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Abstract

In the first part (Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for
out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff-Love theory (3 in-
plane stresses and 3 bending moments), to which six components are added representing the gradient of the
bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered
plates of the Reissner-Mindlin plate theory which appears as a special case when the plate is homogeneous.
Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a
Reissner-Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its
predictions are compared to those of Reissner-Mindlin theory and to full 3D Pagano’s exact solutions. The
main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions
and in-plane displacement distributions in any material configuration. Moreover, under some symmetry
conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution
as the slenderness ratio L/h goes to infinity.

Key words: Plate Theory, Higher-order Models, Laminated Plates, Composite Plates

1. Introduction

Laminated plates are widely used in engineering applications. For instance angle-ply carbon fiber re-
inforced laminates are commonly used in aeronautics. However, these materials are strongly anisotropic
and the plate overall behavior is difficult to capture. The most common plate theory is the Kirchhoff-Love
plate model. However, it is well-known that, when the plate slenderness ratio L/h (h is the plate thickness
and L the span) is not large enough, transverse shear stresses which are not taken into account in the
Kirchhoff-Love theory have an increasing influence on the plate deflection.

In recent decades many suggestions have been made to improve the estimation of transverse shear stresses.
Reddy (1989), Noor and Malik (2000) and Carrera (2002) provided detailed reviews for these models. Two
main approaches can be found: asymptotic approaches and axiomatic approaches. The first one is mainly
based on asymptotic expansions in the small parameter h/L (Caillerie, 1984; Lewinski, 1991c,b,a). However,
higher-order terms yield only intricated “Kirchhoff-Love” plate equations and no distinction between relevant
fields and unknowns was made. The second main approach is based on assuming ad hoc displacement or
stress 3D fields. These models can be “Equivalent Single Layer“ or ”Layerwise“. Equivalent single layer
models treat the whole laminate as an equivalent homogeneous plate. However, when dealing with laminated
plates, these models lead systematically to discontinuous transverse shear stress distributions through the
thickness as indicated by Reddy (1989). In layerwise models, all plate degrees of freedom are introduced in
each layer of the laminate and continuity conditions are enforced between layers. The reader can refer to
Reddy (1989) and Carrera (2002) for detailed reviews of kinematic approaches and to (Naciri et al., 1998;
Diaz Diaz et al., 2001; Hadj-Ahmed et al., 2001; Caron et al., 2006; Diaz Diaz et al., 2007; Dallot and Sab,
Preprint submitted to Elsevier April 26, 2011



2008) for static approaches. Layerwise models lead to correct estimates of local 3D fields. However, their
main drawback is that they involve a number of degrees of freedom proportional to the number of layers.
The limitation is immediately pointed out with functionally graded materials, where the plate constituents
properties vary continuously through the thickness (Nguyen et al., 2008a,b).

In the first part of this work (Lebée and Sab, 2010a) we revisited the use of 3D equilibrium in order to
derive transverse shear stress as Reissner (1945) did for homogeneous plates. Thanks to standard variational
tools, this led us to an Equivalent Single Layer plate theory which takes accurately into account shear effects
and does not require any specific constitutive material symmetry: the Bending-Gradient theory. This plate
theory is identical to the Reissner-Mindlin plate theory in the case of homogeneous plates. However, for
laminated plates, shear forces are replaced by the gradient of the bending moment RRR = M ⊗ ∇. Hence,
this theory belongs to the family of higher-order gradient models. The mechanical meaning of the bending
gradient was identified as self-equilibrated static unknowns associated to warping functions in addition to
conventional shear forces.

The purpose of the present paper is to derive closed-form solutions for the Bending-Gradient model in
the case of cylindrical bending and compare them to the exact solutions from Pagano (1969, 1970a,b) and
to other approaches commonly used.

This paper is organized as follows. First, in Section 2, notations are briefly introduced. Then, in
Section 3, the Bending-Gradient model is recalled, Voigt notation is introduced and the influence of material
symmetries is also considered. In Section 4, cylindrical bending closed-form solutions are derived and applied
to laminates. Finally, comparison with approximations based on Reissner-Mindlin theory and discussion on
results are provided in Section 5.

2. Notations

Plate models involve 2-dimensional (2D) tensors of several orders. Vectors and higher-order tensors are
boldfaced and different typefaces are used for each order: vectors are slanted: T , u. Second order tensors are
sans-serif: M, e. Third order tensors are in typewriter style: ΦΦΦ, ΓΓΓ. Fourth order tensors are in calligraphic
style DDD, ccc. Sixth order tensors are double stroked FFF,WWW. For instance, the fourth-order tensor ccc = cαβγδ with
Greek indexes α, β, γ.. = 1, 2, denotes the plane-stress elasticity tensor. The identity for in-plane elasticity
is iαβγδ =

1
2 (δαγδβδ + δαδδβγ), where δαβ is Kronecker symbol (δαβ = 1 if α = β, δαβ = 0 otherwise). The

transpose operation t• is applied to any order tensors as follows:
(

tA
)

αβ...ψω
= Aωψ...βα.

Three contraction products are defined, the usual dot product (a · b = aαbα), the double contraction
product (a : b = aαβbαβ) and a triple contraction product (AAA∴BBB = AαβγBγβα). In these definitions Einstein’s
notation on repeated indexes is used. It should be noticed that closest indexes are summed together in
contraction products. Thus, ΦΦΦ · n = Φαβγnγ is different from n · ΦΦΦ = nαΦαβγ .

The derivation operator ∇ is also formally represented as a vector: a · ∇ = aαβ∇β = aαβ,β is the
divergence and a ⊗∇ = aαβ∇γ = aαβ,γ is the gradient. Here ⊗ is the dyadic product.

