly different

than the initial one in [1] and gives new elements of

analysis (error estimates and convergence results).

2.1. Principles of RB control-variate MC method

Let P be a probability measure such that Zλ is

a random variable in L2
P

for all parameter values λ
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in a given fixed range Λ. Assume one has an al-

gorithm to simulate the law of Zλ whatever λ ∈ Λ.

Then, at any λ ∈ Λ, one can define MC estima-

tors EM(Zλ) that provide useful approximations of

E(Zλ), by virtue of the strong law of large numbers

EM(Zλ) :=
1

M

M∑

m=1

Zλm
P−a.s.−−−−→
M→∞

E(Zλ) , (2.1)

provided the number M of independent identically

distributed (i.i.d.) random variables Zλm ∼ Zλ,

m = 1 . . .M, is sufficiently large. Here, the idea is:

if E(Zλ
I
i ) :=

∫
Zλ

I
i dP is already known with a good

precision for I parameter values λI
i
, i = 1 . . . I,

(I ∈ N>0) and if the law of Zλ depends smoothly

on λ then, given I well-chosen real values αλ
i
,

i = 1 . . . I, the standard MC estimator EM(Zλ)

could be efficiently replaced by a MC estimator for

E(Zλ − ∑I
i=1 α

λ
i
Zλ

I
i ) +

∑I
i=1 α

λ
i
E(Zλ

I
i ) that is as ac-

curate and uses much less than M copies of Zλ.

In other words, if the random variable

Ŷλ =

I∑

i=1

αλi (Zλ
I
i − E(Zλ

I
i )) (2.2)

is correlated with Zλ such that the control of Zλ by

Ŷλ reduces the variance, that is if

V(Zλ) :=

∫
|Zλ − E(Zλ)|2dP ≥ V(Zλ − Ŷλ) ,

then the confidence intervals with asymptotic

probability erf
(

a√
2

)
(a > 0) for MC estimations

EM(Zλ − Ŷλ) :=
M∑

m=1

Zλm − Ŷλm

M

P−a.s.−−−−→
M→∞

E(Zλ) (2.3)

that are in the Central Limit Theorem (CLT)

P



∣∣∣EM(Zλ − Ŷλ) − E(Zλ)
∣∣∣

√
V(Zλ − Ŷλ)/M

≤ a

 −→
M→∞

erf

(
a
√

2

)

(2.4)

converge faster with respect to the number M of

realizations than the confidence intervals for (2.1).

The unbiased estimator (2.3) (E(Ŷλ) = 0) is thus a

better candidate than (2.1) for a fast MC method.

At a given λ ∈ Λ, we define αλ
i
, i = 1 . . . I,

in (2.2) to obtain the optimal variance reduction

minimizing V(Zλ − Ŷλ). Equivalently, the control

variates of the form (2.2) are thus defined as best

approximations of the ideal control variate Yλ :=

Zλ − E(Zλ) ∈ L2
P

that reduces the variance to zero

inf
(αλ

i
)∈RI

E



∣∣∣∣∣∣∣
Yλ −

I∑

i=1

αλi Yλ
I
i

∣∣∣∣∣∣∣

2 . (2.5)

The αλ
i
, i = 1 . . . I, thus solve a least-squares prob-

lem with normal equations for i = 1 . . . I

I∑

j=1

C
(
Zλ

I
i ,Zλ

I
j

)
αλj = C

(
Zλ

I
i ,Zλ

)
, (2.6)

where C(Y,Z) = E((Y − E(Y))(Z − E(Z))) denotes

the covariance between Y,Z ∈ L2
P
. And they are

unique as long as the matrix C with entries Ci, j =

C
(
Zλ

I
i ,Zλ

I
j

)
remains definite.

In general, the computation of a good control

variate is difficult (the ideal one Yλ requires the re-

sult E(Zλ) itself). But we proved in [1] that control

variates of the form (2.2) actually make sense in

some contexts, a result inspired by [24, 25]. Let

us denote by L2
P,0 the Hilbert subspace of random

variables Y ∈ L2
P

that are centered E(Y) = 0.

Proposition 1. Consider a set of random variables

Yλ =

J∑

j=1

g j(λ) Y j , ∀λ ∈ Λ , (2.7)

where Y j ∈ L2
P,0, j = 1 . . . J, are uncorrelated and

(g j)1≤ j≤J are C∞≥0(R) functions. If there exists a

constant C > 0 and an interval Λ̃ such that, for

all parameter ranges Λ = [λmin, λmax] ⊂ R, there

exists a C∞ diffeomorphism τΛ : Λ→ Λ̃ where

sup
1≤ j≤J

sup
λ̃∈τΛ(Λ)

(g j ◦ τ−1
Λ )(M)(λ̃) ≤ M!CM , (2.8)

4



for all M-derivatives (g j ◦ τ−1
Λ

)(M) of g j ◦ τ−1
Λ

,

then there exist constants c1, c2 > 0 independent

of Λ and J such that, for all parameter ranges

Λ = [λmin, λmax] ⊂ R, for all I ∈ N, I ≥ I0 > 0,

inf
Y∈YI

V(Yλ − Y) ≤ e
− c2(I−1)

I0−1 V(Yλ) , ∀λ ∈ Λ , (2.9)

where I0 := 1 + c1 (τΛ(λmax) − τΛ(λmin)) and YI =

span(Yλ
I
i , i = 1, . . . , I) uses the I explicit values

λI
i
= τ−1
Λ

(
τΛ(λmin) + i−1

I−1 (τΛ(λmax) − τΛ(λmin))
)
.

Prop. 1 tells us that using (2.2) as a control variate

makes sense because the variance in (2.9) decays

very fast with I for all λ ∈ Λ, and whatever Λ.

But the explicit construction of λI
i
, i = 1 . . . I,

in Prop. 1, for random variables Zλ that are an-

alytic in a 1D parameter λ, does not generalize

to higher-dimensions in an efficient way, a well-

known manifestation of the curse of dimensional-

ity 1. Yet, our numerical results (here and in [1])

show our variance reduction principle can work

well in contexts with higher-dimensional or less

regular parametrization. Then, given a parametric

family Zλ, λ ∈ Λ, how to choose parameter values

λI
i
, i = 1 . . . I, that can in practice efficiently reduce

the MC computations at all λ ∈ Λ ?

Given I ∈ N, let us define λI
i
, i = 1 . . . I, as

the parameter values with optimal approximation

properties in L∞
Λ

(L2
P,0): the linear space spanned by

Yλ
I
i = Zλ

I
i −E(Zλ

I
i ) minimizes the variances over all

λ ∈ Λ, or equivalently the λI
i
, i = 1 . . . I, minimize

d̄I := inf
{λI

1,...,λ
I
I
}∈ΛI

sup
λ∈Λ

inf
(αλ

i
)∈RI

V(Zλ − Ŷλ) . (2.10)

The variates Yλ
I
i , i = 1 . . . I, define an optimal I-

dimensional reduced basis in L2
P,0 for the approxi-

mations Ŷλ of the ideal controls Yλ at all λ ∈ Λ.

The values d̄I , I ∈ N, in (2.10) coincide with a

well-known notion in approximation theory [26]:

1A tensor-product of (2.9) in dimension d yields a rate −I/d.

the Kolmogorov widths of Y := {Zλ − E(Zλ), λ ∈
Λ} in Y ⊂ L2

P,0, and are upper bounds for the more

usual Kolmogorov widths of Y in L2
P,0

dI := inf
{Y I

i }∈[L2
P,0]I

sup
λ∈Λ

inf
Y∈span(Y I

1 ,...,Y
I
I )
‖Yλ − Y‖L2

P
.

Explicitly computing Kolmogorov widths is a

difficult problem solved only for a few simple sets

Y, let alone the computation of (non-necessarily

unique) minimizers. But in a many-query para-

metric framework where the MC computations are

queried many times for many values of the param-

eter, one can take advantage of a presumed smooth

dependence of the MC computations on the param-

eter to identify a posteriori some approximations

for the optimal parameter values λI
i
, i = 1 . . . I,

with prior computations at only a few parameter

values. Moreover, in practice, we shall be con-

tent with approximations of λI
i
, i = 1 . . . I that are

not very good, provided they produce sufficiently

fast-decaying upper-bounds of d̄I as I → ∞. To

our knowledge, this reduction paradigm has been

applied for the first time in [1] to minimize the

variance of many parametrized MC estimations. It

is inspired by the (by now) standard RB method

to minimize the discretization error in many-query

Boundary Value Problems (BVP) for parametrized

PDEs (see [22, 23] e.g. and Section 3.3).

Let us define linear combinations like (2.2)

when I = 0 by 0. We next define a (non-unique)

sequence of parameter values λi ∈ Λ, i ∈ N>0 by

the sucessive iterations I ∈ N of a greedy algorithm

λI+1 ∈ argsup
λ∈Λ

V(Zλ −
I∑

i=1

Zλi ) . (2.11)

For all I ∈ N, the parameter values λi, i = 1 . . . I,

approximate λI
i
, i = 1 . . . I in (2.10) and yield the

following upper-bound

σI := sup
λ∈Λ

V(Zλ −
I∑

i=1

αλi Zλi ) ≥ d̄I ≥ dI . (2.12)
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Using a finite discrete subset Λ̃ ⊂ Λ (possibly Λ̃ =

Λ in case of finite cardinality card(Λ) < ∞) and a

MC estimator for the variance, like

VM(Zλ −
I∑

i=1

Zλi ) =
1

M − 1

M∑

m=1

∣∣∣∣∣(Z
λ
m −

I∑

i=1

αλi Zλi
m )

− m − 1

m
Em(Zλ −

I∑

i=1

αλi Zλi )
∣∣∣∣∣
2

, (2.13)

we can finally define a computable sequence of pa-

rameter values λ̃i ∈ Λ, i ∈ N>0 by sucessive itera-

tions I ∈ N of a weak greedy algorithm at ω ∈ Ω

λ̃I+1 ∈ argsup
λ∈Λ̃

VM(Zλ −
I∑

i=1

Zλ̃i )(ω) . (2.14)

For all I ∈ N, our computable approximations

of the optimal parameter values λI
i
, i = 1 . . . I

used hereafter in practical applications will be λ̃i ≡
λ̃i(ω), i = 1 . . . I, from a set like in (2.14). Note that

the λ̃i, i ∈ N>0, are constructed iteratively and thus

do not depend on I but only on λ̃1 (and possibly on

Λ̃), which is useful in practice: the adequate value

of I for a good variance reduction is typically not

known in advanced and one simply stops the weak

greedy algorithm at I ∈ N when, at a given ω ∈ Ω,

σ̃I := sup
λ∈Λ̃

VM(Zλ −
I∑

i=1

αλi Zλ̃i )(ω) ≤ TOL (2.15)

is smaller than a maximum tolerance TOL > 0.

