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In the first part (Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff-Love theory (3 inplane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner-Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner-Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner-Mindlin theory and to full 3D Pagano's exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.

Introduction

Laminated plates are widely used in engineering applications. For instance angle-ply carbon fiber reinforced laminates are commonly used in aeronautics. However, these materials are strongly anisotropic and the plate overall behavior is difficult to capture. The most common plate theory is the Kirchhoff-Love plate model. However, it is well-known that, when the plate slenderness ratio L/h (h is the plate thickness and L the span) is not large enough, transverse shear stresses which are not taken into account in the Kirchhoff-Love theory have an increasing influence on the plate deflection.

In recent decades many suggestions have been made to improve the estimation of transverse shear stresses. [START_REF] Reddy | On refined computational models of composite laminates[END_REF], [START_REF] Noor | An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[END_REF] and [START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] provided detailed reviews for these models. Two main approaches can be found: asymptotic approaches and axiomatic approaches. The first one is mainly based on asymptotic expansions in the small parameter h/L [START_REF] Caillerie | Thin elastic and periodic plates[END_REF]Lewinski, 1991c,b,a). However, higher-order terms yield only intricated "Kirchhoff-Love" plate equations and no distinction between relevant fields and unknowns was made. The second main approach is based on assuming ad hoc displacement or stress 3D fields. These models can be "Equivalent Single Layer" or "Layerwise". Equivalent single layer models treat the whole laminate as an equivalent homogeneous plate. However, when dealing with laminated plates, these models lead systematically to discontinuous transverse shear stress distributions through the thickness as indicated by [START_REF] Reddy | On refined computational models of composite laminates[END_REF]. In layerwise models, all plate degrees of freedom are introduced in each layer of the laminate and continuity conditions are enforced between layers. The reader can refer to [START_REF] Reddy | On refined computational models of composite laminates[END_REF] and [START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] for detailed reviews of kinematic approaches and to [START_REF] Naciri | Interlaminar stress analysis with a new multiparticle modelization of multilayered materials (M4)[END_REF][START_REF] Diaz Diaz | Model for laminates[END_REF][START_REF] Hadj-Ahmed | Stress analysis in adhesive joints with a multiparticle model of multilayered materials (m4)[END_REF][START_REF] Caron | Multi-particle modelling for the prediction of delamination in multi-layered materials[END_REF][START_REF] Diaz Diaz | Analytical determination of the modes i, ii and iii energy release rates in a delaminated laminate and validation of a delamination criterion[END_REF][START_REF] Dallot | Limit analysis of multi-layered plates. part ii: Shear effects[END_REF] for static approaches. Layerwise models lead to correct estimates of local 3D fields. However, their main drawback is that they involve a number of degrees of freedom proportional to the number of layers. The limitation is immediately pointed out with functionally graded materials, where the plate constituents properties vary continuously through the thickness (Nguyen et al., 2008a,b).

In the first part of this work [START_REF] Lebée | A bending gradient model for thick plates, part I: Theory[END_REF] we revisited the use of 3D equilibrium in order to derive transverse shear stress as [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] did for homogeneous plates. Thanks to standard variational tools, this led us to an Equivalent Single Layer plate theory which takes accurately into account shear effects and does not require any specific constitutive material symmetry: the Bending-Gradient theory. This plate theory is identical to the Reissner-Mindlin plate theory in the case of homogeneous plates. However, for laminated plates, shear forces are replaced by the gradient of the bending moment R R R = M ⊗ ∇. Hence, this theory belongs to the family of higher-order gradient models. The mechanical meaning of the bending gradient was identified as self-equilibrated static unknowns associated to warping functions in addition to conventional shear forces.

The purpose of the present paper is to derive closed-form solutions for the Bending-Gradient model in the case of cylindrical bending and compare them to the exact solutions from [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]Pagano ( , 1970a,b) ,b) and to other approaches commonly used.

This paper is organized as follows. First, in Section 2, notations are briefly introduced. Then, in Section 3, the Bending-Gradient model is recalled, Voigt notation is introduced and the influence of material symmetries is also considered. In Section 4, cylindrical bending closed-form solutions are derived and applied to laminates. Finally, comparison with approximations based on Reissner-Mindlin theory and discussion on results are provided in Section 5.

Notations

Plate models involve 2-dimensional (2D) tensors of several orders. Vectors and higher-order tensors are boldfaced and different typefaces are used for each order: vectors are slanted: T , u. Second order tensors are sans-serif: M, e. Third order tensors are in typewriter style: Φ Φ Φ, Γ Γ Γ. Fourth order tensors are in calligraphic style D D D, c c c. Sixth order tensors are double stroked , Ï Ï Ï. For instance, the fourth-order tensor c c c = c αβγδ with Greek indexes α, β, γ.. = 1, 2, denotes the plane-stress elasticity tensor. The identity for in-plane elasticity is i αβγδ = 1 2 (δ αγ δ βδ + δ αδ δ βγ ), where δ αβ is Kronecker symbol (δ αβ = 1 if α = β, δ αβ = 0 otherwise). The transpose operation t • is applied to any order tensors as follows: t A αβ...ψω = A ωψ...βα .