In this paper, Voigt notation is also introduced. Brackets [•] are used to denote that a tensor is considered
in a matrix form. Moreover, matrices and vectors of several dimensions are defined. Vectors and matrices
are 2D by default. In other cases, •̃ denotes dimension 3: Ũ denotes a 3D vector and f̃ denotes a 3 × 3
matrix. The related components are indexed with Latin indexes, i, j, k.. = 1, 2, 3: fij . •̂ denotes dimension

6: P̂ denotes a 6× 6 matrix.

Finally, the integration through the thickness is noted 〈•〉:
∫ h

2

−h

2

f(x3)dx3 = 〈f〉.

3. The Bending-Gradient plate model

3.1. Summary of the plate model

We consider a linear elastic plate of thickness h which mid-plane is the 2D domain ω ⊂ R2 (Figure 1).
Cartesian coordinates (x1, x2, x3) in the reference frame (ẽ1, ẽ2, ẽ3) are used. The local stiffness tensor
Cijkl(x3) is assumed to be invariant with respect to translations in the (x1, x2) plane and the plate is loaded
exclusively with the out-of-plane distributed force p̃ = p3ẽ3.
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The membrane stress N, the bending moment M, and shear forces Q are related to the actual 3D local
stress by the following equations:











Nαβ (x1, x2) = 〈σαβ〉 (1a)

Mαβ (x1, x2) = 〈x3σαβ〉 (1b)

Qα (x1, x2) = 〈σα3〉 (1c)

Moreover, we introduce the gradient of the bending moment RRR = M ⊗ ∇∇∇. The 2D third-order tensor RRR

complies with the following symmetry: Rαβγ = Rβαγ . It is possible to derive shear forces Q from RRR as:
Q = iii ∴ RRR.

Equilibrium equations and boundary conditions involving stress fields were derived in Part I and are
gathered in the set of statically compatible fields:







































N ·∇ =  on ω (2a)

M ⊗∇∇∇− RRR = 0 on ω (2b)

(iii ∴ RRR) ·∇ = −p3 on ω (2c)

N · n = V d on ∂ωs (2d)

M = Md on ∂ωs (2e)

(iii ∴ RRR) · n = V d
3 on ∂ωs (2f)

where ∂ωs is the portion of edge on which static boundary conditions apply: Ṽ
d
is the force per unit

length and Md the full bending moment enforced on the edge. This set of equations is almost identical to
Reissner-Mindlin equations where shear forces have been replaced by the bending gradient RRR.

Generalized stresses N, M, and RRR work respectively with the associated strain variables: e, the conven-
tional membrane strain, χ the curvature and ΓΓΓ the generalized shear strain. These strain fields must comply
with the following compatibility conditions and boundary conditions:































e = iii : (∇⊗U) on ω (3a)

χ = ΦΦΦ ·∇ on ω (3b)

ΓΓΓ = ΦΦΦ+ iii ·∇U3 on ω (3c)

ΦΦΦ · n = Hd on ∂ωk (3d)

Ũ = Ũ
d
on ∂ωk (3e)

where Ũ is the average through the thickness of the 3D displacement of the plate and ΦΦΦ is the generalized
rotation. ΓΓΓ and ΦΦΦ are 2D third-order tensors with the following symmetry: Φαβγ = Φβαγ . Moreover, ∂ωk is

the portion of edge on which kinematic boundary conditions apply: Ũ
d
is a given displacement and Hd is

a symmetric second-order tensor related to a forced rotation on the edge. These fields are almost identical
to Reissner-Mindlin kinematically compatible fields where the rotation pseudo-vector is replaced by the
generalized rotation ΦΦΦ.

Finally, for constitutive material following local monoclinic symmetry with respect to (x1, x2) plane
(uncoupling between RRR and (N,M)) the Bending-Gradient plate constitutive equations are written as:











N = AAA : e +BBB : χ (4a)

M = tBBB : e +DDD : χ (4b)

ΓΓΓ = fff ∴ RRR, where (III− fff ∴FFF) ∴ ΓΓΓ = 0 (4c)

where conventional Kirchhoff-Love stiffnesses are defined as (AAA,BBB,DDD) =
〈(

1, x3, x
2
3

)

ccc(x3)
〉

. The 2D sixth
order tensors1 fff and FFF are the generalized shear compliance and stiffness. Their definition is detailed in

1fαβγδǫζ follows major symmetry: fαβγδǫζ = fζǫδγβα and minor symmetry fαβγδǫζ = fβαγδǫζ . Thus there are only 21
independent components
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Section 4.2 of the present work. Moreover, III is the related identity tensor (Iαβγδǫζ = iαβǫζ δγδ). The solution
of the plate model must comply with the three sets of equations (2, 3, 4). The compliance fff is positive.
However when fff is not definite, there is a set of solutions, up to a self-stress field.

3.2. Voigt Notations

In this section, we introduce Voigt notation in order to turn contraction products into conventional
matrix products. Brackets [•] are used to denote that a tensor is considered in a matrix form. Thus [•] is a
linear operator, reallocating tensor components.

For instance, the bending moment is reallocated in a vector form:

[M] =





M11

M22√
2M12



 (5)

as well as N, e and χ, and the fourth-order compliance tensor ddd is reallocated in a matrix form so that
constitutive equation (4b) becomes a vector-matrix product:

[ddd ] =





d1111 d2211
√
2d1211

d2211 d2222
√
2d1222√

2d1211
√
2d1222 2d1212



 (6)

as well as the stiffness tensorDDD. This is also done to the other Kirchhoff-Love compliances aaa, bbb, and stiffnesses
AAA, BBB and also to the plane-stress stiffness tensor ccc.