Even if greedy algorithms might yield approx-

imate minimizers of (2.10) that are far suboptimal,

numerical results show that they can nevertheless

be useful to computational reductions using the RB

control-variate MC method, just as they already

proved useful to computational reductions with the

standard RB method in numerous practical exam-

ples. Recent theoretical results [27, 28] also sup-

port that viewpoint as concerns the standard RB

method and can be straightforwardly adapted to

our framework. Comparing directly σI with dI at

same I ∈ N will not, in general, give estimates bet-

ter than σI ≤ 2I+1
√

3
dI . And this is pessimistic as re-

gards the convergence of the greedy algorithm in-

sofar as it predicts variance reduction only for sets

with extremely fast decaying Kolmogorov widths

dI . Yet, the two sequences σI and dI typically have

comparable decay rates as I → ∞, and it holds for

adequate η, β, c,C > 0 given any d0, α, a > 0:

a) dI ≤ d0I−α ,∀I ⇒ σI ≤ Cd0I−α ,∀I,

b) dI ≤ d0e−aI−α ,∀I ⇒ σI ≤ Cd0e−cI−β ,∀I,

c) dI ≤ d0e−aI−α ,∀I ⇒ σI ≤ CIηIe−aI−α ,∀I,

where c) is sharper than b) if, and only if, α > 1

or α = 1 and a > ln 2. So, when the Kolmogorov

widths dI decay fast (variance reduction is a priori

possible), greedy algorithms can be useful if used

with I sufficiently many iterations 2.

The latter results can also be adapted to the

weak greedy algorithm, like in [28]. For all ǫ ∈
(0, 1) and I ∈ N, given any θI ∈ (0, 1), we define

the smallest number of realizations M
ǫ,I
test such that

P
(
|VM

ǫ,I
test

(Zλ − Ŷλ) − V(Zλ − Ŷλ)| ≤ θIdI

)
≥ 1 − ǫ

holds for all λ and control variates Ŷλ of dimension

0 ≤ i ≤ I. Of course, we do not know exactly

M
ǫ,I
test in practice, which could even not be finite if

variations in λ are not smooth enough. But if, for

all ǫ ∈ (0, 1), we assume that one can use more

than M
ǫ,I
test realizations in the computations of step

I of the weak greedy algorithm, then the following

events occur with probability more than 1 − ǫ, for

adequate η, β, c,C > 0 given any d0, α, a > 0:

a) dI ≤ d0I−α ,∀I ⇒ σ̃I ≤ Cd0I−α ,∀I,

b) dI ≤ d0e−aI−α ,∀I ⇒ σ̃I ≤ Cd0e−cI−β ,∀I,

2Then computational reductions are possible, but only for

sufficiently many queries in the parameter of course, as we shall

see.
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c) dI ≤ d0e−aI−α ,∀I ⇒ σ̃I ≤ CIηIe−aI−α ,∀I,

see Appendix A for a proof. Of course, the con-

stants C in the upper-bounds above can be overly

pessimistic. But our numerical results show that

one does not need to go to the asymptotics I → ∞
in order to get good variance reduction results.

2.2. Implementation and analysis

At any step I ∈ N of a weak greedy algorithm,

whether we are looking for a new parameter value

λ̃I+1 or not (TOL reached), the practical imple-

mentation of our RB control-variate MC method

still requires a few discretization ingredients. In

particular, one has to be able to actually compute

approximations of E(Zλ) = E(Zλ − ∑I
i=1 α

λ
i
Zλ̃i ) +

∑I
i=1 α

λ
i
E(Zλ̃i ) and V(Zλ − Ŷλ) whatever λ ∈ Λ.

We are now going to suggest a generic practical

approach to that question. On the contrary, practi-

cally useful choices of Λ̃ ⊂ Λ specifically depend

on the parametric context and will be discussed

only for specific applications in the next sections.

First, we need to approximate the expectations

E(Zλ̃i ), i = 1 . . . I. To obtain good useful ap-

proximations of E(Zλ̃i ) in general, we suggest to

use an expensive MC estimation EMlarge (Z
λ̃i ), inde-

pendent from subsequent realizations of the ran-

dom variable Zλ̃i . Although this is a priori as

computationally expensive as approximating well

E(Zλ) at any λ by a naive MC estimation, we do

it only once at each of the few λ̃i. Once a real-

ization of EMlarge (Z
λ̃i ) has been computed at step i

of the weak greedy algorithm (1 ≤ i ≤ I) with

Mlarge ≫ 1 realizations, the deterministic result

can be stored in memory. We denote the com-

putable approximations of Y λ̃i ≡ Zλ̃i − E(Zλ̃i ) by

Ỹ λ̃i ≡ Zλ̃i − EMlarge (Z
λ̃i ), i = 1 . . . I, so that the ac-

tual control variate Ŷλ used in practice is in fact

a linear combination in a linear space of dimen-

sion I spanned by Ỹ λ̃i , i = 1 . . . I. Note that given

EMlarge (Z
λ̃i ) we expect realizations of Ỹ λ̃i to be com-

puted concurrently with realizations of Zλ, using

the same pseudo-random numbers generated by a

computer, with approximately the same cost.

Second, for any λ, we need to replace the coef-

ficients αλ
i
, i = 1 . . . I, with a tractable solution α̃λ

i

of the minimization problem (2.5), so that practical

control variates in fact read

Ŷλ =

I∑

i=1

α̃λi Ỹ λ̃i . (2.16)

Now, the MC computations at any one specific λ

should be fast, in particular the approximate so-

lution to the minimization problem (2.5), whether

we decide to stop the weak greedy algorithm at

step I and use only I parameter values or still want

to explore the parameter values in Λ̃ to select a

new parameter value λ̃I+1. So we invoke only

a small number Msmall of realizations of Zλ and

Ỹ λ̃i to compute the α̃λ
i
. Note that there are differ-

ent strategies for the numerical solution to a least-

squares problem like (2.5) that use only Msmall re-

alizations of Zλ and Ỹ λ̃i . One can try to com-

pute directly the solution to an approximation of

the linear system (2.6) where variances and covra-

iances are approximated with MC estimations sim-

ilar to (2.13) using Msmall i.i.d. realizations Zλm and

Ỹ
λ̃i
m , m = 1 . . .Msmall, of Zλ and Ỹ λ̃i . The MC es-

timations similar to (2.13) are indeed interesting

insofar as they remain positive, see [29, 30] for a

study of consistency. But there may still be dif-

ficulties when C is too ill-conditioned. One can

thus also apply a QR decomposition approach to a

small set of Msmall realizations, using the Modified

Gram-Schmidt (MGS) algorithm for instance 3. In

any case, realizations of Zλ and Ỹ λ̃i , i = 1 . . . I,

3The matrix with entries (Ỹ λ̃i
m )m=1...Msmall ,i=1...I uniquely de-

composes as QR where Q is a M × I matrix such that QT Q is

the I × I identity matrix and R is an upper triangular I × I ma-
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should be correlated and thus computed with the

same collection of random numbers in practice.

Besides, one can use a single collection of ran-

dom numbers (generated by initializing the ran-

dom number generator at one fixed seed) for all λ,

including λ̃i, i = 1 . . . I, and realizations of Ỹ λ̃i can

thus be computed only once (at step i of the weak

greedy algorithm) and next stored in memory.

Finally we approximate E(Zλ) by one draw of

1

Mtest

Mtest∑

m=1

Zλm −
I∑

i=1

α̃λi Ỹ λ̃i
m

 (2.17)

whatever λ and compute a MC estimation (2.13) of

V(Zλ − Ŷλ) with the same Mtest realizations of Zλ

and Ỹ λ̃i . Remember that at step I ∈ N of the weak

greedy algorithm, (2.17) is useful either to inspect

all parameter values λ ∈ Λ̃, check whether TOL is

reached and next select a new parameter value λ̃I+1

when it is not. Or if TOL has been reached before,

then (2.17) is used for definitive estimations at any

λ (still with companion variance estimations (2.13)

to concurrently certify that TOL is maintained).

Let us compare our strategy with the cost

of direct MC estimations that have same confi-

dence levels and thus use M realizations such that

VM(Zλ)/M = VMtest (Z
λ−Ŷλ)/Mtest. We denote by C

the cost of one realization at one parameter value

λ compared with that of one multiplication. The

evaluation of Msmall + Mtest realizations at each λ,

plus I2 + IMsmall multiplications for the QR solu-

tion to the least-squares problem, IMtest multipli-

cations for the MC estimation of the output ex-

pectation, and M2
test for the variance, make our RB

control-variate MC method interesting as soon as

trix. The I-dimensional vector α̃λ with entries α̃λ
i
, i = 1 . . . I,

useful in Ŷλ is next defined as R−1QT Z (where Z is the Msmall-

dimensional vector with entries Zλm). The α̃λ
i

are thus random

variables depending on Msmall realizations and an approximate

minimum of (2.5) is ZT Z − ZT QQT Z.