Three contraction products are defined, the usual dot product (a • b = a α b α ), the double contraction product (a : b = a αβ b αβ ) and a triple contraction product (A A A ∴B B B = A αβγ B γβα ). In these definitions Einstein's notation on repeated indexes is used. It should be noticed that closest indexes are summed together in contraction products. Thus,

Φ Φ Φ • n = Φ αβγ n γ is different from n • Φ Φ Φ = n α Φ αβγ .
The derivation operator ∇ is also formally represented as a vector: a • ∇ = a αβ ∇ β = a αβ,β is the divergence and a ⊗ ∇ = a αβ ∇ γ = a αβ,γ is the gradient. Here ⊗ is the dyadic product.

In this paper, Voigt notation is also introduced. Brackets [•] are used to denote that a tensor is considered in a matrix form. Moreover, matrices and vectors of several dimensions are defined. Vectors and matrices are 2D by default. In other cases, • denotes dimension 3: Ũ denotes a 3D vector and f denotes a 3 × 3 matrix. The related components are indexed with Latin indexes, i, j, k.. = 1, 2, 3: f ij . • denotes dimension 6: P denotes a 6 × 6 matrix.

Finally, the integration through the thickness is noted • :

The membrane stress N, the bending moment M, and shear forces Q are related to the actual 3D local stress by the following equations:

     N αβ (x 1 , x 2 ) = σ αβ (1a) M αβ (x 1 , x 2 ) = x 3 σ αβ (1b) Q α (x 1 , x 2 ) = σ α3 (1c)
Moreover, we introduce the gradient of the bending moment R R R = M ⊗ ∇ ∇ ∇. The 2D third-order tensor R R R complies with the following symmetry: R αβγ = R βαγ . It is possible to derive shear forces Q from R R R as:

Q = i i i ∴ R R R.
Equilibrium equations and boundary conditions involving stress fields were derived in Part I and are gathered in the set of statically compatible fields:

                   N • ∇ =  on ω (2a) M ⊗ ∇ ∇ ∇ -R R R = 0 on ω (2b) (i i i ∴ R R R) • ∇ = -p 3 on ω (2c) N • n = V d on ∂ω s (2d) M = M d on ∂ω s (2e) (i i i ∴ R R R) • n = V d 3 on ∂ω s (2f)
where ∂ω s is the portion of edge on which static boundary conditions apply: Ṽ d is the force per unit length and M d the full bending moment enforced on the edge. This set of equations is almost identical to Reissner-Mindlin equations where shear forces have been replaced by the bending gradient R R R.

Generalized stresses N, M, and R R R work respectively with the associated strain variables: e, the conventional membrane strain, χ the curvature and Γ Γ Γ the generalized shear strain. These strain fields must comply with the following compatibility conditions and boundary conditions:

               e = i i i : (∇ ⊗ U ) on ω (3a) χ = Φ Φ Φ • ∇ on ω (3b) Γ Γ Γ = Φ Φ Φ + i i i • ∇U 3 on ω (3c) Φ Φ Φ • n = H d on ∂ω k (3d) Ũ = Ũ d on ∂ω k (3e)
where Ũ is the average through the thickness of the 3D displacement of the plate and Φ Φ Φ is the generalized rotation. Γ Γ Γ and Φ Φ Φ are 2D third-order tensors with the following symmetry: Φ αβγ = Φ βαγ . Moreover, ∂ω k is the portion of edge on which kinematic boundary conditions apply: Ũ d is a given displacement and H d is a symmetric second-order tensor related to a forced rotation on the edge. These fields are almost identical to Reissner-Mindlin kinematically compatible fields where the rotation pseudo-vector is replaced by the generalized rotation Φ Φ Φ.

Finally, for constitutive material following local monoclinic symmetry with respect to (x 1 , x 2 ) plane (uncoupling between R R R and (N, M)) the Bending-Gradient plate constitutive equations are written as:

     N = A A A : e + B B B : χ (4a) M = t B B B : e + D D D : χ (4b) Γ Γ Γ = ∴ R R R, where (Á Á Á -∴ ) ∴ Γ Γ Γ = 0 (4c)
where conventional Kirchhoff-Love stiffnesses are defined as (A A A, B B B, D D D) = 1, x 3 , x 2 3 c c c(x 3 ) . The 2D sixth order tensors 1 and are the generalized shear compliance and stiffness. Their definition is detailed in Section 4.2 of the present work. Moreover, Á Á Á is the related identity tensor (Á αβγδǫζ = i αβǫζ δ γδ ). The solution of the plate model must comply with the three sets of equations (2,3,4). The compliance is positive. However when is not definite, there is a set of solutions, up to a self-stress field.

Voigt Notations

In this section, we introduce Voigt notation in order to turn contraction products into conventional matrix products. Brackets [•] are used to denote that a tensor is considered in a matrix form. Thus [•] is a linear operator, reallocating tensor components.