The same procedure is applied to shear variables and the corresponding constitutive equation. Shear
static unknowns are reallocated in a vector form,

[RRR] =

















R111

R221√
2R121
R112

R222√
2R122

















(7)

as well as ΓΓΓ and ΦΦΦ; and the constitutive sixth-order tensor is turned into a 6× 6 matrix:

[fff] = 






f111111 f111122 √
2f111121 f111211 f111222 √

2f111221f221111 f221122 √
2f221121 f221211 f221222 √

2f221221√
2f121111 √

2f121122 2f121121 √
2f121211 √

2f121222 2f121221f112111 f112122 √
2f112121 f112211 f112222 √

2f112221f222111 f222122 √
2f222121 f222211 f222222 √

2f222221√
2f122111 √

2f122122 2f122121 √
2f122211 √

2f122222 2f122221
















(8)

Finally, when using Voigt matrices components, the same typeface is used. The number of indexes indicates
unambiguously whether it is the tensor component or the matrix component: f222221 is the tensor component
of fff and f56 =

√
2f222221 is the matrix component of [fff].

3.3. Symmetries

The effects of material symmetries on uncouplings have been presented in Part I. The main result is that
(N,M) and bending gradient (RRR) are uncoupled when the local elasticity tensor Cijkl(x3) follows monoclinic
symmetry with respect to (x1, x2) plane for all x3. Under this assumption, which is valid for most of
applications involving laminated materials, it is possible to point out the influence of the invariance of
the plate’s overall configuration on the constitutive equations. Regarding the Kirchhoff-Love constitutive
equation, we just recall that when the plate is overall symmetric with respect to its mid-plane there is
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uncoupling between membrane stresses and bending moments: BBB = 000 . This symmetry is often called mirror
symmetry. Regarding the generalized shear constitutive equation, the in-plane transformations of fff are
identical to those for in-plane strain-gradient elasticity. Auffray et al. (2009) give a detailed analysis of this
issue. We provide here a very brief description of their conclusions.

Let us consider an isometry of the (x1, x2) plane, P : tP · P = δ. The transformation of fff by P , fff∗ is
given by: f∗αβγδǫζ = PαηPβθPγιPδκPǫλPζµfηθικλµ (9)

It can be rewritten with Voigt notation as:

[fff]∗ = P̂ · [fff] · t P̂ (10)

where P̂ is a 6 × 6 matrix which components are explicitly known in terms of the components of P . For a

rotation, P r =
(

cos θ − sin θ
sin θ cos θ

)

, and P̂
r
is the 6× 6 matrix:

P̂
r
=

















c3 cs2 −
√
2c2s −c2s −s3

√
2cs2

cs2 c3
√
2c2s −s3 −c2s −

√
2cs2√

2c2s −
√
2c2s (c2 − s2)c −

√
2cs2

√
2cs2 −(c2 − s2)s

c2s s3 −
√
2cs2 c3 cs2 −

√
2c2s

s3 c2s
√
2cs2 cs2 c3

√
2c2s√

2cs2 −
√
2cs2 (c2 − s2)s

√
2c2s −

√
2c2s (c2 − s2)c

















where c and s stand respectively for cos θ and sin θ. When P is a reflection through e2 normal plane,
Pm =

(

1 0
0 −1

)

and we have:

P̂
m

=

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

















If the laminated plate is invariant with respect to an isometry P , then we have the following 21 linearly
dependent equations:

[fff] = P̂ · [fff] · t P̂
Isotropy. A plate configuration is isotropic if its constitutive equation is both invariant by any planar rotation

(P̂
r
) and reflection (P̂

m
). With this assumption, four independent constants still remain (f11, f12, f22, f26)

and fff is positive definite:

[fff] = 








f11 f12 0 0 0 f11−f22√
2

− f26f12 f22 0 0 0 f26
0 0 f11+f22

2 − f12 f26 f11−f22√
2

− f26 0

0 0 f26 f22 f12 0

0 0 f11−f22√
2

− f26 f12 f11 0f11−f22√
2

− f26 f26 0 0 0 f11+f22
2 − f12



















(11)

It is possible to simplify further this constitutive equation when a laminate is a stack of plies with
different isotropic constitutive materials (this symmetry is also valid for some functionally graded materials
(Nguyen et al., 2008a,b)). We use the spectral decomposition of plane stress stiffness:

ccc(x3) =
2ν(x3)E(x3)

1− ν2(x3)
jjj +

E(x3)

1 + ν(x3)
iii

5



where E is the Young modulus, ν Poisson’s ratio and jαβγδ = 1/2δαβδγδ. Deriving directly the constitutive
equation (29) with this decomposition enables us to demonstrate that f26 = −f12. Three independent
constants f11, f12, f22 still remain and fff is no more invertible:fff = (f11 + f22 + 2f12) iii · iii − 2 (f22 + f12) (jjj · iii + iii · jjj

)

+ f22jjj · jjj (12)

Finally, for a plate with a homogeneous and isotropic constitutive material, we have demonstrated that
the Bending-Gradient model is turned into a Reissner-Mindlin plate model and that fff = 6

5Gh iii · iii in Part I.
This is rewritten as

[fff] = 6

5Gh

















1 0 0 0 0 1/
√
2

0 0 0 0 0 0

0 0 1/2 0 1/
√
2 0

0 0 0 0 0 0

0 0 1/
√
2 0 1 0

1/
√
2 0 0 0 0 1/2

















(13)

In this case: f11 = 6
5Gh and f12 = f22 = 0 which is different from the general case of a layered plate

made of different isotropic constitutive materials (Equation 12). Consequently, even for these laminates,
the Bending-Gradient model is a priori not a Reissner-Mindlin model. This is mainly because the different
Poisson’s ratios in each layer generates warping. When Poisson’s ratio is uniform through the thickness, the
constitutive equation is such that f12 = f22 = 0 and for conventional isotropic materials, the warping effect
remains very limited, leading to a quasi homogeneous constitutive equation.

4. Closed-form solution for Pagano’s configuration

4.1. Plate closed-form solution

Pagano (1969) gives an exact solution for cylindrical bending of simply supported composite laminates.
We choose the same configuration for the Bending-Gradient model. The plate is invariant and infinite in
x2 direction. It is out-of-plane loaded with p3(x1) = −p0 sinκx1 where λ = 1/κ = L

nπ , n ∈ N+∗ is the
wavelength of the loading (Figure 2).