MC+M2 ≥ (Mtest+Msmall)(C+I)+I2+M2
test, at least

for “real-time” purposes. Then, the price of identi-

fying I control variates with the weak greedy algo-

rithm pays back if one needs to compute very fast

E(Zλ) for any λ, provided the I control variates still

provide good variance reduction in the case where

they were constructed by a weak greedy algorithm

trained on λ̃ ( Λ. In addition, the RB control-

variate MC method is also interesting in the many-

query cases where one has to compute E(Zλ) for a

sufficiently large number ♯λ of parameter values λ.

At each greedy step i = 1 . . . I − 1, in addition to

variance estimations at each λ ∈ Λ̃, the selection of

λ̃i+1 requires a quicksort of the sample of estimated

variances {VMtest

(
Zλ − Ŷλ

)
, λ ∈ Λ̃}, plus the com-

putation of EMlarge (Z
λ̃i+1 ) and Msmall realizations of

Zλ̃i+1 to be stored. The cost of the greedy algorithm

Cgreedy = card(Λ̃)
(
I(Mtest+Msmall)C+ I(I+1)(2I+

1)/6+I(I+1)Msmall+Mtest/2+IM2
test+ln card(Λ̃)

)
+

I(Mlarge+Msmall)C is then compensated by variance

reductions as soon as ♯λ ≥ Cgreedy/(MC + M2 −
(Mtest + Msmall)(C + I) − I2 − M2

test).

We also have a posteriori error estimates. For

values α̃λ
i

given by a fixed MC estimation with

Msmall realizations independent of Mtest new real-

izations in (2.17), CLT (2.4) holds4, ∀a > 0, for

P



∣∣∣EMtest (Z
λ − Ŷλ) − E(Zλ) +

∑I
i=1 α̃

λ
i
E(Ỹ i))

∣∣∣
√

V(Zλ − Ŷλ)/Mtest

≤ a


(2.18)

where the MC empirical estimator EMtest (Z
λ−Ŷλ) is

defined in (2.17) and where one can replace V(Zλ−
Ŷλ) by a MC estimator VMtest (Z

λ − Ŷλ) by Slut-

sky theorem. Furthermore, although (2.18) is not

4If the Mtest realizations in (2.17) are the same as the Msmall

ones used to compute α̃λ
i
, then (2.17) is not a MC empirical es-

timator of the type EMtest (Z
λ − Ŷλ). It does not use independent

realizations of the random variable Zλ−Ŷλ, so the CLT does not

hold and it is difficult to give a rigorous quantitative estimate of

the statistical error.
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a full error analysis because it does not take into

account the bias
∑I

i=1 α̃
λ
i
E(Ỹ i) =

∑I
i=1 α̃

λ
i
(E(Zλi ) −

EMlarge (Z
λi )), a function of Mlarge and Msmall precom-

puted realizations, probabilities like (2.18) are con-

ditionally to EMlarge (Z
λi ) (and to α̃λ

i
), so Bayes rule

applies and it also holds, for all a, ai > 0:

P

( ∣∣∣EMtest (Z
λ − Ŷλ) − E(Zλ)

∣∣∣+
I∑

i=1

|α̃λi |ai

√
VMlarge (Z

λi )

Mlarge

)

−→
Mlarge≥Mtest→∞

erf

(
a
√

2

) I∏

i=1

erf

(
ai√

2

)
(2.19)

where variances have been replaced by estimators.

Last, to get a full convergence analysis that

predicts an efficient variance reduction with the

RB control-variate MC method in practice, at least

when Λ̃ = Λ, one should take into account all re-

alizations in Ŷλ which in fact reads ŶλMsmall,Mlarge
=

∑I
i=1 α̃

λ
i,Msmall

(
Zλ̃i − EMlarge (Z

λ̃i )
)
. Yet, note first that

in the weak greedy algorithm (2.14), only the

Msmall realizations introduce new statistical error.

And second, one can again predict that, with a

good probability, the greedy algorithm is robust to

discretization (in the same sense as in [28]) pro-

vided the realizations of the least-squares problems

are not too close to rank-deficient and their numer-

ical solution is close to the solution. We do not

state this more rigorously but instead refer to [28],

whose results can be adapted in the same way as

in Appendix A for the week greedy algorithm.

3. Application to Uncertainty Propagation

In this section, we numerically demonstrate the

efficiency of the RB control-variate MC method

for uncertainty propagation in a representative UQ

framework. As example, we consider a PDE

parametrized by stochastic coefficients and other

non-stochastic coefficients which we term control

parameters. The goal is to compute fast many ex-

pectations of a scalar output of the random PDE

solution for many values of the control parameters.

For the numerical simulations, as usual in UQ

frameworks [3], we use stochastic coefficients that

are random fields with a Karhunen-Loève (KL)

spectral decomposition. In practice, one can only

use representations with a finite-rank K of course

and the MC method allows one to simulate the law

of the random field just by generating realizations

of the K random numbers in the KL decomposi-

tion. We compute approximations to the realiza-

tions of the random PDE solution with a standard

FE discretization method (the same one whatever

the realizations). The expectation of the random

scalar output can be computed for many values of

a control parameter just by reiterating many times

the MC procedure. But this is costly. So first, we

do not actually compute the PDE solution with the

FE method at each realization of the stochastic co-

efficients and for each control parameter value. In

fact, we replace it with a cheap reliable surrogate

built with the standard RB method like in [14].

Yet, even with a cheap surrogate model instead of

the full FE, the MC method is still costly, because

computing the expectation of the parametrized out-

put under the input probability law still requires a

very large number of realizations. This quickly be-

comes untractable as soon as one has to do it many

times for many values of the control parameter.

Then, we use the RB control-variate MC method

to decrease the number of MC realizations needed

at most of the control parameter values.

Compared with [14], one uses here an im-

proved MC method to show how various RB ideas

can be combined to efficiently tackle some uncer-

tainty propagation problems for partial differen-

tial equations with stochastic coefficients. We thus

especially discuss the practice of the RB control-
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variate MC method here. Yet, although the exam-

ple is exactly the same as in [14], the specific use

of the standard RB method in the frame of UQ,

and in combination with the RB control-variate

MC method, requires special care. That is why at

the end of this section we briefly expose our im-

plementation of the standard RB method, without

which we cannot use the MC method at a reason-

able price, and next discuss our specific use of it.

3.1. An elliptic PDE with stochastic coefficients

Consider first the solution u to a scalar Robin

Boundary Value Problem (BVP) in a regular do-

mainD ⊂ R2: u satisfies Laplace equation inD

−div (κ∇u) = 0 , (3.1)

and conditions of third type on the boundary ∂D

κ(n · ∇)u + b u = g , (3.2)

where div and ∇ denote the usual divergence and

gradient operators in D equipped with a cartesian

frame, n the outward unit normal on ∂D, and k, b

and g are scalar parameter functions. For the sim-

ulations we will choose in particular

κ = k11D1 + k21D2 (k1, k2) ∈ R2
>0 (3.3)

b = b1ΓB b ∈ L∞(∂D,R>0) (3.4)

g = g1ΓR g ∈ L2(∂D) (3.5)

where 1Di
is the characteristic function ofDi,

D1 ∩D2 = ∅ D1 ∪D2 ⊂ D ⊂ D1 ∪D2 ,

and the boundary decomposes into subsets

ΓB∩ΓR = ∅ ΓB∪ΓR ⊂ ∂D ΓN = ∂D\ΓB ∪ ΓR .

There exists a unique weak solution u ∈ H1(D)

to (3.1–3.2), which can also be defined as the

Ã¨

D2

D1ΓB

ΓN

ΓR

Figure 1: Thermal fin geometry D used in the numerical sim-

ulations (ΓN = ∂D\(ΓR ∪ ΓB) denotes the boundary subject to

homogeneous pure Neumann conditions).

unique solution to the following variational prob-

lem [31]: Find u ∈ H1(D) /∀v ∈ H1(D)
∫

D1

k1∇u ·∇v+

∫

D2

k2∇u ·∇v+

∫

ΓB

buv =

∫

ΓR

gv .

(3.6)

As output, we consider the compliance 5

s ≡ l(u) =

∫

ΓR

g u . (3.7)

The accurate numerical discretization of (3.6) is

standard, for instance using the Finite-Element

(FE) method. In what follows, we shall invoke

continuous piecewise linear approximations de-

fined in conforming, regular FE spaces of H1(D).

To fix ideas, one could think of u as the tem-

perature in a fin subject to a constant radiative flux

5For symmetric problems like (3.6), the output (3.7) is a

particularly simple choice because it allows a simple accurate a

posteriori error estimation without invoking a dual problem, but

neither this choice nor the symmetric character of the problem

are limitations to our approach, see e.g. [32].
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g on ΓR (in contact with a heat source) and to con-

vective thermal exchanges on ΓB, see Fig. 1. The

function b determines the value of the Biot number

along ΓB, that is the intensity of local heat trans-

fers on the part of the boundary in contact with

a fluid. Now, the Biot number is typically un-

certain. We shall model it as a random field in a

probability space (Ω,F , P) and one is typically in-

terested in quantifying the uncertainty propagated

in s. More precisely, we define an essentially

bounded function b ∈ L∞
P

(Ω, L∞(ΓB,R>0)), posi-

tive almost everywhere (a.e.) on ΓB with probabil-

ity 1 (P-almost surely or a.s. in abbrev.). Then,

with a slight abuse of notation, u now denotes

the solution in L∞
P

(Ω,H1(D)) to (3.1–3.2) when

b ∈ L∞
P

(Ω, L∞(ΓB,R>0)). And, for many values of

the control parameter k2, we consider computing

expectations E(s) =
∫
Ω

sdP under P of the output

s. To that aim, we will propagate the uncertainty

(random “noise”) from b to the scalar (random)

output variable s ∈ L∞
P

(Ω) by simulating the law of

u. We recall that here we focus on MC discretiza-

tions of the noise. Compared with other discretiza-

tions [33, 34], it is very easy to implement, in par-

ticular because it is not intrusive with respect to ex-

isting discretizations of the deterministic problem,

although the convergence is a priori much slower

when the stochastic variations are smooth [12, 13].