For instance, the bending moment is reallocated in a vector form:

[M] =   M 11 M 22 √ 2M 12   (5) 
as well as N, e and χ, and the fourth-order compliance tensor d d d is reallocated in a matrix form so that constitutive equation (4b) becomes a vector-matrix product:

[d d d ] =   d 1111 d 2211 √ 2d 1211 d 2211 d 2222 √ 2d 1222 √ 2d 1211 √ 2d 1222 2d 1212   (6)
as well as the stiffness tensor D D D. This is also done to the other Kirchhoff-Love compliances a a a, b b b, and stiffnesses A A A, B B B and also to the plane-stress stiffness tensor c c c. The same procedure is applied to shear variables and the corresponding constitutive equation. Shear static unknowns are reallocated in a vector form,

[R R R] =         R 111 R 221 √ 2R 121 R 112 R 222 √ 2R 122         (7) 
as well as Γ Γ Γ and Φ Φ Φ; and the constitutive sixth-order tensor is turned into a 6 × 6 matrix: 

[ ] =        

Symmetries

The effects of material symmetries on uncouplings have been presented in Part I. The main result is that (N, M) and bending gradient (R R R) are uncoupled when the local elasticity tensor C ijkl (x 3 ) follows monoclinic symmetry with respect to (x 1 , x 2 ) plane for all x 3 . Under this assumption, which is valid for most of applications involving laminated materials, it is possible to point out the influence of the invariance of the plate's overall configuration on the constitutive equations. Regarding the Kirchhoff-Love constitutive equation, we just recall that when the plate is overall symmetric with respect to its mid-plane there is uncoupling between membrane stresses and bending moments: B B B = 0 0 0 . This symmetry is often called mirror symmetry. Regarding the generalized shear constitutive equation, the in-plane transformations of are identical to those for in-plane strain-gradient elasticity. [START_REF] Auffray | Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior[END_REF] give a detailed analysis of this issue. We provide here a very brief description of their conclusions.

Let us consider an isometry of the (x 1 , x 2 ) plane, P : t P • P = δ. The transformation of by P , * is given by: * αβγδǫζ = P αη P βθ P γι P δκ P ǫλ P ζµ ηθικλµ (9)

It can be rewritten with Voigt notation as:

[ ] * = P • [ ] • t P ( 10 
)
where P is a 6 × 6 matrix which components are explicitly known in terms of the components of P . For a rotation, P r = cos θ -sin θ sin θ cos θ , and P r is the 6 × 6 matrix:

P r =         c 3 cs 2 - √ 2c 2 s -c 2 s -s 3 √ 2cs 2 cs 2 c 3 √ 2c 2 s -s 3 -c 2 s - √ 2cs 2 √ 2c 2 s - √ 2c 2 s (c 2 -s 2 )c - √ 2cs 2 √ 2cs 2 -(c 2 -s 2 )s c 2 s s 3 - √ 2cs 2 c 3 cs 2 - √ 2c 2 s s 3 c 2 s √ 2cs 2 cs 2 c 3 √ 2c 2 s √ 2cs 2 - √ 2cs 2 (c 2 -s 2 )s √ 2c 2 s - √ 2c 2 s (c 2 -s 2 )c        
where c and s stand respectively for cos θ and sin θ. When P is a reflection through e 2 normal plane, P m = 1 0 0 -1 and we have:

P m =         1 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 1        
If the laminated plate is invariant with respect to an isometry P , then we have the following 21 linearly dependent equations:

[ ] = P • [ ] • t P Isotropy.
A plate configuration is isotropic if its constitutive equation is both invariant by any planar rotation ( P r ) and reflection ( P m ). With this assumption, four independent constants still remain ( 11 , 12 , 22 , 26 ) and is positive definite:

[ ] =          11 12 0 0 0 11-22 √ 2 -26 12 22 0 0 0 26 0 0 11+ 22 2 -12 26 11 -22 √ 2 -26 0 0 0 26 22 12 0 0 0 11 -22 √ 2 -26 12 11 0 11-22 √ 2 -26 26 0 0 0 11+ 22 2 -12          (11) 
It is possible to simplify further this constitutive equation when a laminate is a stack of plies with different isotropic constitutive materials (this symmetry is also valid for some functionally graded materials (Nguyen et al., 2008a,b)). We use the spectral decomposition of plane stress stiffness:

c c c(x 3 ) = 2ν(x 3 )E(x 3 ) 1 -ν 2 (x 3 ) j j j + E(x 3 ) 1 + ν(x 3 ) i i i
where E is the Young modulus, ν Poisson's ratio and j αβγδ = 1/2δ αβ δ γδ . Deriving directly the constitutive equation ( 29) with this decomposition enables us to demonstrate that 26 = -12 . Three independent constants 11 , 12 , 22 still remain and is no more invertible:

= ( 11 + 22 + 2 12 ) i i i • i i i -2 ( 22 + 12 ) j j j • i i i + i i i • j j j + 22 j j j • j j j (12)
Finally, for a plate with a homogeneous and isotropic constitutive material, we have demonstrated that the Bending-Gradient model is turned into a Reissner-Mindlin plate model and that = 6 5Gh i i i

• i i i in Part I. This is rewritten as [ ] = 6 5Gh         1 0 0 0 0 1/ √ 2 0 0 0 0 0 0 0 0 1/2 0 1/ √ 2 0 0 0 0 0 0 0 0 0 1/ √ 2 0 1 0 1/ √ 2 0 0 0 0 1/2         (13) 
In this case: 11 = 6 5Gh and 12 = 22 = 0 which is different from the general case of a layered plate made of different isotropic constitutive materials (Equation 12). Consequently, even for these laminates, the Bending-Gradient model is a priori not a Reissner-Mindlin model. This is mainly because the different Poisson's ratios in each layer generates warping. When Poisson's ratio is uniform through the thickness, the constitutive equation is such that 12 = 22 = 0 and for conventional isotropic materials, the warping effect remains very limited, leading to a quasi homogeneous constitutive equation.