The plate is simply supported at x1 = 0 and x1 = L with traction free edges:

U3 (0) = 0, U3 (L) = 0, M (0) = , M (L) = , N (0) · e1 = , N (L) · e1 =  (14)

In these boundary conditions, M22 (0) = M22 (L) = 0 is the additional boundary condition compared to
the Reissner-Mindlin plate model. This boundary condition is very similar to the one which applies to
the bimoment on a free section in Vlasov (1961) beam theory. This additional boundary condition takes
into account free edge effects similar to those described in Lebée and Sab (2010b) for periodically layered
laminate.

The solution is obtained as follows: First, the x2-invariance leads to several simplifications and some
unknowns vanish. Second, relevant equations and unknowns are gathered into a differential system and the
closed-form solution is derived.

4.1.1. Simplifications related to x2-invariance

Membrane solution. Since (N,M) fields are uncoupled from shear fields, it is possible to solve separately
the membrane part of the plate model. Hence, the x2−invariance in the membrane strain definition (3a)
enforces e22 = U2,2 = 0. Moreover, boundary conditions (2d) and equilibrium equation (2a) for membrane
stresses lead easily to N11 = N12 = 0. However, N22, e11 and e12 remain undetermined.

Curvatures. Curvatures are defined by Equation 3b: χαβ = Φαβγ,γ. Taking into account x2 invariance leads
to:

[χ] =





χ11
χ22√
2χ12



 =





Φ111,1

Φ221,1√
2Φ121,1



 =





Φ1,1

Φ2,1

Φ3,1



 (15)
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Kirchhoff-Love constitutive equation. Kirchhoff-Love constitutive equations (4a) and (4b) are written with
Voigt notation in the inverse form as:

[e] = [aaa] · [N] + [bbb] · [M] (16a)

[χ] =
t
[bbb] · [N] + [ddd ] · [M] (16b)

where [aaa], [bbb] and [ddd ] are Kirchhoff-Love compliance matrices.
Taking into account N11 = N12 = 0 and e22 = 0 enables us to rewrite Kirchhoff-Love constitutive

equation in a compact form as:
[χ] = [ddd ]

∗ · [M] (17)

where

d ∗
ij = dij −

b2ib2j

a22

is the effective flexural stiffness taking into account e22 = 0 constraint. N22, e11 and e12 are then derived
directly from the bending moment using equations:

ei =

(

bij −
ai2b2j

a22

)

Mj and N2 = − b2i

a22
Mi (18)

Equilibrium. The x2 invariance in the bending gradient equilibrium equation (2b) enforces:
















R1

R2

R3

R4

R5

R6

















=

















M11,1

M22,1√
2M12,1

0
0
0

















(19)

and transverse loading equilibrium equation (2c) becomes:

M11,11 = −p3(x1) (20)

Shear constitutive equation. Taking into account R4 = R5 = R6 = 0, U3,2 = 0 and generalized shear strain
definition (3c), Shear constitutive equation (4c) is rewritten in two parts.

A first part with unknowns involving active boundary conditions:




Φ1

Φ2

Φ3



 =





f11 f12 f13f12 f22 f23f13 f23 f33  ·





M11,1

M22,1√
2M12,1



−





U3,1

0
0



 (21)

and a second part which enables the derivation of Φ4, Φ5, Φ6 on which no boundary condition applies:




Φ4

Φ5

Φ6



 =





f41 f42 f43f51 f52 f53f61 f62 f63  ·





M11,1

M22,1√
2M12,1



−





0
0

U3,1/
√
2



 (22)

4.1.2. Resolution

Final System. Finally, combining Equations 14, 15, 17, 20 and 21, leads to the following set of equations
which fully determines the problem:



































M11,11 = p0 sinκx1 (23a)

[ddd ]
∗ · [M]− f̃ · [M],11 =





U3,11

0
0



 (23b)

[M] = 0 for x1 = 0 and x1 = L (23c)

U3 = 0 for x1 = 0 and x1 = L (23d)
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where for convenience, f̃ is the 3× 3 submatrix of [fff]:
f̃ =





f11 f12 f13f12 f22 f23f13 f23 f33 
Once [M] is derived, the non-zero unknowns are derived using Equations 18, 19 and 22.

Solution. Since f̃ is positive and [ddd ]
∗
is positive definite, the differential system 23 is well-posed and the

solution is the sum of a particular solution and hyperbolic solutions of the homogeneous equation. Boundary
conditions applied to M vanish hyperbolic solutions. There remains the particular solution:

[M] =

(

−1
g−1 · g

)

p0λ
2 sinκx1 and U3 = −p0λ

4
(

g11 − tg · g−1 · g
)

sinκx1 (24)

where

g̃ = [ddd ]
∗
+ κ2f̃ , g =

(

g22 g23
g23 g33

)

, g =

(

g12
g13

)

. (25)

The matrix g̃ appears to be the effective flexural stiffness for cylindrical bending, corrected with shear

effects. When κ → 0, g̃ = d̃
∗
which yields exactly the Kirchhoff-Love solution.