We consider a bounded second-order stochastic

process b as random input. We denote its constant

mean value on ΓB by E
(
b|ΓB

) ≡ Ē > 0, the spatial

correlation length between random fluctuations by

δ > 0 and the relative intensity of the (bounded)

random fluctuations around the mean by Υ > 0.

More precisely, like in [14], the random field b

shall be the limit in L∞
P

(Ω, L∞(ΓB)) of random

fields bK whose covariance defines a kernel oper-

ator of finite rank K in L2(ΓB) and which can be

easily simulated with a MC method using K inde-

pendent random scalar parameters in a priori given

ranges. For the numerical simulations, we choose

a gaussian kernel c(x, y) = exp
(
−|x − y|2/δ2

)
/|ΓB|

to define a covariance operator in L2(ΓB), where

x, y are in the same connected component of the

boundary ΓB in Fig. 1. The covariance operator has

eigencouples (λk,Φk), k ∈ N>0 and a normalized

trace
∑∞

k=1 λk = 1. Then, invoking uniformly dis-

tributed independent variates Zk ∼ U(−
√

3,
√

3)

for each spectral mode k ∈ N>0 (the same on each

size of the boundary ΓB in Fig. 1 for the sake of

simplicity), we define b by its KL representation

b := Ē

1 + Υ
∑

k∈N>0

√
λk Φk Zk

 , (3.8)

which makes sense since truncated representations

bK = Ē

1 + Υ
K∑

k=1

√
λk Φk Zk

 (3.9)

converge in L2
P
(Ω, L2(ΓB)), and in L∞

P
(Ω, L∞(ΓB))

here (see [35, 36] e.g.). We also require bK ≥
bmin := Ē/2 > 0 a.s. ∀K ∈ N and fix Υ := .1

for δ ∈ (.05, .5). Then one can define well-posed

BVPs: Find uK ∈ L∞
P

(Ω,H1(D)) such that P-a.s.

κ(n · ∇)uK + bK uK = g on ∂D ,
− div (κ∇uK) = 0 onD . (3.10)

Approximations uK converge to u in L∞
P

(Ω,H1(D))

as K → ∞ and for a.e. ω ∈ Ω, realizations uK(ω) ∈
H1(D) of the solution to (3.10) solve a variational

formulation with test function v ∈ H1(D)

k1

∫

D1

∇uK(ω) · ∇v + k2

∫

D2

∇uK(ω) · ∇v

+ Ē

K∑

k=1

(Υ
√
λkZk(ω))

∫

ΓB

Φk uK(ω) v

+ Ē

∫

ΓB

e uK(ω) v =

∫

ΓR

g v (3.11)
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parametrized by k1, k2, Ē and realizations

Υ
√
λkZk(ω), k = 1 . . .K. So finally, in prac-

tice, we shall compute approximations uN ,K to

u with the FE method defined previously, which

converge in L∞
P

(Ω,H1(D)) as N → ∞, K → ∞.

We require N and K large enough such that, for

a.e. values of the control parameter k1, k2, Ē, a

tolerance level |s − sN ,K | ≤ TOL|s| is reached a.s.

for the approximate output sN ,K :=
∫
ΓB

uN ,K . Next

one can easily simulate the law of sN ,K with the

MC method by mapping realizations Zk(ω) of Zk,

k = 1 . . .K, to realizations sN ,K(ω) of sN ,K .

But a direct MC-FE method is very expensive

computationally, since one has to compute many

FE approximations uN ,K(ω), for many realizations

of Zk(ω), and next for many values of λ = (k2, Ē).

That is why, like in [14], we replace the FE approx-

imations uN ,K by cheaper surrogates uN ,K,N con-

structed with the standard RB method (wee will

come back to this point in Section 3.3 and the non-

expert reader can find a brief exposition of this

technique there). At present, the RB method is one

of the only few existing alternatives that can tackle

some “high-dimensional” problems in more than

2 or 3 dimensions, and it proved useful6 when the

parameter is not too high-dimensional, for instance

when each of the parameter components k1, k2, b

and g are scalars. But when the parameter becomes

high-dimensional, difficulties arise again at some

point. To some extent, the RB method still showed

efficient for MC simulations of a random field b

with a moderately large number K of modes [14].

But there are situations where the approach is still

computationally too expensive, in particular when

one wants to explore variations of the MC simula-

tion with respect to the control parameter k2 and Ē

6Note that it does not a priori require specific discretizations

of the parameter space and speed-up can be increased for goal-

oriented purposes like computing s accurately instead of u.

for instance. That is why, in this work, we would

next like to show how to further improve the com-

putational cost in cases where one is interested in

computing many values of the expectation E(s) of

s under the law of the random field b for many val-

ues of the control parameters k2 and Ē. To this aim,

we build on the standard RB ideas and use a MC

method with a reduced basis of control variates.

In particular, at a given value of λ, one still needs a

large number of RB approximations uN ,K,N to com-

pute accurate MC estimations of E
(
sN ,K,N

)
, which

is too costly when it has to be done for many values

of λ. We thus now try to reduce the computational

cost by invoking still another computational reduc-

tion technique, the RB control-variate MC method.

We will show that the number of realizations re-

quired by the MC method to reach a given statisti-

cal accuracy for E
(
sN ,K,N

)
at one parameter value

λ can be efficiently decreased with our RB control-

variate technique, in the limit where one has to

compute sufficiently many expectations for suffi-

ciently many values of λ.

3.2. RB control-variate MC estimations

We require a relative precision TOL = 10−3

for the numerical approximations E(sN ,K,N)(λ) of

the output expectations E(s)(λ) at any λ ∈ Λ :=

(.1, 10) × (.1, 1). It is thus sufficient for the PDE

solution u to be a.s. approximated with a relative

precision tol = 10−2 here. To this aim, we first

define P1 FE approximations on a 2D simplicial

mesh using FreeFem++ by F. Hecht and his col-

laborators. (Refining a coarse mesh, N = 3333

nodes – 6272 triangles – seem sufficient.)

We first fix δ = 0.5. By a standard “variational

crime” analysis (see e.g. [14]), it is enough to use a

truncated KL expansion bK up to K = 10 (such that
∑

k>K

√
λk ≤ tol

∑
k∈N>0

√
λk). We build “offline”

(that is, before the MC simulation) a reduced basis
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Figure 2: Maps of E
(
s(k2, Ē)

)
and V

(
s(k2, Ē)

)
(numerical ap-

proximations) for (k2, Ē) ∈ (.1, 10) × (.1, 1).

for a small linear space7 of surrogates uN ,K,N with

dimension N = 12. Then we simulate the law of

Zλ ≡ sN ,K,N(λ) at any λ ∈ Λ with the MC method.

This allows us to retrieve a MC estimation of E(Zλ)

and to construct a response surface by piecewise

linear interpolation of the MC estimations EM(Zλ)

at the 10 × 10 trial values of λ like in Fig. 2.

To compute the response surface of Fig. 2 with

a good confidence level in the MC estimations, say

with
√

VM(Zλ)/M ≤ TOL × EM(Zλ) at each of

the λ used for interpolation, one needs more than

M = 104 realizations8 at each λ. Now, the law of

Zλ with respect to λ is smooth. Let us use the RB

7A weak greedy algorithm needed N = 12 steps for the a

posteriori error estimates to satisfy ‖uN ,K − uN ,K,N‖H1 ≤ ∆N ≤
tol = 10−2 at all training parameter values in a cartesian grid

using 2 trial values for each parameter component Υ
√
λkZk ,

k = 1 . . .K, and 10 trial values for each parameter component

λ1 = k2, λ2 = Ē, see Section 3.3 for some details about the RB

method.
8Besides, one can check that M = 104 is sufficiently-

many realizations here for the speed of convergence to be quite

well evaluated by CLT, since the MC estimator EM(Zλ) is al-

ready close to gaussian according to the Kolmogorov-Smirnov

goodness-of-fit test. In particular, most often, one single draw

control-variate MC method with Λ̃ defined by the

10 × 10 trial values of λ needed to build the re-

sponse surfaces in Fig. 2. Then, we can achieve

MC estimation with confidence intervals of ac-

curacy TOL using a large number of realizations

Mlarge = 104 at only I = 3 values of λ, and much

less realizations at the other values of λ to achieve

satisfying confidence intervals. More precisely,

Mtest = 10 is enough, since one can reduce the

variance to 10−4 with I = 3, and one already has a

good MC estimation of the magnitude of the vari-

ance then. One also needs to compute coefficients

αλ
i

at each λwith Msmall additional realizations, but

in practice one can use the same Mtest = Msmall re-

alizations9. So the marginal gain for each λ in the

finite sample of queries Λ̃ is to divide the computa-

tional cost by 104/(10+I×104/Card(Λ̃)) ≥ 30 (the

cost C of one realization is dominant here, even

with RB surrogates).