Closed-form solution for Pagano's configuration

4.1. Plate closed-form solution [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF] gives an exact solution for cylindrical bending of simply supported composite laminates. We choose the same configuration for the Bending-Gradient model. The plate is invariant and infinite in x 2 direction. It is out-of-plane loaded with p 3 (x 1 ) = -p 0 sin κx 1 where λ = 1/κ = L nπ , n ∈ AE + * is the wavelength of the loading (Figure 2).

The plate is simply supported at x 1 = 0 and x 1 = L with traction free edges:

U 3 (0) = 0, U 3 (L) = 0, M (0) = , M (L) = , N (0) • e 1 = , N (L) • e 1 =  (14) 
In these boundary conditions, M 22 (0) = M 22 (L) = 0 is the additional boundary condition compared to the Reissner-Mindlin plate model. This boundary condition is very similar to the one which applies to the bimoment on a free section in [START_REF] Vlasov | Thin-walled elastic beams[END_REF] beam theory. This additional boundary condition takes into account free edge effects similar to those described in [START_REF] Lebée | A cosserat multiparticle model for periodically layered materials[END_REF] for periodically layered laminate.

The solution is obtained as follows: First, the x 2 -invariance leads to several simplifications and some unknowns vanish. Second, relevant equations and unknowns are gathered into a differential system and the closed-form solution is derived.

4.1.1. Simplifications related to x 2 -invariance Membrane solution. Since (N, M) fields are uncoupled from shear fields, it is possible to solve separately the membrane part of the plate model. Hence, the x 2 -invariance in the membrane strain definition (3a) enforces e 22 = U 2,2 = 0. Moreover, boundary conditions (2d) and equilibrium equation (2a) for membrane stresses lead easily to N 11 = N 12 = 0. However, N 22 , e 11 and e 12 remain undetermined.

Curvatures. Curvatures are defined by Equation 3b: χ αβ = Φ αβγ,γ . Taking into account x 2 invariance leads to:

[χ] =   χ 11 χ 22 √ 2χ 12   =   Φ 111,1 Φ 221,1 √ 2Φ 121,1   =   Φ 1,1 Φ 2,1 Φ 3,1   (15)
Kirchhoff-Love constitutive equation. Kirchhoff-Love constitutive equations (4a) and (4b) are written with Voigt notation in the inverse form as:

[e] = [a a a] • [N] + [b b b] • [M] (16a) [χ] = t [b b b] • [N] + [d d d ] • [M] (16b)
where 

[χ] = [d d d ] * • [M] ( 17 
)
where

d * ij = d ij - b 2i b 2j
a 22 is the effective flexural stiffness taking into account e 22 = 0 constraint. N 22 , e 11 and e 12 are then derived directly from the bending moment using equations:

e i = b ij - a i2 b 2j a 22 M j and N 2 = - b 2i a 22 M i (18)
Equilibrium. The x 2 invariance in the bending gradient equilibrium equation (2b) enforces:

        R 1 R 2 R 3 R 4 R 5 R 6         =         M 11,1 M 22,1 √ 2M 12,1 0 0 0         (19) 
and transverse loading equilibrium equation (2c) becomes:

M 11,11 = -p 3 (x 1 ) (20) 
Shear constitutive equation. Taking into account R 4 = R 5 = R 6 = 0, U 3,2 = 0 and generalized shear strain definition (3c), Shear constitutive equation ( 4c) is rewritten in two parts.

A first part with unknowns involving active boundary conditions:

  Φ 1 Φ 2 Φ 3   =   11 12 13 12 22 23 13 23 33   •   M 11,1 M 22,1 √ 2M 12,1   -   U 3,1 0 0   (21) 
and a second part which enables the derivation of Φ 4 , Φ 5 , Φ 6 on which no boundary condition applies:

  Φ 4 Φ 5 Φ 6   =   41 42 43 51 52 53 61 62 63   •   M 11,1 M 22,1 √ 2M 12,1   -   0 0 U 3,1 / √ 2   (22)
4.1.2. Resolution Final System. Finally, combining Equations 14, 15, 17, 20 and 21, leads to the following set of equations which fully determines the problem:

                 M 11,11 = p 0 sin κx 1 (23a) [d d d ] * • [M] -f • [M] ,11 =   U 3,11 0 0   (23b) 
[M] = 0 for x 1 = 0 and x 1 = L (23c) * is positive definite, the differential system 23 is well-posed and the solution is the sum of a particular solution and hyperbolic solutions of the homogeneous equation. Boundary conditions applied to M vanish hyperbolic solutions. There remains the particular solution:

U 3 = 0 for x 1 = 0 and x 1 = L ( 
[M] = -1 g -1 • g p 0 λ 2 sin κx 1 and U 3 = -p 0 λ 4 g 11 -t g • g -1 • g sin κx 1 ( 24 
)
where

g = [d d d ] * + κ 2 f , g = g 22 g 23 g 23 g 33 , g = g 12 g 13 . ( 25 
)
The matrix g appears to be the effective flexural stiffness for cylindrical bending, corrected with shear effects. When κ → 0, g = d * which yields exactly the Kirchhoff-Love solution.