4.2. Localization

Once the generalized stresses are derived, it is possible to reconstruct local 3D fields, using the localization
procedure described in Part I. The local 3D stress σ̃BG is the sum of three terms depending linearly on the
generalized stresses:

σ̃
BG = s̃ss(N) : N + s̃ss(M) :M + s̃ss(R) ∴ RRR (26)

where,























s
(N)
αβǫζ(x3) = cαβγδ(x3) (aδγǫζ + x3 bζǫγδ) and s

(N)
i3ǫζ = 0 (27a)

s
(M)
αβǫζ(x3) = cαβγδ(x3) (bδγǫζ + x3 dδγǫζ) and s

(M)
i3ǫζ = 0 (27b)

s
(R)
α3ηζǫ(x3) = −

∫ x3

−h

2

cαηγδ(z) (bδγǫζ + z dδγǫζ) dz , s
(R)
αβηζǫ = 0 and s

(R)
33ηζǫ = 0 (27c)

and ccc(x3) is the local plane-stress stiffness tensor.
It is possible to rewrite Equation 26 with Voigt notations as follows:

σ̃BG,\\ =





σBG11
σBG22√
2σBG12



 = s̃(N) · [N] + s̃(M) · [M]

σBG,⊥ =

(

σBG13
σBG23

)

= s(R) · [RRR]

where
s̃
(N)(x3) = [ccc] (x3) ·

(

[aaa] + x3
t
[bbb]
)

s̃
(M)(x3) = [ccc] (x3) · ([bbb] + x3[ddd ])

s(R)(x3) = −
∫ x3

−h

2

Jccc(z) : (bbb + z ddd )Kdz
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s̃(N) and s̃(M) are 3× 3 matrices and s(R) is a 2× 6 matrix. Straight double stroked brackets J•••K denote here
the following matrix representation of a fourth-order tensor:

JLLLK =

(

L1111 L1122

√
2L1121 L1211 L1222

√
2L1221

L2111 L2122

√
2L2121 L2211 L2222

√
2L2221

)

(28)

This reallocation is also useful for the derivation of the shear compliance tensor derived in Part I:

[fff] = ∫ h

2

−h

2

(

∫ x3

−h

2

t
Jccc(z) : (bbb + z ddd )Kdz

)

· S(x3) ·
(

∫ x3

−h

2

Jccc(z) : (bbb + z ddd )Kdz

)

dx3 (29)

where Sαβ(x3) = 4Sα3β3(x3) is the out-of-plane shear compliance tensor.
Since fff is not always invertible, we introduce Moore-Penrose pseudo inverse for the shear stiffness tensorFFF: FFF = lim

κ→0
(fff ∴ fff + κIII)−1

∴ fff
which is used in the constraint on generalized shear strain ΓΓΓ in Equation 4c.

Finally, the in-plane displacement localization was suggested in Part I as:

uBG = U − x3∇U3 + υ(R)
∴ RRR (30)

where

υ(R)
α =

(

∫ x3

−h

2

Sαζ(z)s
(R)
ζ3βγδ(z)dz + k

(R)
αβγδ

)

(31)

and kkk (R) is chosen such as
〈

u
(R)
α

〉

= 0. This is rewritten with Voigt notation as:

uBG = U − x3∇U3 + υ
(R) · [RRR]

where

υ(R)(x3) = −
∫ x3

−h

2

S(z) ·
∫ z

−h

2

Jccc(u) : (bbb + uddd )Kdudz + Jkkk (R)K

4.3. Application to laminates

4.3.1. Plate configuration

We consider angle-ply laminates. Each ply is made of unidirectional fiber-reinforced material oriented
at θ relative to the bending direction x1. All plies have the same thickness and are perfectly bounded. A
laminate is denoted between brackets by the successive ply-orientations along the thickness. For instance
[0◦, 90◦] denotes a 2-ply laminate where the lower ply fibers are oriented in the bending direction. When the
laminate follows mirror symmetry described in Section 3.3, only half of the stack is given and the subscript
s is added. Thus [30◦,−30◦]s means [30◦,−30◦,−30◦, 30◦].

The constitutive behavior of a ply is assumed to be transversely isotropic along the direction of the fibers
and engineering constants are chosen similar to those of Pagano (1969):

EL = 25× 106psi, ET = EN = 1× 106psi, GLT = GLN = 0.5× 106psi,

GNT =
ET

2(1 + νNT )
= 0.4× 106psi, νLT = νLN = νNT = 0.25

where GNT has been changed to preserve transversely isotropic symmetry. L is the longitudinal direction
oriented in the (x1, x2) plane at θ with respect to ẽ1, T is the transverse direction and N is the normal
direction coinciding with ẽ3.

Pagano (1969, 1970a,b) derived exact 3D elasticity solution of this problem for a laminate loaded only on
the upper face and free on the lower face. In the present work we assume the plate is identically loaded on
its upper and lower face to comply with the plate model: T+

3 = T−
3 = p3

2 where T±
3 is the normal traction

on the upper and lower face of the plate.
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4.3.2. Localization fields

Shear forces are related to the bending gradient as follows: Q1 = R111+R122 and Q2 = R121+R222. Thus
we suggested in Part I the following signification for the bending gradient components:

R111 – R1: Cylindrical Bending part of Q1

R221 – R2: Pure warping

R121 – R3: Torsional part of Q2

R112 – R4: Pure warping

R222 – R5: Cylindrical Bending part of Q2

R122 – R6: Torsional part of Q1

In Figure 3 are plotted localization shear stress distributions s(R) derived in Section 4.2 corresponding to each
components of RRR in both directions for a quasi-isotropic laminate [0◦,−45◦, 90◦, 45◦]s. All stress distributions
are continuous and fulfill traction free boundary conditions on the upper and lower faces of the plate. For
each direction there are four self-equilibrated stress distribution (〈σα3〉 = 0) associated to R2, R3, R4 and R5 for
Direction 1 and R1, R2, R4 and R6 for Direction 2. This explains the suggested signification for shear variables.
We draw the reader’s attention to the fact that, even if there are self-equilibrated stress distributions, all
distributions have comparable amplitude and none can be neglected at this stage. Moreover, it is clear that
torsion generates different distributions than pure cylindrical bending, except in the homogeneous case.

4.3.3. Distance between the Reissner-Mindlin and the Bending-Gradient model

In Part I we introduced the relative distance between the Bending-Gradient model and a Reissner-Mindlin
model, ∆RM/BG:

∆RM/BG =
‖fffW‖
‖fffRM‖ (32)

where

‖fff‖ =

√

t
[fff] : [fff] (33)

is the norm for Bending-Gradient compliance tensors and fffW is the pure warping part of fff:
[fff]W = [fff]− 4

9
t
JiiiK · JiiiK · [fff] · tJiiiK · JiiiK (34)

∆RM/BG gives an estimate of the pure warping fraction of the shear stress energy. When the plate constitutive
equation is restricted to a Reissner-Mindlin one we have exactly ∆RM/BG = 0.