Moreover, our algorithm is robust with re-

spect to the specific choice of Λ̃ above. That

is, the control variates identified previously can

still be used to reduce the variance of EM(Zλ)

at other λ in Λ than those in the trial sample

Λ̃ used by the greedy algorithm above. Let us

evaluate the gain for real-time purposes or in the

limit of many queries in λ when one can for-

get all the precomputations including the greedy

construction. Then the computational cost per λ

is approximately divided by 104/10 = 103, pro-

vided the reduced variance is still approximately

of magnitude 10−4 for all λ ∈ Λ. This observa-

tion even holds if we require a higher precision

(hence smaller tolerances TOL, tol and correpons-

of the MC estimator already allows one to compute a good ap-

proximation to a confidence interval.
9Although introducing some dependency between the Mtest

and Msmall realizations theoretically influences the possibilty to

obtain a CLT for instance, it hardly changes siginificantly the

numerical result for one MC estimation in practice.
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dingly increase “offline” the dimension N of the

RB space for the PDE surrogates). Then, the gain

grows like TOL−2 in the infinitely-many-query

asymptotics as long as one can reduce the variance

by adding finitely-many control variates; and like

TOL−2(1 − I × TOL−2/Card(Λ̃)) if one takes into

account the greedy construction for a finite sample

of Card(Λ̃) ≫ I ×TOL−2 parameter values, where

I is the minimal number of control variates re-

quired to achieve a reduced variance of magnitude

TOL in Λ̃. (Note that the computational cost of

one realization becomes even more dominant as N

increases.) Here, Fig. 3 shows that that our greedy

construction is robust: with control variates built

using the 10 × 10 trial values of λ above, we did

thorough MC estimations of the variance for 100

other parameter values. In our example, it roughly

holds I ≤ − log(TOL) for TOL > 10−7 and the

computational gain grows exponentially fast like

TOL−2(1 + TOL−2 log(TOL)/Card(Λ̃)) with the

number − log(TOL) of accurate digits required for

sufficiently large Card(Λ̃).

In any case, if one cannot reduce the vari-

ance (or equivalently, if I needs to be huge for

any useful variance reduction), there is – almost

– no loss of effort in using the RB control-variate

MC method compared with the naive MC method,

since would simply observe the absence of vari-

ance reduction using Mtest realizations and would

next need to increase the number of realizations to

the same number of realizations as the naive MC

method. Only the computation of coefficients αλ
i

would have been unnecessary, which is not much

compared with a large number of realizations.

Of course, the efficiency of our RB control-

variate MC method is limited by the cost and ac-

curacy of single realizations, like any MC method.

This has nothing to do with its ability at reducing

the variance (and thus controlling the number of
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Figure 3: Top: maximum, mean and minimum in a sample of

MC estimations VMtest (Z
λ −∑I

i=1 α
λ
i
Ỹ i) at various λ, as a func-

tion of I. The decrease rate is less fast among parameter values

λ not used by the greedy algorithm, but it is still reasonably

good. Middle: confidence intervals with probability 99% and

95% for the MC estimation EMtest (Z
λ−∑I

i=1 α
λ
i
Ỹ i) of E(Zλ) as a

function of I at one λ. Bottom: confidence intervals with prob-

ability 99% and 95% for the MC estimation EM(Zλ) of E(Zλ)

as a function of M at same λ, with a much slower decrease rate

than above at a similar computational cost.
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realizations needed for accurate MC estimations),

but it is a practical limitation everyone doing sim-

ulations is confronted with. For UQ in particular,

if we use a smaller correlation length δ = 0.05 but

require the same tolerance TOL, the “variational

crime” analysis above requires a KL truncation at

a much higher-order K = 70. Now, it is practi-

cally impossible today (in 2012) to carefully in-

spect all 2 + K = 72 directions with a fine grid of

trial values for the “offline” construction of RB sur-

rogates10. So, even though the RB control-variate

MC method still works perfectly well with inac-

curate RB surrogates uN ,K,N , there is little com-

putational gain possible on the whole simply by

reducing the variance when the statistical error is

dominated by the KL truncation error (there is no

point in getting accurate MC confidence intervals

if the RB surrogates are not good enough). The

RB control-variate MC method is not a definitive

cure to the “high-dimensions” problem for PDEs

with stochastic coefficients which we already men-

tionned previously.

All existing numerical approaches to UQ prob-

lems that invoke a KL decomposition of the input

noise are limited in practice by the “curse of di-

mensionality” in K anyway, in so far as they re-

quire numerical approximations of realizations of

the PDE solution in a space of high dimension K.

(Most often in UQ people only use K ≤ 10 in

practice [35, 7, 37].) So is our approach. But

in any case, when one can tackle the problem of

simulating high-dimensional realizations, say only

by expensive precomputations, then using our RB

control-variate MC method and the PDE solution

as a black-box still makes sense: the simulation

10The computations presented in this work have been done

in a very reasonable time, from a few minutes to one hour on a

single processor unit, but inspecting 72 directions with 2 points

per directions, that is 272 ≈ 1021 points, would require yers of

computations.

of one realization of Zλ at one given λ is typically

all the more expensive as the parameter size in-

creases, for instance just by assembling the matrix

of the discrete BVP here, and the gain obtained by

variance reduction (if any) is in fact all the more

interesting. Moreover, there exist other ways of

simulating the law of b that do not require a KL

representation (thus a limitation in K), even extend

to other random fields than (3.8), and can be used

with our RB control-variate MC method [38]. This

might be a cure to some problems but we keep its

investigation for future works of ours. Last, for

the model problem here, we are in fact quite fortu-

nate, as already noted in [14], that the KL spectrum

has a fast decay. The first KL modes span all the

solution space when the required precision is not

too small. Then we can still build “offline” good

enough surrogates uN ,K,N with a very small train-

ing set of trial parameter values, as we are going to

see in the next section. Furthermore, since the pre-

vious observation holds only for specific choices

of the spatial correlations, before shifting to the

numerical proof of efficiency for the RB control-

variate MC method in another UQ framework, we

are also going to mention one promising way of

tackling the simulation problem with high-order

KL truncations which is currently under study, and

where the RB control-variate MC method can still

be useful. Our conclusion of the first example

is thus mostly concerned with an efficient com-

bination of the standard RB method with the RB

control-variate MC method in a UQ framework.

3.3. RB control-variate MC with RB surrogates

We briefly recall the “standard” RB method

used above (see also [39, 40, 41] e.g.) before dis-

cussing its specific use in UQ with a MC method

like our RB control-variate MC method. The

reader already expert in the standard RB method

may want to skip the next subsection.
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3.3.1. The standard RB method

The goal of the RB method is to reduce the

computational cost of solutions u(µ) to a PDE

parametrized by µ when u(µ) has to be computed

many times for many values of µ. Here we set µ =

(k2, Ē,Υ
√
λ1Z1(ω), . . . ,Υ

√
λKZK(ω)) and given a

Hilbert space X = H1(D) with inner-product

(u, v)X =

∫

D
∇u · ∇v +

∫

ΓB

uv , ∀u, v ∈ X

and with energy norm ‖u‖X =
√

(u, u)X , we denote

a(u, v; µ) = k1

∫

D1

∇u·∇v+k2

∫

D2

∇u·∇v+

∫

ΓB

buv

a bilinear form that is elliptic ∀u, v ∈ X. Then, for

parameter values µ in a given range, we consider

the solutions u(µ) ∈ X to (3.6), such that

a(u(µ), v; µ) = l(v) , ∀v ∈ X , (3.12)

with outputs s(µ) = l(u(µ)). In practice, we as-

sume that one can compute a good approximation

of u(µ) in a linear subspace XN ⊂ X with large

dimension N ≫ 1 for any µ. Moreover, here

we discretize b ≈ bK so the fully computable ap-

proximations also involve a discretization param-

eter K and is denoted uN ,K(µ) ∈ XN . Comput-

ing uN ,K(µ) for many µ is costly and the goal of

the RB method is to construct a linear subspace

XN ⊂ XN with small dimension N ≪ N such

that, for all µ in the given range, some approxima-

tions uN ,K,N(µ) ∈ XN to u(µ) ∈ X can be computed

faster. The RB method invokes linear approxima-

tions uN ,K,N(µ) :=
∑N

n=1 γn(µ)u(µn) where the coef-

ficients γn(µ), n = 1 . . .N, are computed fast at any

µ ∈ Λ by the Galerkin method in XN : m = 1 . . .N

N∑

n=1

γn(µ)a(u(µn), u(µm); µ) = l(u(µm)). (3.13)

The Galerkin approximation error ‖uN ,K(µ) −
uN ,K,N(µ)‖X can be estimated a posteriori by a fully

computable error estimator ∆N(µ)

‖uN ,K − uN ,K,N‖X ≤ sup
‖v‖X=1

a(uN ,K,N(µ), v; µ) − l(v)

αLB(µ)
(3.14)

using a lower bound αLB(µ) for the coercivity con-

stant of the bilinear form, which is useful for the

certifiability of the reduction method as well as

for the selection of adequate parameter values µn,

n = 1 . . .N, in the range of interest. Here, given

the choice of inner-product on X = H1(D), one

can compute explicitly and at little expense quite a

sharp lower bound αLB(µ) = min(k1, k2, inf b) that

is uniformly good with respect to the parameter

values and for any admissible parameter range.

A good reduced basis u(µ1), . . . , u(µN) span-

ning XN can be found in practice with a greedy

algorithm like (2.11) [27, 28]. The standard proce-

dure selects N parameter values µ1, . . . , µN incre-

mentally in a trial sample Θ for µ as follows: given

any µ1 we next define for n = 1, . . . ,N − 1

µn+1 ∈ argsup
µ∈Θ

∆n(µ) . (3.15)

Note that the bilinear form a is affine with

respect to functions of the parameters (viz.

parametrized by µ only through coefficients in a

linear combination of bilinear forms, recall (3.11)).

This is useful to efficient RB implementations in

practice since the parameter-independent matrices

can be precomputed. It allows fast evaluations11 of

uN ,K,N(µ) and ∆N(µ) at any µ. Here, the quality of

our RB approximations is similar to that in [14].