Localization

Once the generalized stresses are derived, it is possible to reconstruct local 3D fields, using the localization procedure described in Part I. The local 3D stress σBG is the sum of three terms depending linearly on the generalized stresses: σBG = s s s (N) :

N + s s s (M) : M + s s s (R) ∴ R R R (26) 
where,

           s (N) αβǫζ (x 3 ) = c αβγδ (x 3 ) (a δγǫζ + x 3 b ζǫγδ ) and s (N) i3ǫζ = 0 (27a) s (M) αβǫζ (x 3 ) = c αβγδ (x 3 ) (b δγǫζ + x 3 d δγǫζ ) and s (M) i3ǫζ = 0 (27b) s (R) α3ηζǫ (x 3 ) = - x3 -h 2 c αηγδ (z) (b δγǫζ + z d δγǫζ ) dz , s (R) αβηζǫ = 0 and s (R) 33ηζǫ = 0 (27c)
and c c c(x 3 ) is the local plane-stress stiffness tensor. It is possible to rewrite Equation 26 with Voigt notations as follows:

σBG,\\ =   σ BG 11 σ BG 22 √ 2σ BG 12   = s(N) • [N] + s(M) • [M] σ BG,⊥ = σ BG 13 σ BG 23 = s (R) • [R R R] where s(N) (x 3 ) = [c c c] (x 3 ) • [a a a] + x 3 t [b b b] s(M) (x 3 ) = [c c c] (x 3 ) • ([b b b] + x 3 [d d d ]) s (R) (x 3 ) = - x3 -h 2 c c c(z) : (b b b + z d d d ) dz
s(N) and s(M) are 3 × 3 matrices and s (R) is a 2 × 6 matrix. Straight double stroked brackets • • • denote here the following matrix representation of a fourth-order tensor:

L L L = L 1111 L 1122 √ 2L 1121 L 1211 L 1222 √ 2L 1221 L 2111 L 2122 √ 2L 2121 L 2211 L 2222 √ 2L 2221 ( 28 
)
This reallocation is also useful for the derivation of the shear compliance tensor derived in Part I:

[ ] = h 2 -h 2 x3 -h 2 t c c c(z) : (b b b + z d d d ) dz • S(x 3 ) • x3 -h 2 c c c(z) : (b b b + z d d d ) dz dx 3 ( 29 
)
where S αβ (x 3 ) = 4S α3β3 (x 3 ) is the out-of-plane shear compliance tensor.

Since is not always invertible, we introduce Moore-Penrose pseudo inverse for the shear stiffness tensor :

= lim

κ→0 ( ∴ + κÁ Á Á) -1
∴ which is used in the constraint on generalized shear strain Γ Γ Γ in Equation 4c. Finally, the in-plane displacement localization was suggested in Part I as:

u BG = U -x 3 ∇U 3 + υ (R) ∴ R R R (30) 
where

υ (R) α = x3 -h 2 S αζ (z)s (R) ζ3βγδ (z)dz + k (R) αβγδ (31) 
and

k k k (R) is chosen such as u (R) α
= 0. This is rewritten with Voigt notation as:

u BG = U -x 3 ∇U 3 + υ (R) • [R R R]
where

υ (R) (x 3 ) = - x3 -h 2 S(z) • z -h 2 c c c(u) : (b b b + u d d d ) dudz + k k k (R)

Application to laminates 4.3.1. Plate configuration

We consider angle-ply laminates. Each ply is made of unidirectional fiber-reinforced material oriented at θ relative to the bending direction x 1 . All plies have the same thickness and are perfectly bounded. A laminate is denoted between brackets by the successive ply-orientations along the thickness. For instance [0 • , 90 • ] denotes a 2-ply laminate where the lower ply fibers are oriented in the bending direction. When the laminate follows mirror symmetry described in Section 3.3, only half of the stack is given and the subscript s is added. Thus

[30 • , -30 • ] s means [30 • , -30 • , -30 • , 30 • ].
The constitutive behavior of a ply is assumed to be transversely isotropic along the direction of the fibers and engineering constants are chosen similar to those of [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]:

E L = 25 × 10 6 psi, E T = E N = 1 × 10 6 psi, G LT = G LN = 0.5 × 10 6 psi, G N T = E T 2(1 + ν N T ) = 0.4 × 10 6 psi, ν LT = ν LN = ν N T = 0.25
where G N T has been changed to preserve transversely isotropic symmetry. L is the longitudinal direction oriented in the (x 1 , x 2 ) plane at θ with respect to ẽ1 , T is the transverse direction and N is the normal direction coinciding with ẽ3 . [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]Pagano ( , 1970a,b) ,b) derived exact 3D elasticity solution of this problem for a laminate loaded only on the upper face and free on the lower face. In the present work we assume the plate is identically loaded on its upper and lower face to comply with the plate model:

T + 3 = T - 3 = p3
2 where T ± 3 is the normal traction on the upper and lower face of the plate.

Localization fields

Shear forces are related to the bending gradient as follows:

Q 1 = R 111 + R 122 and Q 2 = R 121 + R 222 .
Thus we suggested in Part I the following signification for the bending gradient components:

R 111 -R 1 : Cylindrical Bending part of Q 1 R 221 -R 2 : Pure warping R 121 -R 3 : Torsional part of Q 2 R 112 -R 4 : Pure warping R 222 -R 5 : Cylindrical Bending part of Q 2 R 122 -R 6 : Torsional part of Q 1
In Figure 3 are plotted localization shear stress distributions s (R) derived in Section 4.2 corresponding to each components of R R R in both directions for a quasi-isotropic laminate [0 • , -45 • , 90 • , 45 • ] s . All stress distributions are continuous and fulfill traction free boundary conditions on the upper and lower faces of the plate. For each direction there are four self-equilibrated stress distribution ( σ α3 = 0) associated to R 2 , R 3 , R 4 and R 5 for Direction 1 and R 1 , R 2 , R 4 and R 6 for Direction 2. This explains the suggested signification for shear variables. We draw the reader's attention to the fact that, even if there are self-equilibrated stress distributions, all distributions have comparable amplitude and none can be neglected at this stage. Moreover, it is clear that torsion generates different distributions than pure cylindrical bending, except in the homogeneous case.