In Table 1, are given the values of ∆RM/BG for the laminates considered in this work. For a single
ply, the criterion is zero since in Part I we demonstrated that the Bending-Gradient model is exactly a
Reissner-Mindlin model in this case. However, when there are several plies, the distance can be greater than
10%. Thus with these laminates, the shear constitutive equation cannot be reduced to a Reissner-Mindlin
behavior.

Stack [0◦] [0◦, 90◦] [0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] [0◦,−45◦, 90◦, 45◦]s

∆RM/BG 0 16.0% 4.63% 12.4%

Table 1: The criterion ∆RM/BG for several laminates
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5. Comparison with other single equivalent layer approaches

5.1. Other single equivalent layer approaches

5.1.1. The Reissner-Mindlin model with the approach from Whitney (1972)

Closed-form solutions using the Reissner-Mindlin model were derived in order to compare them with
the Bending-Gradient. The resolution of the cylindrical bending problem is quite similar so it will not be
detailed here. The work of Whitney (1972) was used for deriving transverse shear stress distributions and
shear correction factors were taken into account into the shear constitutive equation of the Reissner-Mindlin
plate model.

Let us recall briefly the method. Whitney (1972) assumes the plate is under cylindrical bending: Q1 =

M11,1, Q2 = M12,1, e22 = 0 and χ22 = 0 and derives transverse shear distribution σ̃(Q),W (x3) following
a procedure almost identical to the one proposed in Part I. Then he computes the shear correction factor
defined as:

k21 =
f FSDT11

〈

σ̃
Q1 : S̃SS(x3) : σ̃

Q1

〉

where f FSDT11 is the First Order Shear Deformation Theory shear compliance: f FSDT =
(

F FSDT
)−1

where

FFSDTαβ = 〈Cα3β3(x3)〉. The shear correction factor in the second direction k2 is derived in the same way while

rotating the plate of π/2. Once shear correction factors are derived, the corrected shear stiffness FRM,W is
defined as follows:

FRM,W = k · FFSDT · k (35)

where k =
(

k1 0
0 k2

)

5.1.2. Finite element analysis

A comparison with a finite elements solution was also performed on ABAQUS (2007). Since the Bending-
Gradient is an Equivalent Single Layer theory, conventional shell elements were chosen (3 displacements and
3 rotations). Transverse shear fields with conventional shell elements in ABAQUS are derived using an
approach very similar to Whitney (1972) where it is furthermore assumed that the plate overall constitutive
equation is orthotropic with respect to the main bending direction. S4, linear quadrangle with full integration
elements, were used. A convergence test was performed comparing the FE mid-span deflection URM,FE to
the exact solution from Pagano (1969) UEx which ensures that the FE error increment is 1/1000 of the
error with the exact solution ((URM,FE − UEx)/UEx). This study enforced the typical size of an element
lchar = h/5 where h is the plate thickness. For instance when the slenderness is L/h = 4 there are 20
elements. Figure 4 shows a typical deformation of this mesh. Periodicity was enforced on lateral edges of
the strip in Figure 4 by equating corresponding rotations and displacements. Finally 61 section points were
required as output and section integration is performed during the analysis. The number of section points
is only an output parameter and has no incidence on the convergence.

5.2. Error estimates

Two error estimates are introduced: the first one for the transverse shear part of the stresses for which
we introduce the following seminorm:

‖σ‖2 =

∫ L

0

∫ h

2

−h

2

σα3Sα3β3σβ3dx3dx1

and we define the relative error as:

∆(σ) =
‖σEx − σ‖
‖σEx‖
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where σEx is the exact shear stress distribution from Pagano (1969, 1970a,b). The second one is the mid-span
deflection relative error:

∆(U3) =
UEx
3 (L/2)− U3(L/2)

UEx
3 (L/2)

where UEx
3 (x1) =

〈uEx

3
(x3)〉
h is the plate deflection taken for the exact solution.

5.3. Results

5.3.1. [0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] ply
In this section, we consider first a symmetric cross ply [0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] laminate. In this

case, the plate configuration fulfills the assumptions made for the finite elements approximation (orthotropic
laminate). In Figure 5, shear stress distribution at x1 = 0 in Direction 1 is plotted for the exact solution
from Pagano (1969) σEx, the Bending-Gradient solution σ(R), Whitney’s shear distribution σ(Q),W and the
finite elements solution σ(Q),FE. The slenderness ratio is set to L/h = 4 as conventionally done when
benchmarking plate models. The reader is referred to (Whitney, 1972; Noor and Malik, 2000; Yu et al.,
2002; Nguyen et al., 2005; Carrera, 2003) among others. The three approximate solutions yield the same
distribution. The discrepancy with the exact solution is well-known and associated to edge effects.

In Figure 6 is plotted the in-plane displacement at x1 = 0 in Direction 1. The displacement is normalized
with the mid-span Kirchhoff-Love deflection, UKL

3 . The Bending-Gradient approximation follows closely the
exact solution.

In Figure 7 the transverse shear stress distribution error ∆(σ) versus the slenderness ratio L/h is plotted
for the Bending-Gradient solution (BG), the finite elements solution (RM,FE) and the closed-form Reissner-
Mindlin solution (RM,WE). In Figure 8 the mid-span deflection error is also plotted versus the slenderness
ratio. Kirchhoff-Love deflection is also plotted as reference. The three approximate solutions yield almost

the same error both for deflection and transverse shear stress and converge as ∆(σBG) ∝
(

h
L

)2
with the

slenderness ratio.