11Denoting by M the matrix of the inner-product (·, ·)X

computed for the discrete FE space where the parametrized

BVP reads A(µ)U(µ) = B, the RB approximation error

in the “energy” norm
√

(U(µ) − Un(µ))T M(U(µ) − Un(µ))

is evaluated by the residual estimator√
(A(µ)Un(µ) − B)T M−1(A(µ)Un(µ) − B)/αLB(µ). Now,

(A(µ)Un(µ) − B)T M−1(A(µ)Un(µ) − B) is a quadratic form in

the small-dimensional vector Un(µ) containing the coefficients

of the approximation in the reduced basis. And its entries are

themselves quadratic in (functions of) µ when the entries of
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3.3.2. Certified RB control-variate MC

First, note that to get certified results in the

frame of MC simulations, one should check the

quality of those RB approximations when they are

used, since in any case the precomputed basis for

the RB surrogates invoked at each λ and for each

realization has been trained “offline” only with a

few trial parameter values in Θ (possibly forgotten

afterwards). In the RB control-variate MC method,

it is necessary to check the RB approximation er-

ror with (3.14) at least for the Mlarge realizations

in EMlarge (Z
λi ), i = 1 . . . I, at the parameter values

λi where control variates are constructed plus, for

each λ, at the (1+ I)Mtest realizations of Zλ and Zλi ,

i = 1 . . . I, that are used to compute the final MC

estimation with reduced variance. In practice here,

this increase of computational cost per realization

and λ was not much (that is, only a fraction of the

total computational time without certification).

Moreover, for δ = 0.5 and K = 10, we precom-

puted a reduced basis of dimension N = 12 for

the PDE solutions using only a cartesian grid of

10×10×2K values for µ. Although this is a coarse

training sample, we never had to enrich the RB ap-

proximation space XN “online”, that is during the

MC simulations. Thus, for UQ problems similar to

our example, although our MC approach does not

aim at exploiting optimally the regularity of the so-

lution, in particular because the choice of trial pa-

rameter values for a greedy algorithm is “blind”,

the RB control-variate MC method is clearly inter-

esting: it is simple to implement, without much a

priori knowledge of the solution, and accurate at a

reasonable computational cost (“offline” and “on-

line” computations take a few minutes on a single

processor unit here).

A(µ) depend linearly in (functions of) µ. The latter can thus be

precomputed for a given reduced basis and next be assembled

in O(N2K2) to yield fast error estimations at any µ.
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Figure 4: Maximum, mean and minimum in a sample of MC

estimations VMtest (Z
λ −∑I

i=1 α
λ
i
Ỹ i) at various λ, as a function of

I. The decrease rate is less fast among parameter values λ not

used by the greedy algorithm, and less fast than in Fig. 3.

For δ = 0.05, we mentionned previously that

the problem is not to reduce the variance of MC

estimations, but to get certified MC estimations

when one uses a KL representation of the input

noise at each of the MC realizations, because the

parametrization of the latter needs approximately

K = 70 dimensions, which cannot be explored

finely “offline” in a reasonable time (one mani-

festation of the well-known “curse of dimension-

ality”). One way out is to simulate differently the

noise, in a way that could invoke RB surrogates

in a low-dimensional parameter space only [38].

We shall study this approach in future works. An-

other way if we want to use KL representations

is, first, to observe that since the error per realiza-

tion is averaged in E(sN ,K,N(λ)) one can still af-

ford some realizations with large error as shown

in [14]. Moreover, since the solution space very

much depends on the first KL modes only as ob-

served in [14], one can build here “offline” surro-

gates uN ,K,N in a space of low dimension. Here,

we could use RB surrogates from a small linear

space XN of dimension N = 20 without having
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to enrich XN “online”, although XN was built “of-

fline” with a greedy algorithm exploring only a

very coarse training sample of trial parameter val-

ues (using 10 trial values for each parameter com-

ponent λ1 = k2, λ2 = Ē and 2 trial values for

each parameter component Υ
√
λkZk, k = 1 . . . 10,

while for k = 11 . . . 70 the parameter components

were fixed). Then, compared with a direct “naive”

MC simulation of the law of Zλ ≡ sN ,K,N(λ) at

any λ ∈ Λ, the RB control-variate MC method

provides computational reduction by reducing the

variance of MC estimations like in the case where

δ = 0.5, see Fig. 4 in comparison with Fig. 3. Note

yet that the variance V(Zλ) is approximately one

order of magnitude smaller when δ = 0.05 than in

the previous example when δ = 0.5, and the vari-

ance decreases a bit more slowly than before, so

the gain at same accuracy is a bit less than one or-

der of magnitude smaller (and non zero only if we

require a minimum precision on the confidence in-

terval of the MC estimations of a bit more than one

order of magnitude higher than when δ = 0.05).

Last, we would like to mention a way to reach

higher KL truncation order K which is not spe-

cific to our choice of the correlation length and

where the RB control-variate MC method can still

be useful. Note first that, quite often, surro-

gates uN ,K,N(λ) built for a coarse training sam-

ple (say with only 1 trial parameter value in most

directions) are already not too bad because the

KL spectrum decays anyway. So, at any λ, one

can expect V(sN ,K,N′ (λ) − sN ,K,N(λ)) to be signif-

icantly smaller12 than V(sN ,K,N(λ)) and next im-

prove the MC estimations of E(sN ,K,N(λ)) “on-

12In our numerical example above, VM′test
(sN ,K,N′ (λ) −

sN ,K,N (λ)) is in fact always close to zero machine by the prop-

erty mentionned above: at a moderately high precision level,

the solution space is almost entirely spanned by variations in

the first K modes only. But of course this would not be true for

random fields with thicker distribution tails.

line” at a very reasonable cost, by the combina-

tion of the RB control-variate MC method and the

Multi-Level Monte-Carlo (MLMC) method [42] in

two steps: estimate (i) E(sN ,K,N(λ)) with the RB

control-variate MC method and (ii) E(sN ,K,N′ (λ) −
sN ,K,N(λ)) with a small number M′test of realiza-

tions. The dimension N′ ≥ N of the enriched

basis at λ can be chosen a posteriori in (ii) from

the few Mtest realizations in the MC estimation

EMtest (sN ,K,N(λ) − Ŷλ) of (i). In turn, the actual I in

(i) can be re-adjusted after (ii) to balance the statis-

tical error in EM′test
(sN ,K,N′ (λ)− sN ,K,N(λ)) such that

VMtest (sN ,K,N(λ) − Ŷλ)/Mtest ≈ VM′test
(sN ,K,N′ (λ) −

sN ,K,N(λ))/M′test if possible. Of course, the latter

new strategy deserves a specific study, which we

also keep for future works.

4. Application to Bayesian estimation

Let us now numerically demonstrate the effi-

ciency of the RB control-variate MC method in

another context useful for UQ, with parameteri-

zations of higher dimension than in the previous

section. As example, we consider the computa-

tion of a Minimum-Mean-Square-Error (MMSE)

Bayes estimator in various parametric settings. To

identify various possible cases with many queries

in the parameter, we first use a toy-model. Second,

we use the same model PDE problem (3.1–3.2)

as in the previous section. In the latter case, we

also combine the RB control-variate MC method

with standard RB surrogates of the PDE solutions,

like in the previous section. But of course, the use

of surrogate models in Bayesian estimation is not

new [38, 20].

4.1. A toy model for various Bayesian estimations

The Bayesian estimation of some unknown in-

put parameter θ in a model consists in improv-

ing a prior guess of its probability distribution πξ
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(the probabilistic counterpart of the determinis-

tic Tikhonov regularization in inverse problems,

see [9] e.g.) by observations of an output sλ(θ)

of the model that are viewed as realizations of

a random variable [43]. We denote by λ a con-

trol parameter entering the model, and by ξ a

so-called hyper-parameter in the Bayesian frame.

The random variations of sλ(θ) can be generated

by aleatoric noise (for a given fixed value of θ,

the truth is stochastic and induces a distribution

of value sλ(θ)) as well as the epistemic uncertainty

about the parameter θ (our observations of the truth

are noised).

When one knows the value of a control param-

eter λ in a model, as well as J observations sλ
j
,

j = 1 . . . J (J i.i.d. realizations of sλ(θ)) with likeli-

hood f λ,ζ(sλ
j
|θ), the probability density of sλ know-

ing θ), then Bayes formula allows one to compute

the posterior distribution of θ

πλ,ζ,ξ(θ|{sλj }) ∝ πξ(θ)
J∏

j=1

f λ,ζ(sλj |θ) (4.1)

where ζ is another hyperparameter (entering the

likelihood and not the prior like ξ). The poste-

rior is used to compute the probability distribu-

tion of quantities that depend on θ. It is also

used to compute a deterministic approximation

θ̂λ,ζ,ξ({sλ
j
}) of θ given {sλ

j
, j = 1 . . . J}, for in-

stance the Minimum-Mean-Square-Error (MMSE)

estimator [44, p.349], which in decision theory13

13Other risk functions than the quadratic loss and other de-

cision rules than the risk minimization are also used in prac-

tice [44, 43], which lead to different estimators for θ. For in-

stance, one also uses the expected linear loss function E(|θ̄− θ|)
which is minimal at the median θ̄, defined by P(θ ≤ θ̄|{sλ

j
}) = 1

2 ,

and the maximum likelihood principle that takes the maximum

a posteriori maxθ P(θ|{sλ
j
}) as estimator. In this work, we con-

sider only the MMSE estimator (4.2). Notice that it is a good

example for applications where one is interested by the expec-

tation of a smooth functional of θ in the end, because its com-

putational complexity with a MC method if of the same kind.

is interpreted as the minimum of the expected

quadratic loss E(|θ̂λ,ζ,ξ({sλ
j
}) − θ|2), averaged over

both distributions of θ and {sλ
j
, j = 1 . . . J}

θ̂λ,ζ,ξ({sλj }) :=

∫
θ πλ,ζ,ξ

(
θ|{sλj }

)
dθ . (4.2)

In practice, expectations using (4.1) like (4.2)

are typically computed many times:

• for many values of the control parameter λ en-

tering the model for the “truth”,

• using many different sets of observations

{sλ0

j
, j = 1 . . . J}, typically at λ0 = λ but not

necessarily, and

• for many values of the hyperparameters ξ, ζ

entering the Bayesian frame (prior and likeli-

hood are often chosen in – conjugate – para-

metric families of distributions).