Distance between the Reissner-Mindlin and the Bending-Gradient model

In Part I we introduced the relative distance between the Bending-Gradient model and a Reissner-Mindlin model, ∆ RM/BG :

∆ RM/BG = W RM (32) where = t [ ] : [ ] (33) 
is the norm for Bending-Gradient compliance tensors and W is the pure warping part of :

[ ] W = [ ] - 4 9 t i i i • i i i • [ ] • t i i i • i i i (34)
∆ RM/BG gives an estimate of the pure warping fraction of the shear stress energy. When the plate constitutive equation is restricted to a Reissner-Mindlin one we have exactly ∆ RM/BG = 0.

In Table 1, are given the values of ∆ RM/BG for the laminates considered in this work. For a single ply, the criterion is zero since in Part I we demonstrated that the Bending-Gradient model is exactly a Reissner-Mindlin model in this case. However, when there are several plies, the distance can be greater than 10%. Thus with these laminates, the shear constitutive equation cannot be reduced to a Reissner-Mindlin behavior. Closed-form solutions using the Reissner-Mindlin model were derived in order to compare them with the Bending-Gradient. The resolution of the cylindrical bending problem is quite similar so it will not be detailed here. The work of Whitney (1972) was used for deriving transverse shear stress distributions and shear correction factors were taken into account into the shear constitutive equation of the Reissner-Mindlin plate model.

Stack [0 • ] [0 • , 90 • ] [0 • , 90 • , 0 • , 90 • , 0 • , 90 • , 0 • , 90 • , 0 • ] [0 • , -45 • , 90 • , 45 • ] s ∆ RM/BG 0 16.0% 4.63% 12.4%
Let us recall briefly the method. Whitney (1972) assumes the plate is under cylindrical bending:

Q 1 = M 11,1 , Q 2 = M 12,1
, e 22 = 0 and χ 22 = 0 and derives transverse shear distribution σ(Q),W (x 3 ) following a procedure almost identical to the one proposed in Part I. Then he computes the shear correction factor defined as:

k 2 1 = f FSDT 11 σQ1 : S S S (x 3 ) : σQ1
where f FSDT 11 is the First Order Shear Deformation Theory shear compliance:

f FSDT = F FSDT -1
where

F FSDT αβ = C α3β3 (x 3
) . The shear correction factor in the second direction k 2 is derived in the same way while rotating the plate of π/2. Once shear correction factors are derived, the corrected shear stiffness F RM,W is defined as follows:

F RM,W = k • F FSDT • k (35) 
where k = k1 0 0 k2

Finite element analysis

A comparison with a finite elements solution was also performed on ABAQUS (2007). Since the Bending-Gradient is an Equivalent Single Layer theory, conventional shell elements were chosen (3 displacements and 3 rotations). Transverse shear fields with conventional shell elements in ABAQUS are derived using an approach very similar to Whitney (1972) where it is furthermore assumed that the plate overall constitutive equation is orthotropic with respect to the main bending direction. S4, linear quadrangle with full integration elements, were used. A convergence test was performed comparing the FE mid-span deflection U RM,FE to the exact solution from Pagano (1969) U Ex which ensures that the FE error increment is 1/1000 of the error with the exact solution ((U RM,FE -U Ex )/U Ex ). This study enforced the typical size of an element l char = h/5 where h is the plate thickness. For instance when the slenderness is L/h = 4 there are 20 elements. Figure 4 shows a typical deformation of this mesh. Periodicity was enforced on lateral edges of the strip in Figure 4 by equating corresponding rotations and displacements. Finally 61 section points were required as output and section integration is performed during the analysis. The number of section points is only an output parameter and has no incidence on the convergence.

Error estimates

Two error estimates are introduced: the first one for the transverse shear part of the stresses for which we introduce the following seminorm:

σ 2 = L 0 h 2 -h 2 σ α3 S α3β3 σ β3 dx 3 dx 1
and we define the relative error as:

∆(σ) = σ Ex -σ σ Ex
In Figure 15 the transverse shear stress distribution error versus the slenderness ratio is plotted. Contrary to the finite elements solution and Whitney's solution, the Bending-Gradient solution converges when the plate is slender. In Figure 16 the mid-span deflection error is also plotted versus the slenderness ratio. The Bending-Gradient solution is the most accurate one for conventional slenderness.

5.3.4. [45 • , -45 • ] ply
Again we take the [0 • , 90 • ] ply and rotate it with respect to the bending direction. This lead to a nonsymmetric and non-orthotropic ply [45 • , -45 • ] and this configuration does not comply with the assumptions made for the finite elements approach. The comparison is made in Figure 17 for transverse shear stress. The Bending-Gradient solution remains close to the exact solution and Whitney's solution yields acceptable results (except a mismatch for σ (Q),W 23). However in this case, finite elements yields inappropriate results: in Direction 1 the stress distribution does not respect macroscopic equilibrium σ FE 13 = Q 1 . We checked nevertheless that FE nodal forces fulfills macroscopic equilibrium.