5.3.2. [0◦, 90◦] ply
We consider now a non-symmetric cross ply [0◦, 90◦] laminate. The plate configuration still fulfills the

assumptions made for the finite elements approximation. In Figure 9, shear stress distribution in Direction 1
is plotted. Again, the three approximate solutions yield the same distribution.

In Figure 10 is plotted the in-plane displacement in Direction 1. The Bending-Gradient approximation
follows some trends of the exact solution. However, there is a small discrepancy with the exact solution.

In Figure 11 the transverse shear stress distribution error ∆(σ) versus the slenderness ratio L/h is
plotted. In this case, Whitney’s solution converges with L/h whereas finite elements and Bending-Gradient
approximations do not converge and lead to small residual errors (≃ 10−3). In Figure 12 the mid-span
deflection error is also plotted versus the slenderness ratio. Again the three approximate solutions yield
almost the same error.

5.3.3. [45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦] ply
Now we take the initial 9-ply configuration and simply rotate it 45◦ with respect to the bending direction.

It becomes a symmetric and non-orthotropic [45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦] laminate. This
configuration does not comply with the assumptions made for the finite elements approach. In Figure 13
shear distributions are compared to the exact solution. The Bending-Gradient solution remains close to the
exact solution. However finite elements and Whitney’s solution yield a different distribution which is not
as accurate as the Bending-Gradient. More precisely, in Direction 2, the FE solution does not capture the
change of slope associated to the change of ply orientation.

In Figure 14 is plotted the in-plane displacement in both directions. The Bending-Gradient approxi-
mation matches accurately the exact solution. Especially, in Direction 2 the distribution follows a Zig-Zag
shape. Thus the Bending-Gradient approximation is able to capture this well-known feature of laminates
displacement fields.
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In Figure 15 the transverse shear stress distribution error versus the slenderness ratio is plotted. Contrary
to the finite elements solution and Whitney’s solution, the Bending-Gradient solution converges when the
plate is slender. In Figure 16 the mid-span deflection error is also plotted versus the slenderness ratio. The
Bending-Gradient solution is the most accurate one for conventional slenderness.

5.3.4. [45◦,−45◦] ply
Again we take the [0◦, 90◦] ply and rotate it with respect to the bending direction. This lead to a non-

symmetric and non-orthotropic ply [45◦,−45◦] and this configuration does not comply with the assumptions
made for the finite elements approach. The comparison is made in Figure 17 for transverse shear stress.
The Bending-Gradient solution remains close to the exact solution and Whitney’s solution yields acceptable

results (except a mismatch for σ
(Q),W
23 ). However in this case, finite elements yields inappropriate results:

in Direction 1 the stress distribution does not respect macroscopic equilibrium
〈

σFE13
〉

6= Q1. We checked
nevertheless that FE nodal forces fulfills macroscopic equilibrium.

In Figure 18 is plotted the in-plane displacement in both directions. The Bending-Gradient approxi-
mation matches accurately the exact solution in Direction 1. In Direction 2 there is an offset between the
Bending-Gradient approximation and the exact solution, however the overall shape of the displacement is
captured.

The inaccuracy of finite element and Whitney’s solutions is again clear in Figure 19 showing the trans-
verse shear stress distribution error versus the slenderness ratio whereas the Bending-Gradient converges as

∆(σBG) ∝
(

h
L

)2
and both the Whitney and finite elements solutions lead to non negligible errors. Again, in

Figure 20, the deflection error indicates that FE are too compliant and that the Bending-Gradient is more
accurate than the Reissner-Mindlin solution.

5.3.5. Influence of the bending direction

As already mentioned, the finite elements approach makes assumption on the overall plate configuration
(orthotropy). However, in standard engineering application, even if the plate is orthotropic, the bending
direction does not often correspond to the orthotropy axis. In order to illustrate this, we consider here the
cross ply [0◦, 90◦] laminate with fixed slenderness L/h = 4 and we rotate the bending directions (the plate’s
overall configuration is rotating relative to x3 axis). In Figure 21 we plotted the deflection error with respect
to the bending direction for the different approximations. It is clear that the bending direction has a great
influence on the accuracy of the deflection. Even for the Reissner-Mindlin approximation, the error can be
four times greater than the error for the Bending-Gradient.

5.4. Discussion

We have numerically compared three approaches for deriving an approximation of the exact solution
for cylindrical bending suggested by Pagano (1969, 1970a,b) applied to two cross-ply configurations (one
mirror-symmetric and one non-symmetric) and in two bending directions.

The first main observation which comes out of this analysis is the critical influence of the assumption of
orthotropy with respect to the bending direction. When this assumption is fullfilled, the three approxima-
tions lead to almost identical results. Otherwise, both Whitney’s and Finite Element approximations lead
to poor estimation of transverse shear stress distribution and deflection. In the case of finite elements this is
because we do not respect the assumption of the model. In the case of Whitney (1972), the main reason for
this discrepancy comes from the assumption of cylindrical bending. This assumption neglects the influence
of the pure warping unknowns included in the bending gradient: R112 and R221 and generates the difference
in shear stress distribution and therefore in deflection.

The second observation is that a simple rotation of the plate with respect to the bending direction
leads to very different transverse shear stress distribution. This shows clearly the necessity to distinguish
between torsion and cylindrical bending components in the gradient of the bending moment. In most plate
models they are mixed into shear forces (Q1 = R111 + R122), whereas, as illustrated in Section 4.3.2, the
components R111 and R122 lead to different transverse shear stress distributions. This explains the significant
difference when changing the bending direction. More generally, this raises the question of the relevence
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of benchmarking plate models in configurations where only the cylindrical part of the bending gradient is
involved whereas laminated plate engineering applications involves much more general configurations.

Finally, the Bending-Gradient solution was presented. When the plate follows mirror symmetry, this
model gives a very good approximation of both local and macroscopic fields at a rather low computa-
tional cost (no post-process integration through the thickness and Reissner-Mindlin-like partial derivative
equations). Moreover, it was numerically demonstrated that the Bending-Gradient solution asymptotically
converges to the exact solution as the slenderness ratio goes to infinity. Thus, with mirror-symmetric lami-
nates, the Bending-Gradient solution is the Saint-Venant solution for an out-of-plane loaded plate.