Think of the various pieces produced in a factory,

or of real-time estimation procedures, where one

may want to vary all these parameters ! We would

thus like here to accelerate the computation of

many parametrized MMSEs in many-query frame-

works with our RB control-variate MC method and

numerically explore the various parametrized set-

tings with a toy-model first.

Let us choose a Bayesian frame for suppos-

edly Gaussian observations of θ with known mean-

square deviation λ, typically

f λ,ζ(s|θ) ∝ e
− |s−θ|2

2λ2 πξ=(µ,σ2) = N(µ, σ2) .

Gaussian prior and likelihood are conjugate one-

another and the MMSE is analytically computable

θ̂λ,ζ,ξ({sλj }) =
σ2

σ2 + λ2/J


1

J

J∑

j=0

sλj

 +
λ2/J

σ2 + λ2/J
µ

with variance σ2λ2/J
σ2+λ2/J

(see [44, p.353] e.g.). Note

that for this simple model, there is no degree of
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Figure 5: Posterior distributions computed for J = 1, 10, 100

i.i.d observations s j ∼ N(θ0 = 1, λ2 = .25) (top) ; and varia-

tions of the MC MMSE Bayes estimator (middle) and its vari-

ance (bottom) as a function of λ for 103 realizations.

freedom for a hyperparameter ζ, but one already

sees why one may want to use various values of the

hyperparameter ξ. Although the MMSE Bayes es-

timation is asymptotically consistent and efficient

(in fact, normally distributed) as J → ∞, the qual-

ity of the estimation is clearly impacted by the

choice of the hyperparameter at finite J. See the

posteriors computed with J = 1, 10, 100 observa-

tions and θ0 = 1, λ = .5, µ = .9, σ = .4 in Fig. 5.

More generally, one can show under regular-

ity assumptions on the likelihood f λ,ζ(·|θ) (see [45,

p.490] e.g.) that, if the observations sλ
j

are indeed

realizations of a random variable sλ(θ) with den-

sity f λ,ζ(·|θ) for one fixed value θ = θ0 (hence

distributed only due to the aleatoric noise of the

model), then the MMSE converges in distribution

when the number J of observations increases

√
J(θ̂λ,ζ,ξ − θ0)

d−→ N(0, I(θ0)−1) ,

with variance given by the Fisher information

I(θ0) = E

((
∂θ log f ({sλ

j
}|θ)

)2 |θ = θ0
)
. The MMSE

estimator is thus asymptotically consistent and

asymptotically efficient and the choice of the prior

becomes irrelevant as J → ∞. Yet, for finite sam-

ple of observations, a good MMSE Bayes estima-

tion strongly depends on the choice of the prior, in

particular because MMSE Bayes estimators are bi-

ased. So one may try to optimize the hyperparam-

eters given training samples of observations, pos-

sibly for various values of the control parameter: a

natural many-query problem for the MC computa-

tion of parametrized MMSEs ! Let us see how the

RB control-variate MC method performs in vari-

ous parametrized settings.

We do many MC estimation of the MMSE with

J = 10 i.i.d. synthetic observations generated with

distribution law N(θ0, λ2
0) and θ0 = 1, µ = .9, σ =

.4. We tested the RB control-variate MC method

for various meaningful parametric variations:
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• λ ∈ (.1, .9) with one set of observations gen-

erated at λ0 = .5 fixed or at λ0 = λ,

• λ ∈ (.1, .9) and many sets of observations gen-

erated at λ0 = .5 fixed or at λ0 = λ,

• ξ ≡ (µ, σ) ∈ (.5, 1.5) × (.1, .9), λ ∈ (.1, .9)

and many sets {sλ0

j
, j = 1 . . . J} of observa-

tions generated at λ0 = .5 fixed or at λ0 = λ.

We always obtained meaningful estimations, and

good variance reductions (more than 10 orders of

magnitude) with only a few variates (less than

10). We show in Fig. 6 the “most difficult” case,

which is still of course quite easy because of the

very smooth dependence of our toy-model on the

parameter. But this shows at least that even in

potentially high-dimensional parameter contexts,

there is some hope for the RB control-variate MC

method to be useful.

4.2. A PDE model with uncertain coefficients

We now consider the PDE problem (3.1–3.2) as

a parametrized numerical model for Bayesian esti-

mation. It is discretized like in the previous sec-

tion: given δ, one fixes the discretization parame-

tersN , K and N. Note that we invoke the standard

RB method [40, 23] to compute fast numerous so-

lutions u to (3.1–3.2) at each of the numerous val-

ues of the PDE coefficients invoked, which has

already been used in a Bayesian estimation con-

text with a deterministic quadrature formula for the

output expectation [20] rather than MC.

We still denote λ = (k2, Ē) the parameter in the

model. In addition to sλ defined in (3.7), we also

consider the temperature averaged at the top of the

fin oλ =
∫
ΓN∩D1

u as output. Clearly, there are many

situations where the uncertain coefficient b can a

priori be modelled using only some rough repre-

sentation as a random field (3.8). Then, it often

needs improving in a real setting using data from
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Figure 6: Variations of MC MMSE Bayes estimation (top) and

their non-reduced empirical variance (middle) as functions of

(µ, σ), using one set of observations and one λ. Bottom: em-

pirical MC estimations of the reduced variances as functions

of the number I of variates for 203 values of the parameter

({sλ0
j
, j = 1 . . . J}, λ, ζ ≡ (µ, σ)). Each colored line is the log-

variance for one parameter value.
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observations. This is the case of the permeability

field for the Darcy equations in [38] e.g.

Here, we shall try to improve i.i.d. Gaussian

priors14 Zk ∼ πξ ≡ N(0, ξk), ξk ≡ σ2
k
, for the

random variables Zk, k = 1 . . .K, using J i.i.d.

observations o
λ0

j
, j = 1 . . . J, of the ouput oλ0 at

some value λ0 of the control parameter. Assum-

ing one knows that the likelihood f λ,ζ(oλ0

j
|{Zk}) of

the observations o
λ0

j
given a realization {Zk} of the

set of random variables Zk, k = 1 . . .K, are also

Gaussian f λ,ζ(o j|{Zk}) ∝ exp(−|o j − oλ({Zk})|2/ζ),
ζ ≡ σ2

O
, then the posterior distributions of the

independent random variables Zk can be used to

describe the specific context associated with the

observations o
λ0

j
, j = 1 . . . J. (They are a pri-

ori better than the prior guesses and should be-

come all the better as the number of observa-

tions increases.) In particular, the model posterior,

given by the Bayes formula
∏K

k=1 π
λ,ζ,ξ
k

(Zk |{oλ0

j
}) ∝

∏J
j=1 f λ,ζ(oλ0

j
|{Zk})

∏K
k=1 π

ξ
k
(Zk), can be used to

compute various quantities of interest, like the ex-

pectation of sλ. Let us use the RB control-variate

MC method to evaluate fast Eπλ,ζ,ξ (sλ|{oλ0

j
}) for var-

ious values of the hyper parameters ξ, ζ, various

values of the control parameter λ in the model and

possibly various sets of observations (at λ0 = λ

possibly, but not necessarily). Quite importantly,

note that here we assumed that we know explicitly

the likelihood function f λ,ζ(·|{Zk}) by experience.

This is a specific Bayesian framework which is of-

ten used, although the exact likelihood function is

often not known in practice (see Rem. 1).

We use the RB control-variate MC method to

compute the MMSE of sλ with the parametrized

14For well-posedness of the PDE we will need to numerically

truncate the Gaussian realizations by excluding those realiza-

tions where b ≤ 0. This is a poor man’s “truncated Gaussian”,

but in practice the standard deviationsσk are chosen sufficiently

small for most Zk realizations to be in the range of admissibility

where the surrogate model is valid.

posterior above in different settings for δ = .5, K =

10, N = 12. For instance: (i) with 4×4×2K = 212

parameter values
(
k2, Ē, σ

2
k

)
∈ [.1, 10] × [.1, 1] ×

[10−4, 10−3] and one fixed J = 1 observation o
λ0

1

generated synthetically by uncertainty propagation

at λ0 = (2, 0.5) or (ii) with 10 × 10 parameter val-

ues
(
k2, Ē

)
∈ [.1, 10] × [.1, 1] and 10 values for

each of the J = 3 observations o
λ0

j
, j = 1 . . . J, gen-

erated synthetically by uncertainty propagation at

λ0 = (2, 0.5). In both cases, the RB control-variate

technique can bring computational reductions to a

direct MC method as one can see by confronting

the numerical results in Fig. 7 with the reasoning

detailed in Section 3.

Remark 1. Sometimes we do not know how to

choose the likelihood function and we need to pre-

compute it numerically first. Let us illustrate this,

in another Bayesian context for the sake of simplic-

ity in the computations. For instance, assume that

we want to esimate probabilities for k2 from suffi-

ciently many observations of the output sλ whose

random fluctuations are generated by those of b.

To estimate k2 from J i.i.d. observations s
Ē0

j
, j =

1 . . . J, with likelihood f Ē0 (s
Ē0

j
|k0

2) depending only

on the law of b at the unknown value k2 = k0
2, we

could use a Bayesian approach with a prior distri-

bution k2 ∼ π. The posterior distribution

πĒ0 (k2|{sĒ0

j
}) ∝ π(k2)

J∏

j=1

f Ē0 (s
Ē0

j
|k2) (4.3)

allows one to compute quantities that depend on k2

more accurately than with the prior distribution.