In Figure 18 is plotted the in-plane displacement in both directions. The Bending-Gradient approximation matches accurately the exact solution in Direction 1. In Direction 2 there is an offset between the Bending-Gradient approximation and the exact solution, however the overall shape of the displacement is captured.

The inaccuracy of finite element and Whitney's solutions is again clear in Figure 19 showing the transverse shear stress distribution error versus the slenderness ratio whereas the Bending-Gradient converges as ∆(σ BG ) ∝ h L 2 and both the Whitney and finite elements solutions lead to non negligible errors. Again, in Figure 20, the deflection error indicates that FE are too compliant and that the Bending-Gradient is more accurate than the Reissner-Mindlin solution.

Influence of the bending direction

As already mentioned, the finite elements approach makes assumption on the overall plate configuration (orthotropy). However, in standard engineering application, even if the plate is orthotropic, the bending direction does not often correspond to the orthotropy axis. In order to illustrate this, we consider here the cross ply [0 • , 90 • ] laminate with fixed slenderness L/h = 4 and we rotate the bending directions (the plate's overall configuration is rotating relative to x 3 axis). In Figure 21 we plotted the deflection error with respect to the bending direction for the different approximations. It is clear that the bending direction has a great influence on the accuracy of the deflection. Even for the Reissner-Mindlin approximation, the error can be four times greater than the error for the Bending-Gradient.

Discussion

We have numerically compared three approaches for deriving an approximation of the exact solution for cylindrical bending suggested by [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]Pagano ( , 1970a,b) ,b) applied to two cross-ply configurations (one mirror-symmetric and one non-symmetric) and in two bending directions.

The first main observation which comes out of this analysis is the critical influence of the assumption of orthotropy with respect to the bending direction. When this assumption is fullfilled, the three approximations lead to almost identical results. Otherwise, both Whitney's and Finite Element approximations lead to poor estimation of transverse shear stress distribution and deflection. In the case of finite elements this is because we do not respect the assumption of the model. In the case of Whitney (1972), the main reason for this discrepancy comes from the assumption of cylindrical bending. This assumption neglects the influence of the pure warping unknowns included in the bending gradient: R 112 and R 221 and generates the difference in shear stress distribution and therefore in deflection.

The second observation is that a simple rotation of the plate with respect to the bending direction leads to very different transverse shear stress distribution. This shows clearly the necessity to distinguish between torsion and cylindrical bending components in the gradient of the bending moment. In most plate models they are mixed into shear forces (Q 1 = R 111 + R 122 ), whereas, as illustrated in Section 4.3.2, the components R 111 and R 122 lead to different transverse shear stress distributions. This explains the significant difference when changing the bending direction. More generally, this raises the question of the relevence of benchmarking plate models in configurations where only the cylindrical part of the bending gradient is involved whereas laminated plate engineering applications involves much more general configurations.

Finally, the Bending-Gradient solution was presented. When the plate follows mirror symmetry, this model gives a very good approximation of both local and macroscopic fields at a rather low computational cost (no post-process integration through the thickness and Reissner-Mindlin-like partial derivative equations). Moreover, it was numerically demonstrated that the Bending-Gradient solution asymptotically converges to the exact solution as the slenderness ratio goes to infinity. Thus, with mirror-symmetric laminates, the Bending-Gradient solution is the Saint-Venant solution for an out-of-plane loaded plate.

When the laminate is not mirror-symmetric, the Bending-Gradient gives less accurate results: the transverse shear distribution or the related in-plane displacement might not exactly converge to the exact solution. Several explanations are currently under investigation. Especially, in Part I we indicated that it was our choice to neglect the contribution to the stress energy of the membrane stress gradient, N ⊗ ∇. Neglecting this contribution explains the discrepancy observed when the membrane stress in not zero, which occurs when the plate is not mirror-symmetric.

Finally, in Part I we pointed out that the relevance of introducing the full bending gradient might be questionable since the Bending-Gradient is sometimes turned into a Reissner-Mindlin model. In the present paper, we provide answers. On the one hand, when dealing with highly anisotropic laminates, it is clear that all localization fields are relevant (see Section 4.3.2) and the distance with Reissner-Mindlin presented in Section 4.3.3 fully justifies the use of the Bending-Gradient. Furthermore, in upcoming work, the Bending-Gradient theory will be applied to periodic plates. It appears that the distance between Reissner-Mindlin and Bending-Gradient models is almost up to 80% with very common patterns. On the other hand, when studying the influence of isotropy on the shear constitutive equation in Section 3.3 we indicated that only Poisson's effect has an influence on warping. Since most conventional materials have almost identical Poissons's ratios, it is more relevant to use a Reissner-Mindlin model in these cases. Eventually, the distance between Reissner-Mindlin and Bending-Gradient models is an efficient tool for deciding which model is the most relevant.

Conclusion

In the present paper, we provided first applications using the Bending-Gradient plate theory. We introduced Voigt notation which enables easier analytical computations and prepares finite elements implementation. Then the influence of material symmetries was associated to in-plane strain gradient elasticity. Closed-form solutions for cylindrical bending were fully derived, applied to laminates and compared to Reissner-Mindlin and finite elements approximations. The main conclusion is that the Bending-Gradient gives good predictions of both deflection and shear stress distributions in many material configuration. It is also the Saint-Venant solution when membrane stresses are fully uncoupled from bending moments and generalized shear stresses. Finally, with usual laminated plates, we demonstrated that the Bending-Gradient cannot be reduced to a Reissner-Mindlin plate model.