When the laminate is not mirror-symmetric, the Bending-Gradient gives less accurate results: the trans-
verse shear distribution or the related in-plane displacement might not exactly converge to the exact solution.
Several explanations are currently under investigation. Especially, in Part I we indicated that it was our
choice to neglect the contribution to the stress energy of the membrane stress gradient, N ⊗∇. Neglecting
this contribution explains the discrepancy observed when the membrane stress in not zero, which occurs
when the plate is not mirror-symmetric.

Finally, in Part I we pointed out that the relevance of introducing the full bending gradient might
be questionable since the Bending-Gradient is sometimes turned into a Reissner-Mindlin model. In the
present paper, we provide answers. On the one hand, when dealing with highly anisotropic laminates, it
is clear that all localization fields are relevant (see Section 4.3.2) and the distance with Reissner-Mindlin
presented in Section 4.3.3 fully justifies the use of the Bending-Gradient. Furthermore, in upcoming work, the
Bending-Gradient theory will be applied to periodic plates. It appears that the distance between Reissner-
Mindlin and Bending-Gradient models is almost up to 80% with very common patterns. On the other hand,
when studying the influence of isotropy on the shear constitutive equation in Section 3.3 we indicated that
only Poisson’s effect has an influence on warping. Since most conventional materials have almost identical
Poissons’s ratios, it is more relevant to use a Reissner-Mindlin model in these cases. Eventually, the distance
between Reissner-Mindlin and Bending-Gradient models is an efficient tool for deciding which model is the
most relevant.

6. Conclusion

In the present paper, we provided first applications using the Bending-Gradient plate theory. We in-
troduced Voigt notation which enables easier analytical computations and prepares finite elements imple-
mentation. Then the influence of material symmetries was associated to in-plane strain gradient elasticity.
Closed-form solutions for cylindrical bending were fully derived, applied to laminates and compared to
Reissner-Mindlin and finite elements approximations. The main conclusion is that the Bending-Gradient
gives good predictions of both deflection and shear stress distributions in many material configuration. It
is also the Saint-Venant solution when membrane stresses are fully uncoupled from bending moments and
generalized shear stresses. Finally, with usual laminated plates, we demonstrated that the Bending-Gradient
cannot be reduced to a Reissner-Mindlin plate model.

Several outlooks are under consideration. First, this plate theory can be extended to periodic plates
such as sandwich panels (Lebée and Sab, 2010c,d). Second, the estimation of the influence of the membrane
stress gradient on the quality of the shear stress estimation should be studied in detail. Finally, since we have
a Saint-Venant solution, it is worth analyzing the shift with more refined approximations such as layerwise
models or even full 3D finite elements when it is necessary to locally refine the analysis as illustrated in
Amini et al. (2009) among others.
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Figure 3: Bending gradient localization shear distributions through the thickness for a [0◦,−45◦, 90◦, 45◦]s laminate

Figure 4: Finite Element undeformed and deformed mesh for an anisotropic laminate
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Figure 5: Normalized shear distribution σ13 at x1 = 0 for a [0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] laminate, L/h = 4, (σ23 = 0:
symmetry). (Ex: exact, BG: Bending-Gradient, RM,FE: finite elements, RM,W :Whitney (1972)).
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Figure 6: In-plane displacement distribution u1 at x1 = 0 for a [0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] laminate, L/h = 4, (u2 = 0:
symmetry).
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nate, (BG: Bending-Gradient, RM,FE: finite elements,
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Figure 8: Deflection error versus slenderness ratio for a
[0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦, 90◦, 0◦] laminate (BG: Bending-
Gradient, RM,FE: finite elements, RM,W :Whitney (1972),
KL: Kirchhoff-Love)
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Figure 9: Normalized shear distribution σ13 at x1 = 0 for a [0◦, 90◦] laminate, L/h = 4, (σ23 = 0: symmetry).
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Figure 10: In-plane displacement distribution u1 at x1 = 0 for a [0◦, 90◦] laminate, L/h = 4, (u2 = 0: symmetry).
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Figure 11: Shear stress distribution error versus slenderness
ratio for a [0◦, 90◦] laminate.
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Figure 12: Deflection error versus slenderness ratio for a
[0◦, 90◦] laminate.
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Figure 13: Normalized shear distribution in both directions at x1 = 0 for a [45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦]
laminate, L/h = 4, a) σ13 b) σ23.

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u1/U
KL
3

x
3
/h

(a)

 

 

uEx
1

uBG
1

−0.1 −0.05 0 0.05 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u2/U
KL
3

x
3
/h

(b)

 

 

uEx
2

uBG
2

Figure 14: In-plane displacement distribution at x1 = 0 for a [45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦] laminate, L/h =
4, a) u1 b) u2.
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Figure 15: Shear stress distribution error versus slenderness
ratio for a [45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦]
laminate
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Figure 16: Deflection error versus slenderness ratio for a
[45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦,−45◦, 45◦] laminate
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Figure 17: Normalized shear distribution in both directions at x1 = 0 for a [45◦,−45◦] laminate, L/h = 4, a) σ13 b) σ23.
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Figure 18: In-plane displacement distribution at x1 = 0 for a [45◦,−45◦] laminate, L/h = 4,, a) u1 b) u2.

24



10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Slenderness L/h

S
h
ea

r
st

re
ss

E
rr

o
r,

∆
(σ

)

 

 

BG
RM, FE
RM, W

Figure 19: Shear stress distribution error versus slenderness
ratio for a [45◦,−45◦] laminate
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Figure 20: Deflection error versus slenderness ratio for a
[45◦,−45◦] laminate
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Figure 21: Deflection error versus bending direction for a [0, 90◦] laminate, L/h = 4
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