(At least if the assumptions of the Bayesian model

are satisfied by the “truth” and if the number of

observations J is large enough.) But first we need

to precompute the likelihood f Ē0 (·|k2).

A “kernel” approach for instance allows one to

precompute the parametrized Probability Density

Functional (PDF) from a sample of realizations at
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Figure 7: Top: maximum and mean in a sample of MC esti-

mations Vπλ,ξ,ζ (sλ −∑I
i=1 α

λ
i
Ỹ i |{oλ0

j
}) for various training values

of λ, ξ, ζ and {oλ0
j
}, as a function of I during the greedy search

(“offline” stage) when δ = .5, K = 10, N = 12 in case (ii)

(case (i) is similar, with a decrease rate in fact a bit faster). Bot-

tom: maximum, mean and minimum of the same estimators

for various trial values of λ, ξ, ζ and {oλ0
j
} (average using many

realizations) during the “online” stage.

specific values of the controlled parameter Ē0. It

amounts to give to each realization of sĒ0 a weight.

In Fig. 8, we show the approximate likelihood for

observations s
Ē0

j
at one parameter value Ē0, after

reconstruction of the PDF from a sample of real-

izations of s(k2,Ē0) at various values of k2, syntheti-

cally generated with a numerical MC simulation of

our model and weighted by a truncated Gaussian

weight with hyperparameters α1, α2,M

M∑

m=1

1|s−s
(k2 ,Ē0)
m |<α2

e
− |s−s

(k2 ,Ē0)
m |2

2α2
1 . (4.4)

We numerically checked that the RB control-

variate MC method was still efficient15 to compute

many expectations of a scalar functional of the un-

certain parameter k2 using (4.4) as likelihood in

the posterior (4.3). We used it for many values of

the control parameter Ē0, of the set of observa-

tions {sĒ0

j
} and of the hyper parameters α1, α2,M.

But notice that actually using (4.4) in the poste-

rior (4.3) is very time-consuming, especially with

large M. Moreover, one needs to interpolate (4.4)

at the values of Ē0 where it has not been precom-

puted. So the computation of probability densi-

ties, for instance with a kernel approach, remains

a challenging numerical problem in Bayesian es-

timation. And the computational reductions pro-

posed in the present work do not tackle the latter

point. But note that clearly, to improve the com-

putation of (4.4) at many parameter values Ē0 in

particular, RB ideas could still be useful. Yet this

is still another topic for another work.

15Efficiency is meant with respect to variance reduction. Of

course k2 is only a scalar in the example here and one can

argue that most often the MC method is not the best integra-

tion method then. Our example is nevertheless an illustra-

tion (admittedly simple) of more general situations with high-

dimensional k2 when one uses a robust MC-like method.
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Figure 8: Empirical PDF (4.4) of k2 at fixed Ē0 for M = 104

realizations with truncated Gaussian weight α1 = .5, α2 = .01.

5. Conclusion and Perspectives

In this article, we have presented new elements

of analysis of the RB control-variate MC method

(error estimates and convergence results) as well

as new useful applications (to uncertainty quantifi-

cation of PDEs with stochastic coefficients). But

a number of questions remains, about theory and

practice, which may be the object of future works.

First, our convergence results are very much in-

spired from those in [27, 28] about the standard

RB method for PDEs and the same limitations ap-

ply: (i) they rely on assumptions that are diffi-

cult to check in practice (the fast decay of Kol-

mogorov widths), (ii) they may still be very pes-

simistic in comparison with practical possibilities

(the constant in the upper-bound may be far subop-

timal and a theoretical gain could be seen only for

uninterestingly large dimensions I of the reduced

basis), and (iii) they do not help choosing a good

training sample Λ̃ of trial parameter values for the

greedy algorithm (especially in the cases where Λ

is large). Besides, (iii) is sometimes not only due

to a lack of answer to the question how to het the

optimal reduction, but also to the question how to

get any reduction, when Λ is large. Indeed, al-

though the maximal gain (in the infinitely-many-

query limit or, equivalently, for real-time purposes)

reads only like the ratio of the reduced vs. non-

reduced marginal computational time per parame-

ter value λ, it is limited in practice by the possi-

bility to inspect all trial parameter values λ ∈ Λ̃
and should take into account that “offline” part of

the work. That is why, in absence of theory for

choosing Λ̃ when Λ has a high-cardinality (pos-

sibly infinite) and high dimension, one still needs

numerical tests to check the capabilities of the re-

duction method using specific (heuristic) choices

of Λ̃. Fortunately, we have been able to show nu-

merically that some gain is possible in practical sit-

uations.

In some UQ frameworks, we could actually

prove numerically that some gains were possible

by applying the RB control-variate MC method.

But as any numerical proof, this was achieved on

one specific model problem, for which some lim-

itations were also clearly seen. So one would of

course still need characterizing precisely the lim-

itations for another specific problem. More pre-

cisely, one would need to specify numerically the

efficiency regime in a given UQ context where

a parametrized expectation has to be computed

many time for many values of the parameter, which

depends on the number of queries in the parameter

values, but also on the decrease rate of the vari-

ance with respect to the dimension of the reduced

basis of control variates and on the required accu-

racy. Furthermore, this efficiency regime will be

reachable only for those problems whose “offline”

work is actually do-able (in a human lifetime) and

is thus limited in the dimension of the parame-

ter λ by the size of Λ̃, as well as in the numer-

ical complexity of the underlying model for ran-

dom realizations by the computation time of one

single realization. That latter limit also sets new

challenges for future works in UQ: the simulation
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of high-dimensional noise (with high-dimensional

KL truncation order K) in the case of PDEs with

stochastic coefficients, and the fast computation

of empirical likelihoods (say by kernel approach)

in Bayesian estimation. We already mentionned

some tracks for future works about these issues in

the course of this work.

To conclude, this work is a direct improve-

ment on [14] which we believe to be a useful nu-

merical approach to some UQ problems, in par-

ticular because it can bring huge computational

gains at almost no cost to the simple and widely-

used “naive” MC method. Notice that in any

case we can certify the approximation error in all

steps of the computations (of course in a proba-

bilistic sense as for the MC method) and there is

thus no loss of rigor in our approach compared

with the naive MC method. Moreover, we hope

that our suggestion, after [20], to use RB ideas

in such fields as Bayesian estimations, which are

known to have computationally demanding appli-

cations, will bring some new thoughts in that com-

munity, who might for instance want to identify

new “many-query” opportunities of computational

reductions using greedy algorithms.

Appendix A. Weak greedy convergence

An important tool for the proof is Lemma 1,

which is a straightforward variation of a result

proved in [28, 2.2].

Lemma 1. If for some IC ∈ N there exists 0 ≤ I ≤
IC , q,m ∈ N and θ ∈ (0, 1) such that θσI ≤ σI+qm

then it also holds σI ≤ dm/|θ − q−
1
2 |. Moreover, if

the same hypothesis holds for θσ̃I ≤ σ̃I+qm, then it

holds σ̃I ≤ (dm+θIC
dIC

)/|θ−q−
1
2 | with a probability

more than 1− ǫ, more precisely in the events where

it also holds σ̃I − θIdI ≤ V(Zλ̃I+1 − Ŷ λ̃I+1 ) ≤ σ̃I .

Let us treat the case in the weak greedy algo-

rithm where for α > 0 it holds dI ≤ d0I−α , ∀0 ≤
I ≤ IM . Assume we use the MC estimator M

ǫ,IM

test

whatever ǫ ∈ (0, 1). For I ≤ IM , the outcome

(σ̃)0≤i≤IM
of the weak greedy algorithm is as fol-

lows with probability more than 1−ǫ. For q ∈ N>0,

and β, γ ∈ R>0 to be determined later, we define

I0 := ⌈γq⌉ > 0 and assume

∀C > 0,∃I0 ≤ Î ≤ IM/σ̃Î > Cd0 Î−α . (A.1)

Given C > 0, we denote the smallest Î satisfy-

ing A.1 by IC . If for 0 < I ≤ IC we can define

mI ∈ N by I + qmI ≤ IC ≤ I + q(mI + 1) then, since

(σi)i is a decreasing sequence, it holds by (A.1),

σ̃I ≤ σ̃IC
(IC/I)α ≤ σ̃II+qmI

(IC/I)α . (A.2)

Applying Lemma 1 with m = mI and θ = (I/IC)α

σ̃IC
≤ σ̃I ≤ dmI

(1 + θIC
)/|(I/IC)α − q−

1
2 | (A.3)

(observe dmI
≥ dIC

) contradicts (A.1) as soon as

one chooses C ≥ (IC/mI)α(1+θIC
)/|(I/IC)α−q−

1
2 | >

0. In particular, if we set I = ΘIC with some well-

chosen Θ ∈ (0, 1 − 1/β − 1/γ), then

IC ≥ I0 ≥ γq ≥
q

1 − Θ − 1
β

and βqmI ≥ β(IC− I−q) ≥ β((1−Θ)IC−q) ≥ IC . In

fact, it is always possible to find I ∈ N>0 with mI ∈
N>0 (mI ≥ ⌊γ/β⌋ > 0 in particular) provided one

takes γ > 1 large enough and sufficiently smaller

β > 1. This requires C ≥ (βq)α(1+θIC
)/|Θα−q−

1
2 | .

And finally, it also holds ∀0 ≤ I < I0, σ̃I < Cd0I−α

provided one chooses C such that

C ≥ max{(βq)α(1+θIC
)/|Θα−q−

1
2 |, (σ̃0/d0)Iα0 } > 0 ,

which can still be optimized as a function of q > 0.

So the outcome of the weak greedy algorithm sat-

isfies ∀0 ≤ I < IM , σ̃I < Cd0I−α with probability

more than 1−ǫ. A similar reasoning can be adapted

from [28] for the other cases.
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