Several outlooks are under consideration. First, this plate theory can be extended to periodic plates such as sandwich panels (Lebée and Sab, 2010c,d). Second, the estimation of the influence of the membrane stress gradient on the quality of the shear stress estimation should be studied in detail. Finally, since we have a Saint-Venant solution, it is worth analyzing the shift with more refined approximations such as layerwise models or even full 3D finite elements when it is necessary to locally refine the analysis as illustrated in [START_REF] Amini | Multi-scale domain decomposition method for large-scale structural analysis with a zooming technique: Application to plate assembly[END_REF] 
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  [a a a], [b b b] and [d d d ] are Kirchhoff-Love compliance matrices. Taking into account N 11 = N 12 = 0 and e 22 = 0 enables us to rewrite Kirchhoff-Love constitutive equation in a compact form as:

  is derived, the non-zero unknowns are derived using Equations 18, 19 and 22.Solution. Since f is positive and[d d d ] 
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 12 Figure 12: Deflection error versus slenderness ratio for a [0 • , 90 • ] laminate.

Figure 13 :Figure 14 :Figure 15 :Figure 16 :

 13141516 Figure 13: Normalized shear distribution in both directions at x 1 = 0 for a [45 • , -45 • , 45 • , -45 • , 45 • , -45 • , 45 • , -45 • , 45 • ] laminate, L/h = 4, a) σ 13 b) σ 23 .
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 171819 Figure 17: Normalized shear distribution in both directions at x 1 = 0 for a [45 • , -45 • ] laminate, L/h = 4, a) σ 13 b) σ 23 .
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αβγδǫζ follows major symmetry: αβγδǫζ = ζǫδγβα and minor symmetry αβγδǫζ = βαγδǫζ . Thus there are only

independent components

where σ Ex is the exact shear stress distribution from [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]Pagano ( , 1970a,b),b). The second one is the mid-span deflection relative error:

where

is the plate deflection taken for the exact solution.

5.3. Results

5

In this section, we consider first a symmetric cross ply [0

In this case, the plate configuration fulfills the assumptions made for the finite elements approximation (orthotropic laminate). In Figure 5, shear stress distribution at x 1 = 0 in Direction 1 is plotted for the exact solution from [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF] σ Ex , the Bending-Gradient solution σ (R) , Whitney's shear distribution σ (Q),W and the finite elements solution σ (Q),FE . The slenderness ratio is set to L/h = 4 as conventionally done when benchmarking plate models. The reader is referred to (Whitney, 1972;[START_REF] Noor | An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[END_REF]Yu et al., 2002;[START_REF] Nguyen | A model for thick laminates and sandwich plates[END_REF][START_REF] Carrera | Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking[END_REF] among others. The three approximate solutions yield the same distribution. The discrepancy with the exact solution is well-known and associated to edge effects.

In Figure 6 is plotted the in-plane displacement at x 1 = 0 in Direction 1. The displacement is normalized with the mid-span Kirchhoff-Love deflection, U KL 3 . The Bending-Gradient approximation follows closely the exact solution.

In Figure 7 the transverse shear stress distribution error ∆(σ) versus the slenderness ratio L/h is plotted for the Bending-Gradient solution (BG), the finite elements solution (RM, FE) and the closed-form Reissner-Mindlin solution (RM, W E). In Figure 8 the mid-span deflection error is also plotted versus the slenderness ratio. Kirchhoff-Love deflection is also plotted as reference. The three approximate solutions yield almost the same error both for deflection and transverse shear stress and converge as ∆(σ BG ) ∝ h L 2 with the slenderness ratio.

[0 • , 90 • ] ply

We consider now a non-symmetric cross ply [0 • , 90 • ] laminate. The plate configuration still fulfills the assumptions made for the finite elements approximation. In Figure 9, shear stress distribution in Direction 1 is plotted. Again, the three approximate solutions yield the same distribution.

In Figure 10 is plotted the in-plane displacement in Direction 1. The Bending-Gradient approximation follows some trends of the exact solution. However, there is a small discrepancy with the exact solution.

In Figure 11 the transverse shear stress distribution error ∆(σ) versus the slenderness ratio L/h is plotted. In this case, Whitney's solution converges with L/h whereas finite elements and Bending-Gradient approximations do not converge and lead to small residual errors (≃ 10 -3 ). In Figure 12 the mid-span deflection error is also plotted versus the slenderness ratio. Again the three approximate solutions yield almost the same error.

Now we take the initial 9-ply configuration and simply rotate it 45 • with respect to the bending direction. It becomes a symmetric and non-orthotropic [45 • , -45

laminate. This configuration does not comply with the assumptions made for the finite elements approach. In Figure 13 shear distributions are compared to the exact solution. The Bending-Gradient solution remains close to the exact solution. However finite elements and Whitney's solution yield a different distribution which is not as accurate as the Bending-Gradient. More precisely, in Direction 2, the FE solution does not capture the change of slope associated to the change of ply orientation.

In Figure 14 is plotted the in-plane displacement in both directions. The Bending-Gradient approximation matches accurately the exact solution. Especially, in Direction 2 the distribution follows a Zig-Zag shape. Thus the Bending-Gradient approximation is able to capture this well-known feature of laminates displacement fields.